Transcriptomic Analysis of Cucumis hystrix and the Functional Identification of ChTrxh under NaCl Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Salt Treatment
2.2. Malondialdehyde, Peroxide Contents, Antioxidant Enzyme Activities Analysis
2.3. Proline and Soluble Sugar Contents Analysis
2.4. Library Construction and Sequencings
2.5. De Novo Transcriptome Assembly and Functional Annotation
2.6. Total RNA Extraction and qRT-PCR Validation
2.7. The Isolation of ChTrxh and Its Overexpression Transgenic Tobacco Plants Characterization
2.8. Western Blot Analysis
2.9. Analysis of Transgenic Plants under Salt Stress
2.10. Statistical Analysis
3. Results
3.1. Physiological Responses of Wild Cucumber to NaCl Stress
3.2. RNA-Seq and De Novo Assembly
3.3. Unigene Function Annotation
3.4. Analysis and Functional Classifications of DEGs in Leaves and Roots of Wild Cucumber
3.5. Identification of Salt Responsive Genes Expressed during the Salt Stress Treatment
3.5.1. DEGs Encoding Signaling Transduction Proteins
3.5.2. DEGs Encoding Transcription Factors
3.5.3. DGEs Encoding Transporters
3.5.4. DEGs Encoding ROS Scavenging Enzymes
3.5.5. DEGs Encoding Osmotic Substances
3.6. Verification of the Expression Level of Some Transcripts Using qRT-PCR
3.7. The Characterization and Functional Analysis of Overexpressed ChTrxh Transgenic Tobacco under NaCl Stress
4. Discussion
4.1. Signaling Network of Wild Cucumber in Response to NaCl Stress
4.2. Transcription Factors of Wild Cucumber Are Affected by Salt Stress
4.3. Transporters Are Affected by Salt Stress in Wild Cucumber
4.4. ROS Scavenging Substances of Wild Cucumber Play Important Roles in Response to NaCl Stress
4.5. Osmotic Substance Metabolism of Wild Cucumber in Response to NaCl Stress
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhu, J.K. Plant salt tolerance. Trends Plant Sci. 2001, 6, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Parida, A.K.; Das, A.B. Salt tolerance and salinity effects on plants: A review. Ecotoxicol. Environ. Saf. 2005, 60, 324–349. [Google Scholar] [CrossRef]
- Yu, Y.; Huang, W.G.; Chen, H.Y.; Wu, G.W.; Yuan, H.M.; Song, X.X.; Kang, Q.H.; Zhao, D.S.; Jiang, W.D.; Liu, Y.; et al. Identification of differentially expressed genes in flax (Linum usitatissimum L.) under saline-alkaline stress by digital gene expression. Gene 2014, 549, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Diray-Arce, J.; Clement, M.; Gul, B.; Khan, M.A.; Nielsen, B.L. Transcriptome assembly, profiling and differential gene expression analysis of the halophyte Suaeda fruticosa provides insights into salt tolerance. BMC Genom. 2015, 16, 353. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Wang, Z.; Song, X.; Xu, J.; Jiang, C.; Zhao, Y.; Ma, C.; Zhang, H. Transcriptomic profiling revealed an important role of cell wall remodeling and ethylene signaling pathway during salt acclimation in Arabidopsis. Plant Mol. Biol. 2014, 86, 303–317. [Google Scholar] [CrossRef] [PubMed]
- Villarino, G.H.; Bombarely, A.; Giovannoni, J.J.; Scanlon, M.J.; Mattson, N.S. Transcriptomic Analysis of Petunia hybrida in Response to Salt Stress Using High Throughput RNA Sequencing. PLoS ONE 2014, 9, e94651. [Google Scholar] [CrossRef]
- Ahmad, A.; Olah, G.; Szczesny, B.; Wood, M.E.; Whiteman, M.; Szabo, C. AP39, A Mitochondrially Targeted Hydrogen Sulfide Donor, Exerts Protective Effects in Renal Epithelial Cells Subjected to Oxidative Stress in Vitro and in Acute Renal Injury in Vivo. Shock 2016, 45, 88–97. [Google Scholar] [CrossRef]
- Wei, Y.; Xu, Y.; Lu, P.; Wang, X.; Li, Z.; Cai, X.; Zhou, Z.; Wang, Y.; Zhang, Z.; Lin, Z.; et al. Salt stress responsiveness of a wild cotton species (Gossypium klotzschianum) based on transcriptomic analysis. PLoS ONE 2017, 12, e0178313. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, P.; Cui, F.; Zhang, F.; Luo, X.; Xie, J. Transcriptome Analysis of Salt Stress Responsiveness in the Seedlings of Dongxiang Wild Rice (Oryza rufipogon Griff.). PLoS ONE 2016, 11, e0146242. [Google Scholar] [CrossRef]
- Dang, Z.H.; Zheng, L.L.; Wang, J.; Gao, Z.; Wu, S.B.; Qi, Z.; Wang, Y.C. Transcriptomic profiling of the salt-stress response in the wild recretohalophyte Reaumuria trigyna. BMC Genom. 2013, 14, 29. [Google Scholar] [CrossRef]
- Sebastian, P.; Schaefer, H.; Telford, I.R.; Renner, S.S. Cucumber (Cucumis sativus) and melon (C. melo) have numerous wild relatives in Asia and Australia, and the sister species of melon is from Australia. Proc. Natl. Acad. Sci. USA 2010, 107, 14269–14273. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.F.; Luo, X.D.; Qian, C.T.; Jahn, M.M.; Staub, J.E.; Zhuang, F.Y.; Lou, Q.F.; Ren, G. Cucumis monosomic alien addition lines: Morphological, cytological, and genotypic analyses. Theor. Appl. Genet. 2004, 108, 1343–1348. [Google Scholar] [CrossRef] [PubMed]
- Wan, H.; Zhao, Z.; Malik, A.A.; Qian, C.; Chen, J. Identification and characterization of potential NBS-encoding resistance genes and induction kinetics of a putative candidate gene associated with downy mildew resistance in Cucumis. BMC Plant Biol. 2010, 10, 186. [Google Scholar] [CrossRef]
- Xu, H.N.; Wang, X.F.; Sun, X.D.; Shi, Q.H.; Yang, F.J.; Du, D.L. Molecular cloning and characterization of a cucumber MAP kinase gene in response to excess NO3− and other abiotic stresses. Sci. Hortic. 2008, 117, 1–8. [Google Scholar] [CrossRef]
- Rao, K.V.M.; Sresty, T.V.S. Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses. Plant Sci. 2000, 157, 113–128. [Google Scholar]
- Xu, H.N.; Sun, X.D.; Shi, Q.H.; Yang, F.J.; Yang, X.Y.; Wang, X.F. Physiological Responses of Two Cucumber Cultivars to Nitrate Stress. J. Plant Nutr. 2012, 35, 2167–2179. [Google Scholar] [CrossRef]
- Cakmak, I.; Marschner, H. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol. 1992, 98, 1222–1227. [Google Scholar] [CrossRef]
- Foyer, C.H.; Halliwell, B. The presence of glutathione and glutathione reductase in chloroplasts: A proposed role in ascorbic acid metabolism. Planta 1976, 133, 21–25. [Google Scholar] [CrossRef]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Yemm, E.W.; Willis, A.J. The estimation of carbohydrates in plant extracts by anthrone. Biochem. J. 1954, 57, 508–514. [Google Scholar] [CrossRef]
- Horsch, R.B.; Fry, J.E.; Hoffmann, N.L.; Wallroth, M.; Eichholtz, D.; Rogers, S.G.; Fraley, R.T. A simple and general method for transferring genes into plants. Science 1985, 227, 1229–1231. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.G.; Long, J.; He, X.Z.; Yan, J.P.; Chen, X.Q.; Tan, Y.; Li, K.Z.; Chen, L.M.; Xu, H.N. Overexpression of spinach non-symbiotic hemoglobin in Arabidopsis resulted in decreased NO content and lowered nitrate and other abiotic stresses tolerance. Sci. Rep. 2016, 6, 26400. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.H.; Wang, Z.Y.; Zhang, Y.; Li, H.; Yang, M.; Yin, H.; Cui, J.; Chai, H.; Gao, Y.H.; Hu, G.F.; et al. Overexpression of a Thioredoxin-Protein-Encoding Gene, MsTRX, from Medicago sativa Enhances Salt Tolerance to Transgenic Tobacco. Agronomy 2022, 12, 1467. [Google Scholar] [CrossRef]
- Chen, J.; Staub, J.; Qian, C.; Jiang, J.; Luo, X.; Zhuang, F. Reproduction and cytogenetic characterization of interspecific hybrids derived from Cucumis hystrix Chakr. × Cucumis sativus L. Theor. Appl. Genet. 2003, 106, 688–695. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.S.; El-Habbak, M.H.; Havens, W.M.; Singh, A.; Zheng, D.M.; Vaughn, L.; Haudenshield, J.S.; Hartman, G.L.; Korban, S.S.; Ghabrial, S.A. Overexpression of GmCaM4 in soybean enhances resistance to pathogens and tolerance to salt stress. Mol. Plant Pathol. 2014, 15, 145–160. [Google Scholar] [CrossRef]
- Yin, X.M.; Huang, L.F.; Wang, M.L.; Cui, Y.C.; Xia, X.J. OsDSR-1, a calmodulin-like gene, improves drought tolerance through scavenging of reactive oxygen species in rice (Oryza sativa L.). Mol. Breed. 2017, 37, 75. [Google Scholar] [CrossRef]
- Mendoza, I.; Rubio, F.; Rodriguez-Navarro, A.; Pardo, J.M. The protein phosphatase calcineurin is essential for NaCl tolerance of Saccharomyces cerevisiae. J. Biol. Chem. 1994, 269, 8792–8796. [Google Scholar] [CrossRef]
- Dubrovina, A.S.; Kiselev, K.V.; Khristenko, V.S.; Aleynova, O.A. VaCPK21, a calcium-dependent protein kinase gene of wild grapevine Vitis amurensis Rupr., is involved in grape response to salt stress. Plant Cell Tissue Organ Cult. 2016, 124, 137–150. [Google Scholar] [CrossRef]
- Campo, S.; Baldrich, P.; Messeguer, J.; Lalanne, E.; Coca, M.; San Segundo, B. Overexpression of a Calcium-Dependent Protein Kinase Confers Salt and Drought Tolerance in Rice by Preventing Membrane Lipid Peroxidation. Plant Physiol. 2014, 165, 688–704. [Google Scholar] [CrossRef]
- Zhu, J.K. Regulation of ion homeostasis under salt stress. Curr. Opin. Plant Biol. 2003, 6, 441–445. [Google Scholar] [CrossRef]
- Xu, H.N.; Li, K.Z.; Yang, F.J.; Shi, Q.H.; Wang, X.F. Overexpression of CsNMAPK in tobacco enhanced seed germination under salt and osmotic stresses. Mol. Biol. Rep. 2010, 37, 3157–3163. [Google Scholar] [CrossRef] [PubMed]
- Ovecka, M.; Takac, T.; Vyplelova, P.; Komis, G.; Bekesova, S.; Luptovciak, I.; Vadovic, P.; Samajova, O.; Hirt, H.; Samaj, J. Overexpression of Medicago mitogen-activated protein kinase kinase SIMKK in Arabidopsis causes salt stress-induced subcellular relocation and enhanced salt sensitivity. New Biotechnol. 2016, 33, S159–S160. [Google Scholar] [CrossRef]
- Peng, Z.; He, S.; Gong, W.; Sun, J.; Pan, Z.; Xu, F.; Lu, Y.; Du, X. Comprehensive analysis of differentially expressed genes and transcriptional regulation induced by salt stress in two contrasting cotton genotypes. BMC Genom. 2014, 15, 760. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Hu, Y.N.; Huo, P.J.; Zhang, Q.; Chen, X.; Zhang, Z.W. Transcriptome analysis of hexaploid hulless oat in response to salinity stress. PLoS ONE 2017, 12, e0171451. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Chen, L.C.; Shi, Q.H.; Ren, Z.H. SIMYB102, an R2R3-type MYB gene, confers salt tolerance in transgenic tomato. Plant Sci 2020, 291, 110356. [Google Scholar] [CrossRef]
- He, Y.X.; Dong, Y.S.; Yang, X.D.; Guo, D.Q.; Qian, X.Y.; Yan, F.; Wang, Y.; Li, J.W.; Wang, Q.Y. Functional activation of a novel R2R3-MYB protein gene, GmMYB68, confers salt-alkali resistance in soybean (Glycine max L.). Genome 2020, 63, 13–26. [Google Scholar] [CrossRef]
- Shen, X.J.; Wang, Y.Y.; Zhang, Y.X.; Guo, W.; Jiao, Y.Q.; Zhou, X.A. Overexpression of the Wild Soybean R2R3-MYB Transcription Factor GsMYB15 Enhances Resistance to Salt Stress and Helicoverpa armigera in Transgenic Arabidopsis. Int. J. Mol. Sci. 2018, 19, 3958. [Google Scholar] [CrossRef]
- Long, L.; Yang, W.W.; Liao, P.; Guo, Y.W.; Kumar, A.; Gao, W. Transcriptome analysis reveals differentially expressed ERF transcription factors associated with salt response in cotton. Plant Sci. 2019, 281, 72–81. [Google Scholar] [CrossRef]
- Debbarma, J.; Sarki, Y.N.; Saikia, B.; Boruah, H.P.D.; Singha, D.L.; Chikkaputtaiah, C. Ethylene Response Factor (ERF) Family Proteins in Abiotic Stresses and CRISPR-Cas9 Genome Editing of ERFs for Multiple Abiotic Stress Tolerance in Crop Plants: A Review. Mol. Biotechnol. 2019, 61, 153–172. [Google Scholar] [CrossRef]
- Tian, Z.; He, Q.; Wang, H.; Liu, Y.; Zhang, Y.; Shao, F.; Xie, C. The Potato ERF Transcription Factor StERF3 Negatively Regulates Resistance to Phytophthora infestans and Salt Tolerance in Potato. Plant Cell Physiol. 2015, 56, 992–1005. [Google Scholar] [CrossRef]
- Saha, J.; Sengupta, A.; Gupta, K.; Gupta, B. Molecular phylogenetic study and expression analysis of ATP-binding cassette transporter gene family in Oryza sativa in response to salt stress. Comput. Biol. Chem. 2015, 54, 18–32. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.Y.; Jin, J.Y.; Alejandro, S.; Martinoia, E.; Lee, Y. Overexpression of AtABCG36 improves drought and salt stress resistance in Arabidopsis. Physiol. Plant. 2010, 139, 170–180. [Google Scholar] [CrossRef] [PubMed]
- Assaha, D.V.M.; Ueda, A.; Saneoka, H.; Al-Yahyai, R.; Yaish, M.W. The Role of Na+ and K+ Transporters in Salt Stress Adaptation in Glycophytes. Front. Physiol. 2017, 8, 509. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Q.; Ma, T.; Hu, Q.J.; Liu, B.B.; Wu, Y.X.; Zhou, H.H.; Wang, Q.; Wang, J.; Liu, J.Q. Genome-scale transcriptome analysis of the desert poplar, Populus euphratica. Tree Physiol. 2011, 31, 452–461. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Jiang, D.C.; Liu, B.B.; Luo, W.C.; Lu, J.; Ma, T.; Wan, D.S. Transcriptome dynamics of a desert poplar (Populus pruinosa) in response to continuous salinity stress. Plant Cell Rep. 2014, 33, 1565–1579. [Google Scholar] [CrossRef] [PubMed]
- Abdelhamid, E.; Zoulfa, R.; Nada, N.; Zakia, Z.; Bouchra, B.; Azzouz, K.; Anass, K.; Imad, K.; Mohamed, N. Chaste plant extract is a promising biostimulant for tomato plants’ growth under salt stress. Biomass Convers. Biorefin. 2022, 1–12. [Google Scholar] [CrossRef]
- Ennoury, A.; BenMrid, R.; Nhhala, N.; Roussi, Z.; Latique, S.; Zouaoui, Z.; Nhiri, M. River’s Ulva intestinalis L. extract protects common bean plants (Phaseolus vulgaris L.) against salt stress. S. Afr. J. Bot. 2022, 150, 334–341. [Google Scholar] [CrossRef]
- Vijayakumar, H.; Thamilarasan, S.K.; Shanmugam, A.; Natarajan, S.; Jung, H.J.; Park, J.I.; Kim, H.; Chung, M.Y.; Nou, I.S. Glutathione Transferases Superfamily: Cold-Inducible Expression of Distinct GST Genes in Brassica oleracea. Int. J. Mol. Sci. 2016, 17, 1211. [Google Scholar] [CrossRef]
- Xu, J.; Tian, Y.S.; Xing, X.J.; Peng, R.H.; Zhu, B.; Gao, J.J.; Yao, Q.H. Over-expression of AtGSTU19 provides tolerance to salt, drought and methyl viologen stresses in Arabidopsis. Physiol. Plant. 2016, 156, 164–175. [Google Scholar] [CrossRef]
- Calderon, A.; Sanchez-Guerrero, A.; Ortiz-Espin, A.; Martinez-Alcala, I.; Camejo, D.; Jimenez, A.; Sevilla, F. Lack of mitochondrial thioredoxin o1 is compensated by antioxidant components under salinity in Arabidopsis thaliana plants. Physiol. Plant. 2018, 164, 251–267. [Google Scholar] [CrossRef]
- Sun, L.J.; Ren, H.Y.; Liu, R.X.; Li, B.Y.; Wu, T.Q.; Sun, F.; Liu, H.M.; Wang, X.M.; Dong, H.S. An h-Type Thioredoxin Functions in Tobacco Defense Responses to Two Species of Viruses and an Abiotic Oxidative Stress. Mol. Plant Microbe Interact. 2010, 23, 1470–1485. [Google Scholar] [CrossRef] [PubMed]
- Kaur, H.; Kaur, H.; Kaur, H.; Srivastava, S. The beneficial roles of trace and ultratrace elements in plants. Plant Growth Regul. 2022, 100, 219–236. [Google Scholar] [CrossRef]
- Ali, F.; Li, Y.H.; Li, F.G.; Wang, Z. Genome-wide characterization and expression analysis of cystathionine beta-synthase genes in plant development and abiotic stresses of cotton (Gossypium spp.). Int. J. Biol. Macromol. 2021, 193, 823–837. [Google Scholar] [CrossRef] [PubMed]
- Luan, J.; Dong, J.; Song, X.; Jiang, J.; Li, H. Overexpression of Tamarix hispida ThTrx5 Confers Salt Tolerance to Arabidopsis by Activating Stress Response Signals. Int. J. Mol. Sci. 2020, 21, 1165. [Google Scholar] [CrossRef]
- Iordachescu, M.; Imai, R. Trehalose biosynthesis in response to abiotic stresses. J. Integr. Plant Biol. 2008, 50, 1223–1229. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Z.; Zeng, S.; Li, K.; Xu, H. Transcriptomic Analysis of Cucumis hystrix and the Functional Identification of ChTrxh under NaCl Stress. Agronomy 2023, 13, 2931. https://doi.org/10.3390/agronomy13122931
Guo Z, Zeng S, Li K, Xu H. Transcriptomic Analysis of Cucumis hystrix and the Functional Identification of ChTrxh under NaCl Stress. Agronomy. 2023; 13(12):2931. https://doi.org/10.3390/agronomy13122931
Chicago/Turabian StyleGuo, Zhaolai, Senlin Zeng, Kunzhi Li, and Huini Xu. 2023. "Transcriptomic Analysis of Cucumis hystrix and the Functional Identification of ChTrxh under NaCl Stress" Agronomy 13, no. 12: 2931. https://doi.org/10.3390/agronomy13122931
APA StyleGuo, Z., Zeng, S., Li, K., & Xu, H. (2023). Transcriptomic Analysis of Cucumis hystrix and the Functional Identification of ChTrxh under NaCl Stress. Agronomy, 13(12), 2931. https://doi.org/10.3390/agronomy13122931