Urea Enhanced with Polyaspartic Acid of a Higher Molecular Weight Significantly Increased Wheat Yield and Nitrogen Use Efficiency
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Conventional Urea and Urea Enhanced with PASP Fractions of Different Molecular Weights
2.2. Field–Soil–Column Culture Trails
2.3. Sample Preparation and Analysis
2.4. Calculations
2.5. Statistical Analysis
3. Results
3.1. Winter Wheat Yield and Yield Components
3.2. Nitrogen Uptake by Winter Wheat
3.3. Nitrogen Residue in Soil
3.4. Nitrogen Fate Analysis
3.5. Comprehensive Evaluation of PASPUs Based on Radar Chart
4. Discussion
4.1. PASPUs Increased the Winter Wheat Yield, and PAH–U Showed the Highest Yield
4.2. PASPUs Altered the Fertilizer–N Fate, and PAH–U Showed a Higher Use Efficiency with a Lower Loss Rate
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sutton, M.A.; Bleeker, A. The shape of nitrogen to come. Nature 2013, 494, 435–437. [Google Scholar] [CrossRef]
- Timilsena, Y.P.; Adhikari, R.; Casey, P.; Muster, T.; Gill, H.; Adhikari, B. Enhanced efficiency fertilisers: A review of formulation and nutrient release patterns. J. Sci. Food Agric. 2015, 95, 1131–1142. [Google Scholar] [CrossRef]
- He, S.; Sun, Y.; Shen, Z.; Wang, K. Advances in coupling big data technique with nutrient site–specific management: Scheme, methods and outlook. J. Plant Nutr. Fertil. 2017, 23, 1514–1524. [Google Scholar]
- Yan, X.; Jin, J.; He, P.; Liang, M. Recent advances in technology of increasing fertilizer use efficiency. Sci. Agric. Sin. 2008, 41, 450–459. [Google Scholar]
- Zhao, B.; Yuan, L.; Li, Y.; Zhang, S. Overview of Value–Added Fertilizer; China Agricultural Sciences and Technology Press: Beijing, China, 2020. [Google Scholar]
- Tomida, M.; Nakato, T.; Matsunami, S.; Kakuchi, T. Convenient synthesis of high molecular weight poly (succinimide) by acid–catalysed polycondensation of L–aspartic acid. Polymer 1997, 38, 4733–4736. [Google Scholar] [CrossRef]
- Yan, P.; Fang, M.; Lu, L.; Ren, L.; Dong, X.; Dong, Z. Effect of urea coated with polyaspartic acid on the yield and nitrogen use efficiency of sorghum (Sorghum Bicolor, (L.) Moench.). Plants 2022, 11, 1724. [Google Scholar] [CrossRef]
- Yang, J.; Liu, T.; Liu, H.; Zhang, D.; Zhai, L.; Liu, J.; Wang, M.; Chen, Y.; Chen, B.; Wang, H. Biodegradable PASP can effectively inhibit nitrification, moderate NH3 emission, and promote crop yield. Arch. Agron. Soil Sci. 2019, 65, 1273–1286. [Google Scholar] [CrossRef]
- Liu, T.; Yang, J.; Wang, H.; Chen, Y.; Ren, J.; Lin, X.; Zhao, J.; Chen, B.; Liu, H. Effects of molecular weight of polyaspartic acid on nitrogen use efficiency and crop yield. J. Sci. Food Agric. 2022, 102, 7343–7352. [Google Scholar] [CrossRef]
- Wang, Q.; Tang, H.; Li, G.; Dong, H.; Dong, X.; Xu, Y.; Dong, Z. Polyaspartic acid improves maize (Zea mays L.) seedling nitrogen assimilation mainly by enhancing nitrate reductase activity. Agronomy 2018, 8, 188. [Google Scholar] [CrossRef]
- Deng, F.; Wang, L.; Ren, W.; Mei, X. Enhancing nitrogen utilization and soil nitrogen balance in paddy fields by optimizing nitrogen management and using polyaspartic acid urea. Field Crop. Res. 2014, 169, 30–38. [Google Scholar] [CrossRef]
- Miao, F. Production technology and development prospect of polypeptide urea. Chem. Fert. Ind. 2013, 40, 17–19. [Google Scholar]
- Deng, F.; Wang, L.; Mei, X.; Li, S.; Pu, S.; Ren, W. Polyaspartate urea and nitrogen management affect nonstructural carbohydrates and yield of rice. Crop Sci. 2016, 56, 3272–3285. [Google Scholar] [CrossRef]
- Deng, F.; Wang, L.; Ren, W.; Mei, X.; Li, S. Optimized nitrogen managements and polyaspartic acid urea improved dry matter production and yield of indica hybrid rice. Soil. Tillage Res. 2015, 145, 1–9. [Google Scholar] [CrossRef]
- Salakhieva, D.V.; Gumerova, D.R.; Akhmadishina, R.A.; Kamalov, M.I.; Nizamov, I.S.; Nemeth, C.; Szilágyi, A.; Abdullin, T.I. Anti–radical and cytotoxic activity of polysuccinimide and polyaspartic acid of different molecular weight. BioNanoScience 2016, 6, 348–351. [Google Scholar] [CrossRef]
- Burns, K.; Wu, Y.-T.; Grant, C.S. Mechanisms of calcite dissolution using environmentally benign polyaspartic acid: A rotating disk study. Langmuir 2003, 19, 5669–5679. [Google Scholar] [CrossRef]
- Liu, Y.; Yuan, L.; Zhang, S.; Zhao, B.; Li, Y. Effects of polyaspartic acid with different molecular weights on root growth and nutrient uptake of wheat. Sci. Agric. Sin. 2022, 55, 2526–2537. [Google Scholar]
- Liu, R.; Ma, B.; Gou, X.; Zhou, M. Establishment of determination method for the molecular weight of polyaspartic acid by gel permeation chromatography–multi–angle light scattering. J. Food Saf. Food Qual. 2016, 7, 4318–4322. [Google Scholar]
- Bao, S. Soil and Agricultural Chemistry Analysis; China Agriculture Press: Beijing, China, 2000. [Google Scholar]
- Zhang, S.; Yuan, L.; Li, W.; Lin, Z.; Li, Y.; Hu, S.; Zhao, B. Effects of urea enhanced with different weathered coal–derived humic acid components on maize yield and fate of fertilizer nitrogen. J. Integr. Agric. 2019, 18, 656–666. [Google Scholar] [CrossRef]
- Zhang, S.; Yuan, L.; Li, W.; Lin, Z.; Li, Y.; Hu, S.; Zhao, B.; Li, J. Effects of humic acid urea on maize yield and the fate of fertilizer nitrogen. J. Plant Nutr. Fertil. 2017, 23, 1207–1214. [Google Scholar]
- Deng, F.; Wang, L.; Li, Q.-P.; Ren, W.-J. Relationship between nitrogen accumulation and nitrogen use efficiency of rice under different urea types and management methods. Arch. Agron. Soil Sci. 2018, 64, 1278–1289. [Google Scholar] [CrossRef]
- Yan, P.; Dong, X.; Lu, L.; Fang, M.; Ma, Z.; Du, J.; Dong, Z. Wheat yield and nitrogen use efficiency enhancement through poly (aspartic acid)–coated urea in clay loam soil based on a 5–year field trial. Front. Plant Sci. 2022, 13, 953728. [Google Scholar] [CrossRef]
- Cao, B.; Gui, Y.; Zu, Q.; Li, B.; Mu, S.; Lu, Y. Effects of polyaspartic acid on growth, yield and nutrient absorption of flue–cured tobacco with reduced fertilization. Chin. Tob. Sci. 2018, 39, 57–63. [Google Scholar]
- Deng, F.; Wang, L.; Mei, X.; Li, S.; Pu, S.; Ren, W. Morphological and physiological characteristics of rice leaves in response to pasp–urea and optimized nitrogen management. Arch. Agron. Soil Sci. 2017, 63, 1582–1596. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, S.; Zhong, Q.; Peijnenburg, W.; Vijver, M. Feasibility of chinese cabbage (Brassica bara) and lettuce (Lactuca sativa) cultivation in heavily metals–contaminated soil after washing with biodegradable chelators. J. Clean. Prod. 2018, 197, 479–490. [Google Scholar] [CrossRef]
- Shen, Y.; Lin, H.; Gao, W.; Li, M. The effects of humic acid urea and polyaspartic acid urea on reducing nitrogen loss compared with urea. J. Sci. Food Agric. 2020, 100, 4425–4432. [Google Scholar] [CrossRef]
- Chen, X.; Chen, G.; Tao, Y.; Wang, Y.; Lu, X.; Zhang, L.; Zhu, J.; Zhang, J.; Wang, X. Research progress in eco–polymers. Acta Polym. Sin. 2019, 50, 1068–1082. [Google Scholar]
- Xu, J.; Niu, S.; Sui, S.; Zhang, X.; Ye, X.; Cai, G.; Wang, N. Effects of polyaspartic–acid/salt on nitrogen loss from paddy surface water and nutrients utilization. J. Agro–Environ. Sci. 2019, 38, 1696–1703. [Google Scholar]
- Wu, X.; Tian, H.; Li, L.; Wang, X. Polyaspartic acid alleviates cadmium toxicity in rapeseed leaves by affecting cadmium translocation and cell wall fixation of cadmium. Ecotoxicol. Environ. Saf. 2021, 224, 112685. [Google Scholar] [CrossRef]
- Lenoir, A.; Slafer, G.A.; Siah, A.; Dumont, B. Plasticity of wheat yield components in response to n fertilization. Eur. J. Agron. 2023, 150, 126933. [Google Scholar] [CrossRef]
- Liu, H.; Si, X.; Wang, Z.; Cao, L.; Gao, L.; Zhou, X.; Wang, W.; Wang, K.; Jiao, C.; Zhuang, L.; et al. TaTPP-7A positively feedback regulates grain filling and wheat grain yield through T6P-SnRK1 signalling pathway and sugar–ABA interaction. Plant Biotechnol. J. 2023, 21, 1159–1175. [Google Scholar] [CrossRef]
- Ji, P.; Li, X.; Peng, Y.; Zhang, Y.; Tao, P. Effect of polyaspartic acid and different dosages of controlled–release fertilizers on nitrogen uptake, utilization, and yield of maize cultivars. Bioengineered 2021, 12, 527–539. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.; Li, D.; Li, J.; Cai, D. Effects of polyaspartic urea (PASP–urea) on soil microbial biomass carbon and nitrogen under incubation and pot experiment. Soils Fert. Sci. China 2011, 4, 8–12. [Google Scholar]
- Adelnia, H.; Tran, H.D.N.; Little, P.J.; Blakey, I.; Ta, H.T. Poly (aspartic acid) in biomedical applications: From polymerization, modification, properties, degradation, and biocompatibility to applications. ACS Biomater. Sci. Eng. 2021, 7, 2083–2105. [Google Scholar] [CrossRef] [PubMed]
- Kou, C.; Luo, X.; Ju, X. Effects of optimal nitrogen fertilization on N balance and nitrate–N accumulation in greenhouse tomato fields. J. Plant Nutr. Fertil. 2021, 27, 837–848. [Google Scholar]
- Yang, J.; Liu, T.; Chen, Y.; Wang, M.; Wang, H.; Liu, H. Synthesis, modification and application of polyaspartic acid/salt: The state–of–art technological advances. Mater. Rev. 2018, 32, 1852–1862. [Google Scholar]
Fraction | Cut–Off Molecular Weight (Da) | Weight–Average Molecular Weight (Da) | Elemental Content (%) | Atomic Ratio | |||||
---|---|---|---|---|---|---|---|---|---|
C | H | N | O | C/N | H/C | O/C | |||
PAL | <1000 | 2206 | 25.92 | 5.72 | 7.68 | 60.68 | 3.38 | 0.22 | 2.34 |
PAM | 3000–5000 | 4615 | 27.19 | 5.45 | 8.00 | 59.36 | 3.40 | 0.20 | 2.18 |
PAH | >10,000 | 9453 | 26.91 | 5.30 | 8.11 | 59.68 | 3.32 | 0.20 | 2.22 |
Fertilizer | N Content (%) | 15N Abundance (%) |
---|---|---|
CU | 44.41 | 10.19 |
PAL–U | 44.35 | 10.18 |
PAM–U | 44.93 | 10.18 |
PAH–U | 44.16 | 10.17 |
Origin | pH | Organic Matter (g kg−1) | Total N (g kg−1) | Olsen P (mg kg−1) | Exchangeable K (mg kg−1) |
---|---|---|---|---|---|
Topsoil (0–30 cm) | 8.82 | 12.12 | 0.67 | 5.94 | 149.67 |
Subsoil (30–90 cm) | 9.11 | 4.92 | 0.38 | 3.04 | 96.33 |
Treatment | Dry Biomass (g·pot−1) | Yield Components | ||||
---|---|---|---|---|---|---|
Grain | Straw | Above–Ground | Spike Number (No. pot−1) | Grain per Spike | Thousand Kernel Weight (g) | |
CK | 29.57 ± 5.73 c | 27.16 ± 5.54 b | 56.73 ± 2.07 c | 21.25 ± 2.06 c | 30.78 ± 3.29 b | 45.00 ± 2.77 b |
CU | 86.15 ± 3.37 b | 72.43 ± 1.97 a | 158.58 ± 3.42 b | 42.75 ± 0.50 b | 42.20 ± 2.08 a | 47.78 ± 0.61 a |
PAL–U | 87.89 ± 2.81 b | 72.08 ± 2.90 a | 159.97 ± 4.03 b | 43.50 ± 1.00 ab | 41.82 ± 0.97 a | 48.33 ± 1.52 a |
PAM–U | 89.57 ± 3.72 ab | 71.07 ± 2.78 a | 160.64 ± 6.26 b | 44.50 ± 1.73 ab | 41.94 ± 1.79 a | 47.95 ± 0.71 a |
PAH–U | 94.57 ± 2.47 a | 75.48 ± 4.32 a | 170.05 ± 3.85 a | 45.75 ± 1.50 a | 43.38 ± 1.30 a | 47.69 ±1.12 a |
Independent Variable | Simple Correlation Coefficient with Yield | Direct Path Coefficient | Indirect Path Coefficient | Decision Coefficient | |||
---|---|---|---|---|---|---|---|
Spike No. per Pot | Grain No. per Spike | 1000–Grain Weight | Total | ||||
Spike no. per pot | 0.793 ** | 0.768 | − | 0.129 | −0.104 | 0.025 | 0.628 |
Grain no. per spike | 0.640 ** | 0.756 | 0.131 | −0.246 | −0.115 | 0.396 | |
1000–grain weight | −0.225 | 0.415 | −0.192 | −0.448 | −0.640 | −0.359 |
Treatment | Residual Amounts of Fertilizer–N (g pot−1) | |||
---|---|---|---|---|
0–30 cm | 30–60 cm | 60–90 cm | Total | |
CU | 0.208 ± 0.015 b | 0.094 ± 0.011 b | 0.042 ± 0.008 a | 0.344 ± 0.015 ab |
PAL–U | 0.205 ± 0.012 b | 0.102 ± 0.004 ab | 0.040 ± 0.003 a | 0.348 ± 0.010 ab |
PAM–U | 0.195 ± 0.007 b | 0.111 ± 0.010 a | 0.029 ± 0.006 b | 0.335 ± 0.016 b |
PAH–U | 0.229 ± 0.011 a | 0.101 ± 0.007 ab | 0.036 ± 0.007 ab | 0.367 ± 0.018 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Zhang, S.; Zhao, B.; Xu, M.; Yuan, L.; Li, Y. Urea Enhanced with Polyaspartic Acid of a Higher Molecular Weight Significantly Increased Wheat Yield and Nitrogen Use Efficiency. Agronomy 2023, 13, 2933. https://doi.org/10.3390/agronomy13122933
Liu Y, Zhang S, Zhao B, Xu M, Yuan L, Li Y. Urea Enhanced with Polyaspartic Acid of a Higher Molecular Weight Significantly Increased Wheat Yield and Nitrogen Use Efficiency. Agronomy. 2023; 13(12):2933. https://doi.org/10.3390/agronomy13122933
Chicago/Turabian StyleLiu, Yuan, Shuiqin Zhang, Bingqiang Zhao, Meng Xu, Liang Yuan, and Yanting Li. 2023. "Urea Enhanced with Polyaspartic Acid of a Higher Molecular Weight Significantly Increased Wheat Yield and Nitrogen Use Efficiency" Agronomy 13, no. 12: 2933. https://doi.org/10.3390/agronomy13122933
APA StyleLiu, Y., Zhang, S., Zhao, B., Xu, M., Yuan, L., & Li, Y. (2023). Urea Enhanced with Polyaspartic Acid of a Higher Molecular Weight Significantly Increased Wheat Yield and Nitrogen Use Efficiency. Agronomy, 13(12), 2933. https://doi.org/10.3390/agronomy13122933