A Stochastic Bayesian Artificial Intelligence Framework to Assess Climatological Water Balance under Missing Variables for Evapotranspiration Estimates
Abstract
:1. Introduction
2. Theory
2.1. Reference Evapotranspiration—Penman–Monteith (FAO-56) Method
2.2. Climatological Water Balance and Water Requirements
Algorithm 1 Algorithm to estimate the accumulated water deficit and water stored based on evapotranspiration , precipitation P, and the previous values of these estimates. |
|
2.3. Bayesian Regression and Modeling
2.4. Bayesian Networks
3. Material and Method
3.1. Time Series for Climatological Data
3.2. Data Collectors
- Temperature [°C], available at maximum, minimum, and instant values;
- Relative humidity [%], available at maximum, minimum, and instant values;
- Dew point temperature [°C], available at maximum, minimum, and instant values;
- Atmospheric pressure [hPa], available at maximum, minimum, and instant values;
- Wind speed and gust [m · s], measured at 10 m height;
- Wind direction [degrees];
- Incident solar radiation [kJ · m];
- Precipitation [mm].
3.3. Soil Characterisation
3.4. Stochastic Modeling
3.5. Structural Learning
4. Results and Discussion
4.1. Selection of Climatological Variables
4.2. Stochastic Climatological Water Balance Comparison with In Situ Measurements
4.3. Stochastic Evapotranspiration Inference with Complete or Incomplete Data
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Complete Table for the Error Metrics
Transformation | N° of Samples | Window | RMSE () | MAE () |
---|---|---|---|---|
Linear | 1000 | 0 | ||
1 | ||||
2 | ||||
3 | ||||
2500 | 0 | |||
1 | ||||
2 | ||||
3 | ||||
5473 | 0 | |||
1 | ||||
2 | ||||
3 | ||||
Box-Cox | 1000 | 0 | ||
1 | ||||
2 | ||||
3 | ||||
2500 | 0 | |||
1 | ||||
2 | ||||
3 | ||||
5473 | 0 | |||
1 | ||||
2 | ||||
3 | ||||
Square root | 1000 | 0 | ||
1 | ||||
2 | ||||
3 | ||||
2500 | 0 | |||
1 | ||||
2 | ||||
3 | ||||
5473 | 0 | |||
1 | ||||
2 | ||||
3 | ||||
Natural logarithm | 1000 | 0 | ||
1 | ||||
2 | ||||
3 | ||||
2500 | 0 | |||
1 | ||||
2 | ||||
3 | ||||
5473 | 0 | |||
1 | ||||
2 | ||||
3 | ||||
Exponential | 1000 | 0 | ||
1 | ||||
2 | ||||
3 | ||||
2500 | 0 | |||
1 | ||||
2 | ||||
3 | ||||
5473 | 0 | |||
1 | ||||
2 | ||||
3 |
Appendix A.2. Complete Table for the Relevant Variables
Variable | Linear | Box-Cox | Square Root | Natural Logarithm |
---|---|---|---|---|
6 | 12 | 8 | 12 | |
9 | 12 | 12 | 12 | |
3 | 4 | 1 | 4 | |
8 | 10 | 0 | 11 | |
11 | 8 | 4 | 12 | |
11 | 12 | 12 | 12 | |
6 | 12 | 8 | 12 | |
2 | 1 | 0 | 0 | |
8 | 1 | 1 | 2 | |
0 | 0 | 0 | 0 | |
0 | 0 | 0 | 0 | |
0 | 0 | 0 | 0 | |
12 | 12 | 12 | 12 | |
12 | 12 | 12 | 12 | |
0 | 0 | 0 | 0 | |
9/9 | 9/9 | 9/9 | 9/9 | |
4/6 | 4/6 | 4/6 | 4/6 | |
1/3 | 1/3 | 1/3 | 2/3 |
Appendix A.3. Graphical Comparison between the Expected Time Series and Inferred Data
References
- Lu, Y.; Yuan, J.; Lu, X.; Su, C.; Zhang, Y.; Wang, C.; Cao, X.; Li, Q.; Su, J.; Ittekkot, V.; et al. Major threats of pollution and climate change to global coastal ecosystems and enhanced management for sustainability. Environ. Pollut. 2018, 239, 670–680. [Google Scholar] [CrossRef]
- Chen, B.; Han, M.; Peng, K.; Zhou, S.; Shao, L.; Wu, X.; Wei, W.; Liu, S.; Li, Z.; Li, J.; et al. Global land-water nexus: Agricultural land and freshwater use embodied in worldwide supply chains. Sci. Total Environ. 2018, 613–614, 931–943. [Google Scholar] [CrossRef]
- Jägerbrand, A.K.; Brutemark, A.; Barthel Svedén, J.; Gren, I.M. A review on the environmental impacts of shipping on aquatic and nearshore ecosystems. Sci. Total Environ. 2019, 695, 133637. [Google Scholar] [CrossRef]
- Hecht, J.S.; Lacombe, G.; Arias, M.E.; Dang, T.D.; Piman, T. Hydropower dams of the Mekong River basin: A review of their hydrological impacts. J. Hydrol. 2019, 568, 285–300. [Google Scholar] [CrossRef]
- Koumparou, D. The Right of Thirst: Water as a Human Right and as a Commons. Glob. Nest J. 2018, 20, 637–645. [Google Scholar] [CrossRef]
- United Nations Department for Economic and Social Affairs. Sustainable Development Goals Report 2020; United Nations: New York, NY, USA, 2020.
- Empresa de Pesquisa Energética. Anuário Estatístico de Energia Elétrica 2022. 2022. Available online: https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-160/topico-168/Fact%20Sheet%20-%20Anu%C3%A1rio%20Estat%C3%ADstico%20de%20Energia%20El%C3%A9trica%202022.pdf (accessed on 14 July 2023).
- FAO. FAOSTAT: Crops and Livestock Products. 2021. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 2 February 2023).
- Rasera, J.B.; Silva, R.F.D.; Piedade, S.; Mourão Filho, F.D.A.A.; Delbem, A.C.B.; Saraiva, A.M.; Sentelhas, P.C.; Marques, P.A.A. Do Gridded Weather Datasets Provide High-Quality Data for Agroclimatic Research in Citrus Production in Brazil? AgriEngineering 2023, 5, 924–940. [Google Scholar] [CrossRef]
- Bwambale, E.; Abagale, F.K.; Anornu, G.K. Data-driven model predictive control for precision irrigation management. Smart Agric. Technol. 2023, 3, 100074. [Google Scholar] [CrossRef]
- Porter, J.; Xie, L.; Challinor, A.; Cochrane, K.; Howden, S.; Iqbal, M.; Lobell, D.; Travasso, M. Chapter 7: Food Security and Food Production Systems. In Food Security and Food Production Systems. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Chan; Cambridge University Press: Cambridge, UK, 2014; pp. 485–533. [Google Scholar]
- Neupane, D.; Adhikari, P.; Bhattarai, D.; Rana, B.; Ahmed, Z.; Sharma, U.; Adhikari, D. Does Climate Change Affect the Yield of the Top Three Cereals and Food Security in the World? Earth 2022, 3, 45–71. [Google Scholar] [CrossRef]
- Zhang, C.; Xie, Z.; Wang, Q.; Tang, M.; Feng, S.; Cai, H. AquaCrop modeling to explore optimal irrigation of winter wheat for improving grain yield and water productivity. Agric. Water Manag. 2022, 266, 107580. [Google Scholar] [CrossRef]
- Silva Fuzzo, D.F.; Carlson, T.N.; Kourgialas, N.N.; Petropoulos, G.P. Coupling remote sensing with a water balance model for soybean yield predictions over large areas. Earth Sci. Inform. 2020, 13, 345–359. [Google Scholar] [CrossRef]
- Allen, R.; Pereira, L.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998.
- Salam, R.; Islam, A.R.M.T. Potential of RT, bagging and RS ensemble learning algorithms for reference evapotranspiration prediction using climatic data-limited humid region in Bangladesh. J. Hydrol. 2020, 590, 125241. [Google Scholar] [CrossRef]
- Ghiat, I.; Mackey, H.R.; Al-Ansari, T. A Review of Evapotranspiration Measurement Models, Techniques and Methods for Open and Closed Agricultural Field Applications. Water 2021, 13, 2523. [Google Scholar] [CrossRef]
- Goyal, P.; Kumar, S.; Sharda, R. A review of the Artificial Intelligence (AI) based techniques for estimating reference evapotranspiration: Current trends and future perspectives. Comput. Electron. Agric. 2023, 209, 107836. [Google Scholar] [CrossRef]
- Brekel, J.; Thorp, K.R.; DeJonge, K.C.; Trout, T.J. Version 1.1.0—pyfao56: FAO-56 evapotranspiration in Python. SoftwareX 2023, 22, 101336. [Google Scholar] [CrossRef]
- Aghelpour, P.; Norooz-Valashedi, R. Predicting daily reference evapotranspiration rates in a humid region, comparison of seven various data-based predictor models. Stoch. Environ. Res. Risk Assess. 2022, 36, 4133–4155. [Google Scholar] [CrossRef]
- Chia, M.Y.; Huang, Y.F.; Koo, C.H.; Fung, K.F. Recent Advances in Evapotranspiration Estimation Using Artificial Intelligence Approaches with a Focus on Hybridization Techniques—A Review. Agronomy 2020, 10, 101. [Google Scholar] [CrossRef]
- Jing, W.; Yaseen, Z.M.; Shahid, S.; Saggi, M.K.; Tao, H.; Kisi, O.; Salih, S.Q.; Al-Ansari, N.; Chau, K.W. Implementation of evolutionary computing models for reference evapotranspiration modeling: Short review, assessment and possible future research directions. Eng. Appl. Comput. Fluid Mech. 2019, 13, 811–823. [Google Scholar] [CrossRef]
- Ma, N.; Szilagyi, J.; Zhang, Y. Calibration-Free Complementary Relationship Estimates Terrestrial Evapotranspiration Globally. Water Resour. Res. 2021, 57, e2021WR029691. [Google Scholar] [CrossRef]
- McMahon, T.A.; Peel, M.C.; Lowe, L.; Srikanthan, R.; McVicar, T.R. Estimating actual, potential, reference crop and pan evaporation using standard meteorological data: A pragmatic synthesis. Hydrol. Earth Syst. Sci. 2013, 17, 1331–1363. [Google Scholar] [CrossRef]
- Liu, J.; Hertel, T.W.; Lammers, R.B.; Prusevich, A.; Baldos, U.L.C.; Grogan, D.S.; Frolking, S. Achieving sustainable irrigation water withdrawals: Global impacts on food security and land use. Environ. Res. Lett. 2017, 12, 104009. [Google Scholar] [CrossRef]
- Paek, J.; Pollanen, M.; Abdella, K. A Stochastic Weather Model for Drought Derivatives in Arid Regions: A Case Study in Qatar. Mathematics 2023, 11, 1628. [Google Scholar] [CrossRef]
- Chidzalo, P.; Ngare, P.O.; Mung’atu, J.K. Pricing weather derivatives under a tri-variate stochastic model. Sci. Afr. 2023, 21, e01768. [Google Scholar] [CrossRef]
- Oliveira, R.P.D.; Achcar, J.A.; Chen, C.; Rodrigues, E.R. Non-homogeneous Poisson and linear regression models as approaches to study time series with change-points. Commun. Stat. Case Stud. Data Anal. Appl. 2022, 8, 331–353. [Google Scholar] [CrossRef]
- Elmer, J.; Coppler, P.J.; Jones, B.L.; Nagin, D.S.; Callaway, C.W.; on behalf of University of Pittsburgh Post-Cardiac Arrest Service. Bayesian Outcome Prediction After Resuscitation From Cardiac Arrest. Neurology 2022, 99, e1113–e1121. [Google Scholar] [CrossRef] [PubMed]
- Shedbalkar, K.H.; More, D.S. Bayesian Regression for Solar Power Forecasting. In Proceedings of the 2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP), Vijayawada, India, 12–14 February 2022; pp. 1–4. [Google Scholar] [CrossRef]
- Koller, D.; Friedman, N. Probabilistic Graphical Models: Principles and Techniques; MIT Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Hui, E.; Stafford, R.; Matthews, I.M.; Smith, V.A. Bayesian networks as a novel tool to enhance interpretability and predictive power of ecological models. Ecol. Inform. 2022, 68, 101539. [Google Scholar] [CrossRef]
- Ojha, R.; Ghadge, A.; Tiwari, M.K.; Bititci, U.S. Bayesian network modelling for supply chain risk propagation. Int. J. Prod. Res. 2018, 56, 5795–5819. [Google Scholar] [CrossRef]
- Li, H.; Guedes Soares, C.; Huang, H.Z. Reliability analysis of a floating offshore wind turbine using Bayesian Networks. Ocean. Eng. 2020, 217, 107827. [Google Scholar] [CrossRef]
- Neapolitan, R. Learning Bayesian Networks; Pearson: Upper Saddle River, NJ, USA, 2003. [Google Scholar] [CrossRef]
- Hargreaves, G.H.; Samani, Z.A. Reference crop evapotranspiration from temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Linacre, E.T. A simple formula for estimating evaporation rates in various climates, using temperature data alone. Agric. Meteorol. 1977, 18, 409–424. [Google Scholar] [CrossRef]
- Turc, L. Estimation of irrigation water requirements, potential evapotranspiration: A simple climatic formula evolved up to date. Ann. Agron. 1961, 12, 13–49. [Google Scholar]
- Benavides, J.G.; Lopez, D. Formula para el calculo de la evapotranspiracion potencial adaptada al tropico (15º N–15º S). Agron. Trop. 1970, 20, 335–345. [Google Scholar]
- Cruz, T.A.C.D.; Marques, P.A.A. Low-cost irrigation management system: Improving data confidence through artificial intelligence. Eng. AgríCola 2023, 43, e20210164. [Google Scholar] [CrossRef]
- Silva-Júnior, R.O.; Souza-Filho, P.W.M.; Salomão, G.N.; Tavares, A.L.; Santos, J.F.; Santos, D.C.; Dias, L.C.; Silva, M.S.; Melo, A.M.Q.; Costa, C.E.A.d.S.; et al. Response of Water Balance Components to Changes in Soil Use and Vegetation Cover Over Three Decades in the Eastern Amazon. Front. Water 2021, 3, 749507. [Google Scholar] [CrossRef]
- Raghunath, H.M. Hydrology: Principles, Analysis and Design, 2nd ed.; New Age International (P) Ltd.: New Delhi, India, 2006. [Google Scholar]
- Mutti, P.R.; Dubreuil, V.; Bezerra, B.G.; Arvor, D.; Funatsu, B.M.; Santos E Silva, C.M. Long-term meteorological drought characterization in the São Francisco watershed, Brazil: A climatic water balance approach. Int. J. Climatol. 2022, 42, 8162–8183. [Google Scholar] [CrossRef]
- Saha, A.; Sekharan, S.; Manna, U. Evaluation of Capacitance Sensor for Suction Measurement in Silty Clay Loam. Geotech. Geol. Eng. 2020, 38, 4319–4331. [Google Scholar] [CrossRef]
- Van Genuchten, M. A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils1. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- McElreath, R. Statistical Rethinking: A Bayesian Course with Examples in R and Stan; Chapman and Hall/CRC: Boca Raton, FL, USA, 2020. [Google Scholar]
- Draper, N.R.; Smith, H. Applied Regression Analysis, 2nd ed.; Wiley Series in Probability and Mathematical Statistics; Wiley: New York, NY, USA, 1981. [Google Scholar]
- Gelman, A.; Hill, J.; Vehtari, A. Regression and Other Stories; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar]
- Doucet, A.; Wang, X. Monte Carlo methods for signal processing: A review in the statistical signal processing context. IEEE Signal Process. Mag. 2005, 22, 152–170. [Google Scholar] [CrossRef]
- Cox, L.A., Jr. Modernizing the Bradford Hill criteria for assessing causal relationships in observational data. Crit. Rev. Toxicol. 2018, 48, 682–712. [Google Scholar] [CrossRef] [PubMed]
- Pearl, J.; Mackenzie, D. The Book of Why: The New Science of Cause and Effect, 1st ed.; Basic Books: New York, NY, USA, 2020. [Google Scholar]
- Gross, T.J.; Bessani, M.; Darwin Junior, W.; Araújo, R.B.; Vale, F.A.C.; Maciel, C.D. An analytical threshold for combining Bayesian Networks. Knowl.-Based Syst. 2019, 175, 36–49. [Google Scholar] [CrossRef]
- Moura, A.D.; Lucas, E.W.M.; Rodrigues, J.E.; de Rezende, J.M. Nota Técnica No. 001/2011/SEGER/LAIME/CSC/INMET. 2019. Available online: http://www.cemtec.ms.gov.br/wp-content/uploads/2019/02/Nota_Tecnica-Rede_estacoes_INMET.pdf (accessed on 31 July 2023).
- Santos, H.G.d.; Jacomine, P.K.T.; Anjos, L.H.C.d.; Oliveira, V.A.d.; Lumbreras, J.F.; Coelho, M.R.; Almeida, J.A.d.; Araujo Filho, J.C.d.; Oliveira, J.B.d.; Cunha, T.J.F. Brazilian Soil Classification System; Embrapa: Brasília, Brazil, 2018. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022. [Google Scholar]
- Box, G.E.P.; Cox, D.R. An Analysis of Transformations. J. R. Stat. Soc. Ser. B (Methodol.) 1964, 26, 211–243. [Google Scholar] [CrossRef]
- Goudie, R.J.B.; Turner, R.M.; De Angelis, D.; Thomas, A. MultiBUGS: A Parallel Implementation of the BUGS Modeling Framework for Faster Bayesian Inference. J. Stat. Softw. 2020, 95, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Cooper, G.F.; Herskovits, E. A Bayesian method for the induction of probabilistic networks from data. Mach. Learn. 1992, 9, 309–347. [Google Scholar] [CrossRef]
- Ribeiro, V.P.; Pereira, B.R., Jr.; Maciel, C.D.; Balestieri, J.A.P. An Improved Bayesian Network Super-Structure Evaluation using Physarum polycephalum Bio-inspiration. In Proceedings of the XXIV Brazilian Congress on Automation, Fortaleza, Brazil, 16–19 October 2022. [Google Scholar]
- Buntine, W. Theory Refinement on Bayesian Networks. In Proceedings of the Seventh Conference on Uncertainty in Artificial Intelligence, Los Angeles, CA, USA, 13–15 July 1991; UAI’91. pp. 52–60. [Google Scholar]
City’s Name | Coordinates | Climate Profile | Distance to Patrocínio/MG (km) |
---|---|---|---|
Rio Preto da Eva/AM | 2°41′56″ S 59°42′00″ W | Tropical rain forest (Af) | 2278 |
Cabaceiras/PB | 7°29′20″ S 36°17′13″ W | Hot semi-arid (BSh) | 1723 |
Porangatu/GO | 13°26′27″ S 49°08′56″ W | Tropical wet (Aw) | 659 |
Santo Augusto/RS | 27°51′03″ S 53°46′37″ W | Humid subtropical (Cfa) | 1202 |
Layer | () | () | () | n | m |
---|---|---|---|---|---|
0–20 cm | |||||
20–40 cm | |||||
40–60 cm |
Variable | Coefficient | MAP Value | ||
---|---|---|---|---|
Tmean | ||||
Tmax | ||||
Tmin | 0 | |||
RHmean | ||||
RHmax | ||||
RHmin | ||||
DPmean | ||||
DPmax | 0 | |||
DPmin | 0 | |||
Pmean | 0 | |||
Pmax | 0 | |||
Pmin | 0 | |||
Wspeed | ||||
Rad | ||||
Prec. | 0 |
City | RMSE () | Distance to Patrocínio/MG (km) |
---|---|---|
Rio Preto da Eva/AM | 2278 | |
Cabaceiras/PB | 1723 | |
Porangatu/GO | 659 | |
Santo Augusto/RS | 1202 |
Removed and Inferred Variable | Evapotranspiration RMSE () |
---|---|
0.087 | |
0.092 | |
0.087 | |
0.074 | |
0.156 | |
0.085 | |
0.286 | |
0.096 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribeiro, V.P.; Desuó Neto, L.; Marques, P.A.A.; Achcar, J.A.; Junqueira, A.M.; Chinatto, A.W., Jr.; Junqueira, C.C.M.; Maciel, C.D.; Balestieri, J.A.P. A Stochastic Bayesian Artificial Intelligence Framework to Assess Climatological Water Balance under Missing Variables for Evapotranspiration Estimates. Agronomy 2023, 13, 2970. https://doi.org/10.3390/agronomy13122970
Ribeiro VP, Desuó Neto L, Marques PAA, Achcar JA, Junqueira AM, Chinatto AW Jr., Junqueira CCM, Maciel CD, Balestieri JAP. A Stochastic Bayesian Artificial Intelligence Framework to Assess Climatological Water Balance under Missing Variables for Evapotranspiration Estimates. Agronomy. 2023; 13(12):2970. https://doi.org/10.3390/agronomy13122970
Chicago/Turabian StyleRibeiro, Vitor P., Luiz Desuó Neto, Patricia A. A. Marques, Jorge A. Achcar, Adriano M. Junqueira, Adilson W. Chinatto, Jr., Cynthia C. M. Junqueira, Carlos D. Maciel, and José Antônio P. Balestieri. 2023. "A Stochastic Bayesian Artificial Intelligence Framework to Assess Climatological Water Balance under Missing Variables for Evapotranspiration Estimates" Agronomy 13, no. 12: 2970. https://doi.org/10.3390/agronomy13122970
APA StyleRibeiro, V. P., Desuó Neto, L., Marques, P. A. A., Achcar, J. A., Junqueira, A. M., Chinatto, A. W., Jr., Junqueira, C. C. M., Maciel, C. D., & Balestieri, J. A. P. (2023). A Stochastic Bayesian Artificial Intelligence Framework to Assess Climatological Water Balance under Missing Variables for Evapotranspiration Estimates. Agronomy, 13(12), 2970. https://doi.org/10.3390/agronomy13122970