An Insight into the Prevention and Control Methods for Bacterial Wilt Disease in Tomato Plants
Abstract
:1. Introduction
2. Symptoms of Bacterial Wilt and Ralstonia solanacearum
3. The Control of Bacterial Wilt by Soil Improvement
3.1. Plant Fungicide
3.2. Agricultural Antibiotic
3.3. Avirulent Rasltonia solanacearum
3.4. Microbial Inoculant
3.5. Phages
3.6. Anaerobic Disinfection
4. Control of Tomato Bacterial Wilt by Improving Plant Traits
4.1. Selection of New Resistant Varieties
4.2. Improvement of Tomato Plants by Hybridization
4.3. Plant Grafting
4.4. Immune Resistance Inducer
5. Summary and Prospect
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Yao, H.; Jiao, X.; Wu, F. Effects of continuous cucumber cropping and alternative rotations under protected cultivation on soil microbial community diversity. Plant Soil 2006, 284, 195–203. [Google Scholar] [CrossRef]
- Jiang, G.; Zhang, Y.; Gan, G.; Li, W.; Wan, W.; Jiang, Y.; Yang, T.; Zhang, Y.; Xu, Y.; Wang, Y.; et al. Exploring rhizo-microbiome transplants as a tool for protective plant-microbiome manipulation. ISME J. 2022, 2, 10. [Google Scholar] [CrossRef]
- Tessema, G.L.; Seid, H.E. Potato bacterial wilt in Ethiopia: History, current status, and future perspectives. PeerJ 2023, 11, e14661. [Google Scholar] [CrossRef] [PubMed]
- Genin, S.; Denny, T.P. Pathogenomics of the Ralstonia solanacearum species complex. Annu. Rev. Phytopathol. 2012, 50, 67–89. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Yao, H.; Li, Y.; Zhu, Y. Microplastic addition alters the microbial community structure and stimulates soil carbon dioxide emissions in vegetable-growing soil. Environ. Toxicol. Chem. 2021, 40, 352–365. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Baquerizo, M.; Guerra, C.A.; Cano-Díaz, C.; Egidi, E.; Wang, J.-T.; Eisenhauer, N.; Singh, B.K.; Maestre, F.T. The proportion of soil-borne pathogens increases with warming at the global scale. Nat. Clim. 2020, 10, 550–554. [Google Scholar] [CrossRef]
- Peeters, N.; Guidot, A.; Vailleau, F.; Valls, M. Ralstonia solanacearum, a widespread bacterial plant pathogen in the post-genomic era. Mol. Plant Pathol. 2013, 14, 651–662. [Google Scholar] [CrossRef]
- Li, Y.; Feng, J.; Liu, H.; Wang, L.; Hsiang, T.; Li, X.; Huang, J. Genetic diversity and pathogenicity of Ralstonia solanacearum causing tobacco bacterial wilt in China. Plant Dis. 2016, 100, 1288–1296. [Google Scholar] [CrossRef]
- Kwak, M.-J.; Kong, H.G.; Choi, K.; Kwon, S.-K.; Song, J.Y.; Lee, J.; Lee, P.A.; Choi, S.Y.; Seo, M.; Lee, H.J.; et al. Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nat. Biotechnol. 2018, 36, 1100–1109. [Google Scholar] [CrossRef]
- Wu, C.W.; Du, X.F.; Xu, J.M.; Wang, W. Research advances in natural antibacterial constituents from plants origin. Acta Agric. Boreali-Occident. Sin. 2004, 13, 81–88. [Google Scholar]
- Zhang, H.; Chen, L.; Yang, T.; Liu, Q.; Chen, X.; Zhang, Y.; Shu, G.; Li, J. Production of superfine green tea powder from processing wastes: Characterization of chemical composition and exploration of antimicrobial potential against Ralstonia solanacearum. LWT 2019, 104, 142–147. [Google Scholar] [CrossRef]
- Xue, Q.-Y.; Yin, Y.-N.; Yang, W.; Heuer, H.; Prior, P.; Guo, J.-H.; Smalla, K. Genetic diversity of Ralstonia solanacearum strains from China assessed by PCR-based fingerprints to unravel host plant-and site-dependent distribution patterns. FEMS Microbiol. Ecol. 2011, 75, 507–519. [Google Scholar] [CrossRef]
- Paret, M.L.; Sharma, S.K.; Alvarez, A.M. Characterization of biofumigated Ralstonia solanacearum cells using micro-Raman spectroscopy and electron microscopy. Phytopathology 2012, 102, 105–113. [Google Scholar] [CrossRef]
- Minamikawa, T.; Akazawa, T.; Uritani, I. Analytical study of umbelliferone and scopoletin synthesis in sweet potato roots infected by ceratocystis fimbriata. Plant Physiol. 1963, 38, 493–497. [Google Scholar] [CrossRef] [PubMed]
- Yaoya, S.; Kanho, H.; Mikami, Y.; Itani, T.; Umehara, K.; Kuroyanagi, M. Umbelliferone released from hairy root cultures of pharbitis nil treated with copper sulfate and its subsequent glucosylation. Biosci. Biotechnol. Biochem. 2004, 68, 1837–1841. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Li, S.; Qin, X.; Jiang, G.; Chen, J.; Li, B.; Yao, X.; Liang, P.; Zhang, Y.; Ding, W. Exposure to umbelliferone reduces Ralstonia solanacearum biofilm formation, transcription of Type III secretion system regulators and effectors and virulence on tobacco. Front. Microbiol. 2017, 8, 1234. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.L.; Yu, Y.; Lei, H.X.; Cui, L.; Zhang, X.; Wu, J.; Guo, J. Research progress on mechanism of bio-control factors for plant diseases and its application. China Plant Prot. 2019, 39, 23–28. [Google Scholar]
- Zhou, Q.H.; Jiang, C.G.; Wang, Q.P.; Zhang, C.; Long, Y.H. Experiment on toxicity and field control effect of zhongshengmycin against tobacco bacterial wilt in Guizhou. Agric. Sci. Technol. Equip. 2017, 281, 14–16. [Google Scholar]
- Zhu, C.X.; Jiang, X.L.; Sun, D.Y.; Ji, J.H.; Tian, Y.L.; Xie, D.L.; Ni, C.F. Zhongshengmycin, a new agro—Antibiotics. Fine Spec. Chem. 2002, 16, 14–17. [Google Scholar]
- Xue, Z.C. Research and Preparation of the Combined Wettable Powder of 50% Streptomycin-Noremycin. Master’s Thesis, Southwest University, Chongqing, China, 2007. [Google Scholar]
- He, Y.W.; Li, G.Y.; Tan, H.; Kang, Q.J.; Ge, B.B.; Zhao, Y.Y.; Zhang, K.C.; Jiang, X.L.; Liu, F.Q.; Li, Y.N.; et al. Progress and prospect of microbial metabolite pesticides research, development and application in China. Chin. J. Biol. Control 2022, 38, 537–548. [Google Scholar]
- Zhao, D.T.; Zhai, E.Y.; Zhao, X.Y.; Jin, J.; Xuan, C.Y.; Chen, J.L. Application and development prospect of microbial pesticides in facility agriculture. Biot. Resour. 2019, 41, 195–203. [Google Scholar]
- Norman, D.J.; Zapata, M.; Gabriel, D.W.; Duan, Y.P.; Yuen, J.M.F.; Mangravita-Novo, A.; Donahoo, R.S. Genetic diversity and host range variation of Ralstonia solanacearum strains entering north America. Phytopathology 2009, 99, 1070–1077. [Google Scholar] [CrossRef] [PubMed]
- Cellier, G.; Prior, P. Deciphering phenotypic diversity of Ralstonia solanacearum strains pathogenic to potato. Phytopathology 2010, 100, 1250–1261. [Google Scholar] [CrossRef] [PubMed]
- Suga, Y.; Horita, M.; Umekita, M.; Furuya, N.; Tsuchiya, K. Pathogenic characters of Japanese potato strains of Ralstonia solanacearum. J. Gen. Plant Pathol. 2013, 79, 110–114. [Google Scholar] [CrossRef]
- Balabel, N.M.; Eweda, W.E.; Mostafa, M.I.; Farag, N.S. Some epidemiological aspects of Ralstonia solanacearum. Egypt. J. Agric. Res. 2005, 83, 1547–1564. [Google Scholar] [CrossRef]
- Chen, S.H. Study on biological control strategy of tomato bacterial wilt. Agric. Technol. 2018, 38, 24+28. [Google Scholar]
- Liu, B.; Lan, J.L.; Zhu, Y.J.; Lin, K.M.; Lin, Y.Z.; Zhang, Q.F. Research and application of plant immune system: A case study on the development of immune inoculants for non-pathogenic strains of Ralstonia solanacearum. Chin. Agric. Sci. Bull. 2007, 23, 163–172. [Google Scholar]
- Feng, D.X.; Tasset, C.; Hanemian, M.; Barlet, X.; Hu, J.; Trémousaygue, D.; Deslandes, L.; Marco, Y. Biological control of bacterial wilt in Arabidopsis thaliana involves abscissic acid signalling. New Phytol. 2012, 194, 1035–1045. [Google Scholar] [CrossRef]
- Hanemian, M.; Zhou, B.; Deslandes, L.; Marco, Y.; Tremousaygue, D. Hrp mutant bacteria as biocontrol agents: Toward a sustainable approach in the fight against plant pathogenic bacteria. Plant Signal. Behav. 2013, 8, e25678. [Google Scholar] [CrossRef]
- Zhou, B.J.; Xiao, C.G.; Xiao, T.; Li, F.X. Research on control of tobacco bacterial wilt disease by non-pathogenic strains of bacterial wilt and its mechanism. South China Agric. 2014, 8, 166–170. [Google Scholar]
- Liu, H.; Xiong, W.; Zhang, R.; Hang, X.; Wang, D.; Li, R.; Shen, Q. Continuous application of different organic additives can suppress tomato disease by inducing the healthy rhizospheric microbiota through alterations to the bulk soil microflora. Plant Soil. 2018, 423, 229–240. [Google Scholar] [CrossRef]
- Yao, H.; Wu, F. Soil microbial community structure in cucumber rhizosphere of different resistance cultivars to fusarium wilt: Soil microbial community structure in cucumber rhizosphere. FEMS Microbiol. Ecol. 2010, 72, 456–463. [Google Scholar] [CrossRef]
- Gao, B.; Li, Y.; Zheng, N.; Liu, C.; Ren, H.; Yao, H. Interactive effects of microplastics, biochar, and earthworms on CO2 and N2O emissions and microbial functional genes in vegetable-growing soil. Environ. Res. 2022, 213, 113728. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.X.; Dai, X.Y.; Cao, X.M.; Li, E.F. Research progress of microbial antagonists in the field of plant diseases. J. Hunan Ecol. Sci. 2023, 10, 109–116. [Google Scholar]
- Kheirandish, Z.; Harighi, B. Evaluation of bacterial antagonists of Ralstonia solanacearum, causal agent of bacterial wilt of potato. Biol. Control 2015, 86, 14–19. [Google Scholar] [CrossRef]
- O’Sullivan, D.J.; O’Gara, F. Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol. Rev. 1992, 56, 662–676. [Google Scholar] [CrossRef]
- He, H.L.; Li, N.J.; Sun, C.C.; Teng, K.; Tian, M.H.; Li, S.L. Advances in research of biological control of tobacco bacterial wilt. Plant Doctor 2021, 34, 4–8. [Google Scholar]
- Maketon, M.; Apisitsantikul, J.; Siriraweekul, C. Greenhouse evaluation of Bacillus subtilis AP-01 and Trichoderma harzianum AP-001 in controlling tobacco diseases. Braz. J. Microbiol. 2008, 39, 296–300. [Google Scholar] [CrossRef]
- Wang, W.L.; Jin, H.; Cong, B.C.; Zhou, L.; Wei, Z.; Wang, S.M. Biocontrol effect of composite microbial agent on tomato bacterial wilt. J. Nanjing Agric. Univ. 2012, 45, 1174–1182. [Google Scholar]
- Jończyk, E.; Kłak, M.; Międzybrodzki, R.; Górski, A. The influence of external factors on bacteriophages—Review. Folia Microbiol. 2011, 56, 191–200. [Google Scholar] [CrossRef]
- Levin, B.R.; Bull, J.J. Population and evolutionary dynamics of phage therapy. Nat. Rev. Microbiol. 2004, 2, 166–173. [Google Scholar] [CrossRef]
- Abedon, S. Phage therapy pharmacology: Calculating phage dosing. Adv. Appl. Microbiol. 2011, 77, 1–40. [Google Scholar] [PubMed]
- Abedon, S.T. Phage therapy: Eco-physiological pharmacology. Scientifica 2014, 2014, 581639. [Google Scholar] [CrossRef] [PubMed]
- Álvarez, B.; López, M.M.; Biosca, E.G. Biocontrol of the major plant pathogen Ralstonia solanacearum in irrigation water and host plants by novel waterborne lytic bacteriophages. Front. Microbiol. 2019, 10, 2813. [Google Scholar] [CrossRef]
- Tanaka, H.; Negishi, H.; Maeda, H. Control of tobacco bacterial wilt by an avirulent strain of Pseudomonas solanacearum M4S and its bacteriophage. J. Phytopathol. 1990, 56, 243–246. [Google Scholar] [CrossRef]
- Addy, H.S.; Askora, A.; Kawasaki, T.; Fujie, M.; Yamada, T. Utilization of filamentous phage ϕRSM3 to control bacterial wilt caused by Ralstonia solanacearum. Plant Dis. 2012, 96, 1204–1209. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.P.; Gyles, C.L.; Huff, W.E.; Ojha, S.; Huff, G.R.; Rath, N.C.; Donoghue, A.M. Bacteriophages for prophylaxis and therapy in cattle, poultry and pigs. Anim. Health Res. Rev. 2008, 9, 201–215. [Google Scholar] [CrossRef]
- Wang, X.; Wei, Z.; Yang, K.; Wang, J.; Jousset, A.; Xu, Y.; Shen, Q.; Friman, V.-P. Phage combination therapies for bacterial wilt disease in tomato. Nat. Biotechnol. 2019, 37, 1513–1520. [Google Scholar] [CrossRef]
- Azam, A.H.; Tanji, Y. Bacteriophage-host arm race: An update on the mechanism of phage resistance in bacteria and revenge of the phage with the perspective for phage therapy. Appl. Microbiol. Biotechnol. 2019, 103, 2121–2131. [Google Scholar] [CrossRef]
- Jones, J.; Jackson, L.; Balogh, B.; Obradovic, A.; Iriarte, F.; Momol, M. Bacteriophages for plant disease control. Annu. Rev. Phytopathol. 2007, 45, 245–262. [Google Scholar] [CrossRef]
- Lamers, J.; Runia, W.; Molendijk, L.; Bleeker, P. Perspectives of anaerobic soil disinfestation. Acta Hortic. 2010, 883, 277–283. [Google Scholar] [CrossRef]
- Shrestha, U.; Augé, R.M.; Butler, D.M. A meta-analysis of the impact of anaerobic soil disinfestation on pest suppression and yield of horticultural crops. Front. Plant Sci. 2016, 7, 1254. [Google Scholar] [CrossRef] [PubMed]
- Browning, M.; Dawson, C.; Alm, S.; Gorrës, J.; Amador, J. Differential effects of butyric acid on nematodes from four trophic groups. Appl. Soil. Ecol. 2004, 27, 47–54. [Google Scholar] [CrossRef]
- Huang, X.Q.; Wen, T.; Zhang, J.B.; Meng, L.; Bin Zhu, T.; Liu, L.L.; Cai, Z.C. Control of soil-borne pathogen Fusarium oxysporum by biological soil disinfestation with incorporation of various organic matters. Eur. J. Plant Pathol. 2015, 143, 223–235. [Google Scholar] [CrossRef]
- Shennan, C.; Muramoto, J.; Lamers, J.; Mazzola, M.; Rosskopf, E.; Kokalis-Burelle, N.; Momma, N.; Butler, D.; Kobara, Y. Anaerobic soil disinfestation for soil borne disease control in strawberry and vegetable systems: Current knowledge and future directions. Acta Hortic. 2014, 1044, 165–175. [Google Scholar] [CrossRef]
- Poret-Peterson, A.T.; Albu, S.; McClean, A.E.; Kluepfel, D.A. Shifts in soil bacterial communities as a function of carbon source used during anaerobic soil disinfestation. Front. Environ. Sci. 2019, 6, 160. [Google Scholar] [CrossRef]
- Liu, Y.N.; He, G.S.; Wei, J.Y.; Jia, H.J.; Huang, C.J.; Cai, Y.X.; Cai, K.Z.; Pan, B.G.; Wang, W. Effects of anaerobic soil disinfection on the quality and bacterial community of tobacco-growing soils. Chin. Tob. Sci. 2019, 40, 39–46. [Google Scholar]
- Mao, Y.H. Role of Soil Anaerobic Disinfestation in Controlling Bacterial Wilt. Master’s Thesis, South China Agricultural University, Canton, China, 2018. [Google Scholar]
- Messiha, N.A.S.; van Diepeningen, A.D.; Wenneker, M.; van Beuningen, A.R.; Janse, J.D.; Coenen, T.G.C.; Termorshuizen, A.J.; van Bruggen, A.H.C.; Blok, W.J. Biological soil disinfestation (BSD), a new control method for potato brown rot, caused by Ralstonia solanacearum race 3 biovar 2. Eur. J. Plant Pathol. 2007, 117, 403–415. [Google Scholar] [CrossRef]
- Long, X.E.; Yao, H.; Huang, Y.; Wei, W.; Zhu, Y.G. Phosphate levels influence the utilisation of rice rhizodeposition carbon and the phosphate-solubilising microbial community in a paddy soil. Soil. Biol. Biochem. 2018, 118, 103–114. [Google Scholar] [CrossRef]
- Wang, X.; Wu, X.R.; Wang, W.F.; Bo, S.Y.; Wang, J.; Sun, Y.H.; Liu, G.S. Indoor inoculation identification of tobacco mutants resistant to bacterial wilt. Mol. Plant Breed. 2018, 16, 6468–6475. [Google Scholar]
- Toyoda, H.; Shimizu, K.; Chatani, K.; Kita, N.; Matsuda, Y.; Ouchi, S. Selection of bacterial wilt-resistant tomato through tissue culture. Plant Cell Rep. 1989, 8, 317–320. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Chen, M.; Li, L.; Xu, Z.; Chen, X.; Guo, J.; Ma, Y. Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. J. Exp. Bot. 2009, 60, 3781–3796. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.H. Identification of NtVQ35 Gene in Nicotiania tabacum L. and Preliminary Study on Its Function Aganist Tobacco Bacterial Wilt Disease. Ph.D. Thesis, Southwest University, Chongqing, China, 2007. [Google Scholar]
- Kumar, P.; Rouphael, Y.; Cardarelli, M.; Colla, G. Vegetable grafting as a tool to improve drought resistance and water use efficiency. Front. Plant Sci. 2017, 8, 1130. [Google Scholar] [CrossRef]
- Qiu, M.Y.; Zhang, S.P.; Liu, Y.P.; Li, B.S.; He, Z.F. A New Tomato Cultivar ‘Yifeng 2′ with Resistance to Bacterial Wilt Disease. Acta Hortic. Sin. 2013, 40, 2321–2322. [Google Scholar]
- He, G.C.; Liang, J.; Liu, Y.; Huang, Y.L.; Huang, Z.H.; Liu, C.; Yang, S.G.; Chen, G.D. A new tomato F1 hybrid—‘Gangyu No.1′. China Veg. 2011, 4, 81–82. [Google Scholar]
- Nie, J.; Li, Y.H.; Tan, D.L.; Zhang, C.Y.; Xie, Y.M.; Shi, L.L.; Zheng, J.R. Breeding of new cherry tomato hybrid F1 “Yuekeda 301” with high quality and multi-resistance. Guangdong Agric. Sci. 2019, 46, 34–39. [Google Scholar]
- Zhang, B.C.; Guo, C.Z.; Zhang, X.R.; Li, J.; Yang, S.Q.; Ren, L. New red fruit tomato—Jindi 363. J. Chang. Veg. 2021, 23, 16–17. [Google Scholar]
- Wang, J.; Long, S.F.; Wang, Z.W.; Chen, J.W.; Jiang, F.Y.; Xing, L.I. Research progress in controlling tomato bacterial wilt. China Veg. 2020, 1, 22–30. [Google Scholar]
- Naik, S.A.; Hongal, S.; Harshavardhan, M.; Chandan, K.; Kumar, A.J.; Ashok Kyriacou, M.C.; Rouphael, Y.; Kumar, P. Productive characteristics and fruit quality traits of cherry tomato hybrids as modulated by grafting on different solanum spp. rootstocks under Ralstonia solanacearum infested greenhouse soil. Agronomy 2021, 11, 1311. [Google Scholar] [CrossRef]
- Nie, X.M.; Luan, H.; Feng, G.L.; Wang, C.; Li, Y.; Wei, M. Effects of silicon nutrition and grafting rootstocks on chilling tolerance of cucumber seedlings. Acta Hortic. Sin. 2022, 49, 1795–1804. [Google Scholar]
- Zeist, A.R.; de Resende, J.T.; Pozzebon, B.C.; Gabriel, A.; da Silva, A.A.; Zeist, R.A. Combination of solarization, biofumigation and grafting techniques for the management of bacterial wilt in tomato. Hortic. Bras. 2019, 37, 260–265. [Google Scholar] [CrossRef]
- Cardoso, S.C.; Soares, A.C.F.; Brito, A.d.S.; dos Santos, A.P.; Laranjeira, F.F.; de Carvalho, L.A. Evaluation of tomato rootstocks and its use to control bacterial wilt disease. Semin. Ciênc. Agrár. 2012, 33, 595–604. [Google Scholar] [CrossRef]
- Zhao, W.Z. Characteristics of Grafted Tomatoes Resistance to Bacterial Wilt and Allelopathic Effect of Toot Exudates. Master’s Thesis, Guangxi University, Nanning, China, 2019. [Google Scholar]
- Din, N.; Ahmad, M.; Siddique, M.; Ali, A.; Naz, I.; Ullah, N.; Ahmad, F. Phytobiocidal management of bacterial wilt of tomato caused by Ralstonia solanacearum (Smith) Yabuuchi. Span. J. Agric. Res. 2016, 14, e1006. [Google Scholar] [CrossRef]
- Notaguchi, M.; Kurotani, K.I.; Sato, Y.; Tabata, R.; Kawakatsu, Y.; Okayasu, K.; Sawai, Y.; Okada, R.; Asahina, M.; Ichihashi, Y.; et al. Cell-cell adhesion in plant grafting is facilitated by β-1,4-glucanases. Science 2020, 369, 698–702. [Google Scholar] [CrossRef]
- Wei, J.M.; Li, Y.Z.; Liang, Y. Advances in research on improving tomato disease resistance and stress resistance by grafting technology. Acta Hortic. Sin. 2023, 50, 1997–2014. [Google Scholar]
- Xing, J.Y.; Liu, W. Research progress on mechanism of grafting on tomato stress resistance. China Veg. 2018, 2, 15–20. [Google Scholar]
- Kim, B.-S.; French, E.; Caldwell, D.; Harrington, E.J.; Iyer-Pascuzzi, A.S. Bacterial wilt disease: Host resistance and pathogen virulence mechanisms. Physiol. Mol. Plant Pathol. 2016, 95, 37–43. [Google Scholar] [CrossRef]
- Hong, J.K.; Jang, S.J.; Lee, Y.H.; Jo, Y.S.; Yun, J.G.; Jo, H.; Park, C.-J.; Kim, H.J. Reduced bacterial wilt in tomato plants by bactericidal peroxyacetic acid mixture treatment. Plant Pathol. J. 2018, 34, 78–84. [Google Scholar] [CrossRef] [PubMed]
- De Kesel, J.; Conrath, U.; Flors, V.; Luna, E.; Mageroy, M.H.; Mauch-Mani, B.; Pastor, V.; Pozo, M.J.; Pieterse, C.M.; Ton, J.; et al. The induced resistance lexicon: Do’s and Don’ts. Trends Plant Sci. 2021, 26, 685–691. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Castro, E.; Jarquin-Gálvez, R.; Alpuche-Solís, Á.G.; Vallejo-Pérez, M.R.; Colli-Mull, J.G.; Lara-Ávila, J.P. Bacterial wilt and canker of tomato: Fundamentals of a complex biological system. Euphytica 2018, 214, 72. [Google Scholar] [CrossRef]
- Lu, C.; Liu, H.; Jiang, D.; Wang, L.; Jiang, Y.; Tang, S.; Hou, X.; Han, X.; Liu, Z.; Zhang, M.; et al. Paecilomyces variotii extracts (ZNC) enhance plant immunity and promote plant growth. Plant Soil. 2019, 441, 383–397. [Google Scholar] [CrossRef]
- Gozzo, F. Systemic acquired resistance in crop protection: From nature to a chemical approach. J. Agric. Food Chem. 2003, 51, 4487–4503. [Google Scholar] [CrossRef]
- Soylu, S.; Baysal, Ö.; Soylu, E.M. Induction of disease resistance by the plant activator, acibenzolar-S-methyl (ASM), against bacterial canker (Clavibacter michiganensis subsp. michiganensis) in tomato seedlings. Plant Sci. 2003, 165, 1069–1075. [Google Scholar] [CrossRef]
- Zhu, F.; Cao, M.-Y.; Zhang, Q.-P.; Mohan, R.; Schar, J.; Mitchell, M.; Chen, H.; Liu, F.; Wang, D.; Fu, Z.Q. Join the green team: Inducers of plant immunity in the plant disease sustainable control toolbox. J. Adv. Res. 2023; ahead of print. [Google Scholar] [CrossRef]
Type of Plant | Tomato | Eggplant | Tobacco | Peanut | |
---|---|---|---|---|---|
Ralstonia | |||||
Pathogenicity Type I | Moderate | Moderate | Moderate | Moderate | |
Pathogenicity Type II | Strong | Strong | Moderate | No toxicity | |
Pathogenicity Type III | Strong | Strong | Moderate | Moderate |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, S.; Su, H.; Gao, F.; Yao, H.; Fan, X.; Zhao, X.; Li, Y. An Insight into the Prevention and Control Methods for Bacterial Wilt Disease in Tomato Plants. Agronomy 2023, 13, 3025. https://doi.org/10.3390/agronomy13123025
Wu S, Su H, Gao F, Yao H, Fan X, Zhao X, Li Y. An Insight into the Prevention and Control Methods for Bacterial Wilt Disease in Tomato Plants. Agronomy. 2023; 13(12):3025. https://doi.org/10.3390/agronomy13123025
Chicago/Turabian StyleWu, Sixuan, Hao Su, Fuyun Gao, Huaiying Yao, Xuelian Fan, Xiaolei Zhao, and Yaying Li. 2023. "An Insight into the Prevention and Control Methods for Bacterial Wilt Disease in Tomato Plants" Agronomy 13, no. 12: 3025. https://doi.org/10.3390/agronomy13123025
APA StyleWu, S., Su, H., Gao, F., Yao, H., Fan, X., Zhao, X., & Li, Y. (2023). An Insight into the Prevention and Control Methods for Bacterial Wilt Disease in Tomato Plants. Agronomy, 13(12), 3025. https://doi.org/10.3390/agronomy13123025