Crop Classification in Mountainous Areas Using Object-Oriented Methods and Multi-Source Data: A Case Study of Xishui County, China
Abstract
:1. Introduction
- By using a deep learning cropland field parcels extraction algorithm, we accurately extracted cropland field parcels. We developed an object-oriented crop classification method based on these parcels tailored to mountainous terrain.
- A data fusion method has been developed by utilizing cropland field parcels, simplifying the data fusion process and eliminating the need for cloud platforms and extensive processing of remote sensing images.
- We designed cropland field parcel features for crop classification based on the crop characteristics of Xishui County.
- We obtained the refined crop classification mapping of Xishui County through the proposed method.
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.2.1. Remote Sensing Imagery
- Gaofen-2 Imagery. The Gaofen-2 satellite is the first domestically developed civilian optical remote sensing satellite in China with a spatial resolution better than 1 m. It is equipped with two high-resolution cameras, one with a resolution of 0.8 m for panchromatic imaging and the other with a resolution of 3.2 m for multi-spectral imaging. It features sub-meter spatial resolution, high positioning accuracy, and rapid attitude maneuvering capabilities [34].
- Jilin-1 Imagery. The Jilin-1 satellite constellation is a Chinese commercial optical remote sensing satellite constellation. Currently, 79 Jilin-1 satellites have been successfully placed into their designated orbits, establishing the world’s largest sub-meter commercial remote sensing satellite constellation. Each satellite is equipped with a 0.75 m panchromatic camera and a 3 m multi-spectral camera, enabling the satellite constellation to achieve 23–25 revisits per day for any location worldwide [35].
- Sentinel-2 Imagery. The Sentinel-2 satellite is part of the European Space Agency’s (ESA) Copernicus program, and its images can be downloaded from the official website of the ESA (https://scihub.copernicus.eu/, accessed on 21 November 2023). The data used in this article is the bottom-of-atmosphere reflectance data (L2A level) processed by ESA, with 12 spectral bands and a resolution of 10–60 m. Four of these bands are red-edge bands, which are sensitive to vegetation, making them suitable for crop classification [36].
- ZY-2 D/E Imagery. The Resource-1 satellite is part of a medium-resolution Earth observation constellation constructed under Chinese leadership. This satellite configuration includes a visible near-infrared camera and a hyperspectral camera. The image used in this paper was captured by the visible near-infrared camera, with a panchromatic resolution of 2.5 m and a multi-spectral resolution of 10 m. This image not only contains the red edge band suitable for crop classification but also offers a higher resolution compared to Sentinel-2 images, making it more suitable for classifying crops in small mountainous areas [37].
- Copernicus DEM. The Copernicus DEM is a global DEM project developed by the ESA for the European Union’s Earth observation program. This DEM collects elevation data using various technologies such as radar altimetry, optical satellites, and lidar, covering the entire globe with a resolution of 30 m [38].
2.2.2. Crop Ground Reference Samples
2.3. Methods
2.3.1. Method for Extracting Cropland Field Parcels
2.3.2. Object-Oriented Classification
2.3.2.1. Utilizing Parcel Objects for Multi-Source Data Fusion
2.3.2.2. The Construction of Object Features
2.3.3. Classifier
2.3.4. Accuracy Assessment
3. Results
3.1. The Precision of Cropland Field Parcel Extraction
3.2. The Result of Object-Oriented Classification
3.2.1. Comparison with Other Methods
3.2.2. Crop Mapping in Xishui County
4. Discussion
4.1. Assessment of Feature Importance
4.2. Advantages and Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, X.; Cui, Z.; Fan, M.; Vitousek, P.; Zhao, M.; Ma, W.; Wang, Z.; Zhang, W.; Yan, X.; Yang, J.; et al. Producing more grain with lower environmental costs. Nature 2014, 514, 486–489. [Google Scholar] [CrossRef]
- You, N.; Dong, J.; Huang, J.; Du, G.; Zhang, G.; He, Y.; Yang, T.; Di, Y.; Xiao, X. The 10-m crop type maps in Northeast China during 2017–2019. Sci. Data 2021, 8, 41. [Google Scholar] [CrossRef] [PubMed]
- Benami, E.; Jin, Z.; Carter, M.R.; Ghosh, A.; Hijmans, R.J.; Hobbs, A.; Kenduiywo, B.; Lobell, D.B. Uniting remote sensing, crop modelling and economics for agricultural risk management. Nat. Rev. Earth Environ. 2021, 2, 140–159. [Google Scholar] [CrossRef]
- Gholizadeh, A.; Kopăcková, V. Detecting vegetation stress as a soil contamination proxy: A review of optical proximal and remote sensing techniques. Int. J. Environ. Sci. Technol. 2019, 16, 2511–2524. [Google Scholar] [CrossRef]
- Rasti, S.; Bleakley, C.J.; Holden, N.; Whetton, R.; Langton, D.; O’Hare, G. A survey of high resolution image processing techniques for cereal crop growth monitoring. Inf. Process. Agric. 2021, 9, 300–315. [Google Scholar] [CrossRef]
- Zhong, L.; Hu, L.; Zhou, H. Deep learning based multi-temporal crop classification. Remote Sens. Environ. 2019, 221, 430–443. [Google Scholar] [CrossRef]
- Kobayashi, N.; Tani, H.; Wang, X.; Sonobe, R. Crop classification using spectral indices derived from Sentinel-2A imagery. J. Inf. Telecommun. 2020, 4, 67–90. [Google Scholar] [CrossRef]
- Wang, L.; Wang, J.; Liu, Z.; Zhu, J.; Qin, F. Evaluation of a deep-learning model for multispectral remote sensing of land use and crop classification. Crop J. 2022, 10, 1435–1451. [Google Scholar] [CrossRef]
- Zheng, B.; Myint, S.W.; Thenkabail, P.S.; Aggarwal, R.M. A support vector machine to identify irrigated crop types using time-series Landsat NDVI data. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 103–112. [Google Scholar] [CrossRef]
- Virnodkar, S.S.; Pachghare, V.K.; Patil, V.; Jha, S.K. Application of machine learning on remote sensing data for sugarcane crop classification: A review. ICT Anal. Appl. Proc. ICT4SD 2019, 2, 539–555. [Google Scholar]
- Yang, N.; Liu, D.; Feng, Q.; Xiong, Q.; Zhang, L.; Ren, T.; Zhao, Y.; Zhu, D.; Huang, J. Large-scale crop mapping based on machine learning and parallel computation with grids. Remote Sens. 2019, 11, 1500. [Google Scholar] [CrossRef]
- Chen, T.; He, T.; Benesty, M.; Khotilovich, V.; Tang, Y.; Cho, H.; Chen, K.; Mitchell, R.; Cano, I.; Zhou, T.; et al. Xgboost: Extreme Gradient Boosting; R Package Version 0.4-2. 2015, pp. 1–4. Available online: https://cran.ms.unimelb.edu.au/web/packages/xgboost/vignettes/xgboost.pdf (accessed on 21 November 2023).
- Fan, J.; Bai, J.; Li, Z.; Ortiz-Bobea, A.; Gomes, C.P. A GNN-RNN approach for harnessing geospatial and temporal information: Application to crop yield prediction. Proc. AAAI Conf. Artif. Intell. 2022, 36, 11873–11881. [Google Scholar] [CrossRef]
- Hsieh, P.F.; Lee, L.C.; Chen, N.Y. Effect of spatial resolution on classification errors of pure and mixed pixels in remote sensing. IEEE Trans. Geosci. Remote Sens. 2001, 39, 2657–2663. [Google Scholar] [CrossRef]
- Ren, T.; Xu, H.; Cai, X.; Yu, S.; Qi, J. Smallholder crop type mapping and rotation monitoring in mountainous areas with Sentinel-1/2 imagery. Remote Sens. 2022, 14, 566. [Google Scholar] [CrossRef]
- Ma, L.; Li, M.; Ma, X.; Cheng, L.; Du, P.; Liu, Y. A review of supervised object-based land-cover image classification. ISPRS J. Photogramm. Remote Sens. 2017, 130, 277–293. [Google Scholar] [CrossRef]
- Costa, H.; Foody, G.M.; Boyd, D.S. Using mixed objects in the training of object-based image classifications. Remote Sens. Environ. 2017, 190, 188–197. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, Y.; Shang, K.; Zhang, L.; Wang, S. Crop classification based on feature band set construction and object-oriented approach using hyperspectral images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 4117–4128. [Google Scholar] [CrossRef]
- Jiao, X.; Kovacs, J.M.; Shang, J.; McNairn, H.; Walters, D.; Ma, B.; Geng, X. Object-oriented crop mapping and monitoring using multi-temporal polarimetric RADARSAT-2 data. ISPRS J. Photogramm. Remote Sens. 2014, 96, 38–46. [Google Scholar] [CrossRef]
- Sun, Y.; Li, Z.L.; Luo, J.; Wu, T.; Liu, N. Farmland parcel-based crop classification in cloudy/rainy mountains using Sentinel-1 and Sentinel-2 based deep learning. Int. J. Remote Sens. 2022, 43, 1054–1073. [Google Scholar] [CrossRef]
- Kyere, I.; Astor, T.; Graß, R.; Wachendorf, M. Agricultural crop discrimination in a heterogeneous low-mountain range region based on multi-temporal and multi-sensor satellite data. Comput. Electron. Agric. 2020, 179, 105864. [Google Scholar] [CrossRef]
- Zhang, K.; Chen, Y.; Zhang, B.; Hu, J.; Wang, W. A multitemporal mountain rice identification and extraction method based on the optimal feature combination and machine learning. Remote Sens. 2022, 14, 5096. [Google Scholar] [CrossRef]
- Rocchini, D. Effects of spatial and spectral resolution in estimating ecosystem α-diversity by satellite imagery. Remote Sens. Environ. 2007, 111, 423–434. [Google Scholar] [CrossRef]
- Li, J.; Hong, D.; Gao, L.; Yao, J.; Zheng, K.; Zhang, B.; Chanussot, J. Deep learning in multimodal remote sensing data fusion: A comprehensive review. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102926. [Google Scholar] [CrossRef]
- Ienco, D.; Interdonato, R.; Gaetano, R.; Minh, D.H.T. Combining Sentinel-1 and Sentinel-2 Satellite Image Time Series for land cover mapping via a multi-source deep learning architecture. ISPRS J. Photogramm. Remote Sens. 2019, 158, 11–22. [Google Scholar] [CrossRef]
- Huang, Z.; Xie, S. Classification Method for Crop by fusion Hyper Spectral and LiDAR Data. In Proceedings of the 2022 14th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), Changsha, China, 15–16 January 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1011–1014. [Google Scholar]
- Tamiminia, H.; Salehi, B.; Mahdianpari, M.; Quackenbush, L.; Adeli, S.; Brisco, B. Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. ISPRS J. Photogramm. Remote Sens. 2020, 164, 152–170. [Google Scholar] [CrossRef]
- Shelestov, A.; Lavreniuk, M.; Kussul, N.; Novikov, A.; Skakun, S. Large scale crop classification using Google earth engine platform. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 3696–3699. [Google Scholar]
- Luo, C.; Liu, H.J.; Lu, L.P.; Liu, Z.R.; Kong, F.C.; Zhang, X.L. Monthly composites from Sentinel-1 and Sentinel-2 images for regional major crop mapping with Google Earth Engine. J. Integr. Agric. 2021, 20, 1944–1957. [Google Scholar] [CrossRef]
- Zhang, C.; Di, L.; Lin, L.; Li, H.; Guo, L.; Yang, Z.; Eugene, G.Y.; Di, Y.; Yang, A. Towards automation of in-season crop type mapping using spatiotemporal crop information and remote sensing data. Agric. Syst. 2022, 201, 103462. [Google Scholar] [CrossRef]
- Liu, X.; Zhai, H.; Shen, Y.; Lou, B.; Jiang, C.; Li, T.; Hussain, S.B.; Shen, G. Large-scale crop mapping from multisource remote sensing images in google earth engine. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 414–427. [Google Scholar] [CrossRef]
- Grumbine, R.E.; Xu, J. Mountain futures: Pursuing innovative adaptations in coupled social–ecological systems. Front. Ecol. Environ. 2021, 19, 342–348. [Google Scholar] [CrossRef]
- Liang, B.; Liu, H.; Quine, T.A.; Chen, X.; Hallett, P.D.; Cressey, E.L.; Zhu, X.; Cao, J.; Yang, S.; Wu, L.; et al. Analysing and simulating spatial patterns of crop yield in Guizhou Province based on artificial neural networks. Prog. Phys. Geogr. Earth Environ. 2021, 45, 33–52. [Google Scholar] [CrossRef]
- Zhang, R.; Jia, M.; Wang, Z.; Zhou, Y.; Wen, X.; Tan, Y.; Cheng, L. A comparison of Gaofen-2 and Sentinel-2 imagery for mapping mangrove forests using object-oriented analysis and random forest. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 4185–4193. [Google Scholar] [CrossRef]
- Guk, E.; Levin, N. Analyzing spatial variability in night-time lights using a high spatial resolution color Jilin-1 image–Jerusalem as a case study. ISPRS J. Photogramm. Remote Sens. 2020, 163, 121–136. [Google Scholar] [CrossRef]
- Guan, H.; Huang, J.; Li, X.; Zeng, Y.; Su, W.; Ma, Y.; Dong, J.; Niu, Q.; Wang, W. An improved approach to estimating crop lodging percentage with Sentinel-2 imagery using machine learning. Int. J. Appl. Earth Obs. Geoinf. 2022, 113, 102992. [Google Scholar] [CrossRef]
- Liang, D.; Yu, J.; Han, B.; Zhu, H. Side-slither radiometric calibration mode design and in-orbit verification of Ziyuan-1 (02D) satellite hyperspectral imager. In Proceedings of the International Conference on Image, Signal Processing, and Pattern Recognition (ISPP 2022), Guilin, China, 25 February 2022; SPIE: Kuala Lumpur, Malaysia, 2022; Volume 12247, pp. 83–89. [Google Scholar]
- Cenci, L.; Galli, M.; Palumbo, G.; Sapia, L.; Santella, C.; Albinet, C. Describing the quality assessment workflow designed for DEM products distributed via the Copernicus Programme. Case study: The absolute vertical accuracy of the Copernicus DEM dataset in Spain. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 6143–6146. [Google Scholar]
- Gascon, F.; Bouzinac, C.; Thépaut, O.; Jung, M.; Francesconi, B.; Louis, J.; Lonjou, V.; Lafrance, B.; Massera, S.; Gaudel-Vacaresse, A.; et al. Copernicus Sentinel-2A calibration and products validation status. Remote Sens. 2017, 9, 584. [Google Scholar] [CrossRef]
- Pan, Y.; Wang, X.; Zhang, L.; Zhong, Y. E2EVAP: End-to-end vectorization of smallholder agricultural parcel boundaries from high-resolution remote sensing imagery. ISPRS J. Photogramm. Remote Sens. 2023, 203, 246–264. [Google Scholar] [CrossRef]
- Long, J.; Li, M.; Wang, X.; Stein, A. Delineation of agricultural fields using multi-task BsiNet from high-resolution satellite images. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102871. [Google Scholar] [CrossRef]
- Li, M.; Long, J.; Stein, A.; Wang, X. Using a semantic edge-aware multi-task neural network to delineate agricultural parcels from remote sensing images. ISPRS J. Photogramm. Remote Sens. 2023, 200, 24–40. [Google Scholar] [CrossRef]
- Waldner, F.; Diakogiannis, F.I. Deep learning on edge: Extracting field boundaries from satellite images with a convolutional neural network. Remote Sens. Environ. 2020, 245, 111741. [Google Scholar] [CrossRef]
- Shorten, C.; Khoshgoftaar, T.M. A survey on image data augmentation for deep learning. J. Big Data 2019, 6, 1–48. [Google Scholar] [CrossRef]
- Kim, Y.; Dodbiba, G. A novel method for simultaneous evaluation of particle geometry by using image processing analysis. Powder Technol. 2021, 393, 60–73. [Google Scholar] [CrossRef]
- Rigatti, S.J. Random forest. J. Insur. Med. 2017, 47, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–305. [Google Scholar]
- Fitzgerald, R.; Lees, B. Assessing the classification accuracy of multisource remote sensing data. Remote Sens. Environ. 1994, 47, 362–368. [Google Scholar] [CrossRef]
- Tian, X.; Bai, Y.; Li, G.; Yang, X.; Huang, J.; Chen, Z. An Adaptive Feature Fusion Network with Superpixel Optimization for Crop Classification Using Sentinel-2 Imagery. Remote Sens. 2023, 15, 1990. [Google Scholar]
- Wang, M.; Wang, J.; Cui, Y.; Liu, J.; Chen, L. Agricultural Field Boundary Delineation with Satellite Image Segmentation for High-Resolution Crop Mapping: A Case Study of Rice Paddy. Agronomy 2022, 12, 2342. [Google Scholar] [CrossRef]
- Menze, B.H.; Kelm, B.M.; Masuch, R.; Himmelreich, U.; Bachert, P.; Petrich, W.; Hamprecht, F.A. A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data. BMC Bioinform. 2009, 10, 213. [Google Scholar] [CrossRef]
Data Type | Number of Images | Time Taken | Resolution (m) |
---|---|---|---|
Gaofen-2 | 91 | May 2023–September 2023 | 0.8 |
Jilin-1 | 54 | May 2023–September 2023 | 0.75 |
Sentinel-2 | 2 | 17 July 2023, 30 July 2023 | 10–60 |
ZY-2 D/E | 1 | 17 July 2023 | 2.5 |
Copernicus DEM | 2011–2015 | 30 |
Crop Type | Total | Train | Validation |
---|---|---|---|
Corn | 785 | 314 | 471 |
Sorghum | 728 | 291 | 437 |
Rice | 342 | 136 | 206 |
Other Crops | 143 | 57 | 86 |
Total | 1998 | 798 | 1200 |
Parameter Name | Value |
---|---|
n_estimators | 43 |
max_depth | 14 |
min_samples_leaf | 1 |
min_samples_split | 2 |
Metrics | GOC | GUC | GTC |
---|---|---|---|
0.132 | 0.104 | 0.128 |
Method | Metrics | Corn | Rice | Sorghum | Other Crops |
---|---|---|---|---|---|
Pixel-based RF | PA | 0.6978 | 0.7588 | 0.7615 | 0.7324 |
UA | 0.7055 | 0.7484 | 0.7292 | 0.7105 | |
OA | 0.7548 | ||||
KC | 0.7447 | ||||
F1 | 0.7351 | ||||
SPTNet | PA | 0.6496 | 0.6354 | 0.6403 | 0.6780 |
UA | 0.6219 | 0.6543 | 0.6749 | 0.6371 | |
OA | 0.6339 | ||||
KC | 0.6406 | ||||
F1 | 0.6257 | ||||
Vote based RF | PA | 0.8166 | 0.8004 | 0.8082 | 0.7913 |
UA | 0.8164 | 0.7747 | 0.8108 | 0.8164 | |
OA | 0.8272 | ||||
KC | 0.8022 | ||||
F1 | 0.8093 | ||||
Object-oriented classification | PA | 0.8588 | 0.8311 | 0.8374 | 0.8365 |
UA | 0.8397 | 0.8524 | 0.8236 | 0.8501 | |
OA | 0.8502 | ||||
KC | 0.8438 | ||||
F1 | 0.8449 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, X.; Chen, Z.; Li, Y.; Bai, Y. Crop Classification in Mountainous Areas Using Object-Oriented Methods and Multi-Source Data: A Case Study of Xishui County, China. Agronomy 2023, 13, 3037. https://doi.org/10.3390/agronomy13123037
Tian X, Chen Z, Li Y, Bai Y. Crop Classification in Mountainous Areas Using Object-Oriented Methods and Multi-Source Data: A Case Study of Xishui County, China. Agronomy. 2023; 13(12):3037. https://doi.org/10.3390/agronomy13123037
Chicago/Turabian StyleTian, Xiangyu, Zhengchao Chen, Yixiang Li, and Yongqing Bai. 2023. "Crop Classification in Mountainous Areas Using Object-Oriented Methods and Multi-Source Data: A Case Study of Xishui County, China" Agronomy 13, no. 12: 3037. https://doi.org/10.3390/agronomy13123037
APA StyleTian, X., Chen, Z., Li, Y., & Bai, Y. (2023). Crop Classification in Mountainous Areas Using Object-Oriented Methods and Multi-Source Data: A Case Study of Xishui County, China. Agronomy, 13(12), 3037. https://doi.org/10.3390/agronomy13123037