Ameliorating Forage Crop Resilience in Dry Steppe Zone Using Millet Growth Dynamics
Abstract
:1. Introduction
2. Materials and Methods
3. Statistical Analysis
4. Results
4.1. Phenological Observations
4.2. Weed Infestation
4.3. Growth Dynamics of Annual Sole Crops and Their Mixtures Affected by Sowing Times
4.4. Green Mass and Hay Products
4.5. Chemical Compositions of Green Mass and Hay Products
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdelkader, M.; Zargar, M.; Murtazova, K.M.-S.; Nakhaev, M.R. Life Cycle Assessment of the Cultivation Processes for the Main Vegetable Crops in Southern Egypt. Agronomy 2022, 12, 1527. [Google Scholar] [CrossRef]
- Gitz, V.; Meybeck, A.; Lipper, L.; Young, C.D.; Braatz, S. Climate change and food security: Risks and responses. Food Agric. Organ. United Nations (FAO) Rep. 2016, 110, 2–4. [Google Scholar]
- Ritchie, J.T.; Nesmith, D.S. Temperature and crop development. Model. Plant Soil Syst. 1991, 31, 5–29. [Google Scholar]
- Tokbergenova, A.; Kiyassova, L.; Kairova, S. Sustainable Development Agriculture in the Republic of Kazakhstan. Pol. J. Environ. Stud. 2018, 27. Available online: http://www.pjoes.com/pdf-78617-24782?filename=Sustainable%20Development.pdf (accessed on 5 December 2023). [CrossRef] [PubMed]
- Mukhambetov, B.; Nasiyev, B.; Abdinov, R.; Kadasheva, Z.; Mamyrova, L. Influence of soil and climatic conditions on the chemical composition and nutritional value of Kochia prostrata feed in the arid zone of Western Kazakhstan. Casp. J. Environ. Sci. 2023, 21, 853–863. [Google Scholar]
- Nazarbayev, N.A. The Strategy for Development of the Republic of Kazakhstan until the Year 2050. Available online: https://policy.asiapacificenergy.org/sites/default/files/Presidential%20Address%20%27Strategy%20Kazakhstan-2050%27%20%28EN%29.pd (accessed on 10 December 2023).
- Islyami, A.; Aldashev, A.; Thomas, T.S.; Dunston, S. Impact of climate change on agriculture in Kazakhstan. Silk Road A J. Eurasian Dev. 2020, 2, 66–88. [Google Scholar] [CrossRef]
- Shetty, H.S.; Suryanarayan, S.M.; Jogaiah, S.; Janakirama, A.R.S.; Hansen, M.; Jørgensen, H.J.L.; Tran, L.-S.P. Bioimaging structural signatures of the oomycete pathogen Sclerospora graminicola in pearl millet using different microscopic techniques. Sci. Rep. 2019, 9, 15175. [Google Scholar] [CrossRef] [PubMed]
- Satyavathi, C.T.; Ambawat, S.; Khandelwal, V.; Srivastava, R.K. Pearl millet: A climate-resilient nutricereal for mitigating hidden hunger and provide nutritional security. Front. Plant Sci. 2021, 12, 659938. [Google Scholar] [CrossRef]
- Baltensperger, D.D. Progress with proso, pearl and other millets. In Trends in New Crops and New Uses; ASHS Press: Alexandria, VA, USA, 2002; pp. 100–103. [Google Scholar]
- Vujić, S.; Krstić, D.; Mačkić, K.; Čabilovski, R.; Radanović, Z.; Zhan, A.; Ćupina, B. Effect of winter cover crops on water soil storage, total forage production, and quality of silage corn. Eur. J. Agron. 2021, 130, 126366. [Google Scholar] [CrossRef]
- Rosa, A.T.; Creech, C.F.; Elmore, R.W.; Rudnick, D.R.; Lindquist, J.L.; Fudolig, M.; Butts, L.; Werle, R. Implications of cover crop planting and termination timing on rainfed maize production in semi-arid cropping systems. Field Crops Res. 2021, 271, 108251. [Google Scholar] [CrossRef]
- Blount, A.R.; Ball, D.M.; Sprenkel, R.K.; Myer, R.O.; Hewitt, T.D. Crabgrass as a Forage and Hay Crop; University of Florida: Gainesville, FL, USA, 2003. [Google Scholar]
- Kaur, K.D.; Jha, A.; Sabikhi, L.; Singh, A.K. Significance of coarse cereals in health and nutrition: A review. J. Food Sci. Technol. 2014, 51, 1429–1441. [Google Scholar] [CrossRef] [PubMed]
- Zhapayev, R.K.; Toderich, K.N.; Popova, V.; Tautenov, I.; Umirzakov, S.; Bekzhanov, S.; Nurgaliev, N.; Nurzhanova, S.J.; Tajekeeva, A.; Iskandarova, K. Forage production and nutritional value of sorghum and pearl millet on marginal lands on priaralie. J. Arid. Land Stud. 2015, 25, 169–172. [Google Scholar]
- Locks, L.M.; Shah, M.; Bhaise, S.; Hibberd, P.L.; Patel, A. Assessing the diets of young children and adolescents in India: Challenges and opportunities. Front. Pediatr. 2022, 10, 725812. [Google Scholar] [CrossRef] [PubMed]
- Berestetskiy, A.O.; Belozyorova, M.Y.; Prokof’eva, D.S. Effects of Substrate and Cultivation Duration on the Productivity, Biological Activity, and Chromatography Profiles of Extracts Obtained from Stagonospora cirsii S-47. Appl. Biochem. Microbiol. 2020, 56, 78–90. [Google Scholar] [CrossRef]
- Reddy, A.A.; Dharmpal, M.; Singh, I.P.; Kundu, K.K.; Rao, P.P.; Gupta, S.K.; Rajan, S. Demand and supply for pearl millet grain and fodder by 2020 in Western India. Agric. Situat. India 2012, 68, 635–646. [Google Scholar]
- Türk, M.; Albayrak, S.; Yüksel, O. Effects of phosphorus fertilisation and harvesting stages on forage yield and quality of narbon vetch. N. Z. J. Agric. Res. 2007, 50, 457–462. [Google Scholar] [CrossRef]
- Haruna, S.I.; Anderson, S.H.; Nkongolo, N.V.; Zaibon, S. Soil hydraulic properties: Influence of tillage and cover crops. Pedosphere 2018, 28, 430–442. [Google Scholar] [CrossRef]
- Teasdale, J.R.; Brandsaeter, L.O.; Calegari, A.; Neto, F.S.; Upadhyaya, M.K.; Blackshaw, R.E. Cover Crops and Weed Management. In Non-Chemical Weed Management: Principles, Concepts and Technology; 2007; pp. 49–64. Available online: https://books.google.com/books?hl=en&lr=&id=CyBJuCcFNsQC&oi=fnd&pg=PA49&dq=optimal+sowing+time+can+prevent+weeds,+and+the+timing+of+crop+harvesting+or+the+vegetative+phase+of+the+plant+when+mowing+significant-ly+affect+the+nutrient+content+of+the+green+mass+&ots=So-nB0rjYd&sig=55Mz4LoZ2GRSNfkFpaUEvOpOgjc (accessed on 5 December 2023).
- Gunguniya, D.F.; Kumar, S.; Patel, M.P.; Sakure, A.A.; Patel, R.; Kumar, D.; Khandelwal, V. Morpho-biochemical characterization and molecular marker based genetic diversity of pearl millet (Pennisetum glaucum (L.) R. Br.). PeerJ 2023, 11, e15403. [Google Scholar] [CrossRef]
- FieldClimate Manual. METOS® by Pessl Instruments. Available online: https://metos.at/en/fieldclimate-manual/ (accessed on 12 September 2023).
- Dospekhov, B.A. Methods of Field Research (With the Basics of Statistical Processing of Research Results); Agropromizdat: Moscow, Russia, 1985; p. 351. [Google Scholar]
- Kosolapov, V.; Korshunov, A.; Savchenko, I.; Switala, F.; Hogland, W. Scientific support of the fodder production: VR Williams All-Russian Fodder Research Institute (WFRI) activity. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019; Volume 390, p. 012010. [Google Scholar]
- Voronov, S.; Pleskachiov, Y.; Shitikova, A.; Zargar, M.; Abdelkader, M. Diversity of the Biological and Proteinogenic Characteristics of Quinoa Genotypes as a Multi-Purpose Crop. Agronomy 2023, 13, 279. [Google Scholar] [CrossRef]
- Russian Laws, Standards and Regulations, Normative Library, Russian Gost, Health, Safety. Available online: https://www.russiangost.com/search.aspx?searchterm=dry%20matter&showPics=1 (accessed on 16 September 2023).
- RussianGost|Official Regulatory Library—GOST 31640-2012. Available online: https://www.russiangost.com/p-57019-gost-31640-2012.aspx (accessed on 16 September 2023).
- RussianGost|Official Regulatory Library—GOST 13496.15-97. Available online: https://www.russiangost.com/p-61340-gost-1349615-97.aspx (accessed on 16 September 2023).
- RussianGost|Official Regulatory Library—GOST 26226-95. Available online: https://www.russiangost.com/p-56848-gost-26226-95.aspx (accessed on 16 September 2023).
- RussianGost|Official Regulatory Library—GOST 13496.4-93. Available online: https://www.russiangost.com/p-69241-gost-134964-93.aspx (accessed on 16 September 2023).
- RussianGost|Official Regulatory Library—GOST 26176-91. Available online: https://www.russiangost.com/p-63712-gost-26176-91.aspx (accessed on 16 September 2023).
- Stybayev, G.; Serekpayev, N.; Yancheva, H.; Baitelenova, A.; Nogayev, A.; Khurmetbek, O.; Mukhanov, N. Succession dynamics, quality, and production in improved and natural pastures in Northern Kazakhstan. Bulg. J. Agric. Sci. 2021, 27. [Google Scholar]
- Kramberger, B.; Gselman, A.; Janzekovic, M.; Kaligaric, M.; Bracko, B. Effects of cover crops on soil mineral nitrogen and on the yield and nitrogen content of maize. Eur. J. Agron. 2009, 31, 103–109. [Google Scholar] [CrossRef]
- Cupina, B.; Manojlovic, M.; Krstic, D.; Cabilovski, R.; Mikic, A.; Ignjatovic-Cupina, A.; Eric, P. Effect of Winter Cover Crops on the Dynamics of Soil Mineral Nitrogen and Yield and Quality of Sudan Grass [‘Sorghum bicolor’ (L.) Moench]. Aust. J. Crop Sci. 2011, 5, 839–845. [Google Scholar]
- Mahama, G.Y.; Prasad, P.V.V.; Roozeboom, K.L.; Nippert, J.B.; Rice, C.W. Response of Maize to Cover Crops, Fertilizer Nitrogen Rates, and Economic Return. Agron. J. 2016, 108, 17–31. [Google Scholar] [CrossRef]
- Zargar, M.; Astrakhanova, T.; Pakina, E.; Astrakhanov, I.; Rimikhanov, A.; Gyul’magomedova, A.; Ramazanova, Z.; Rebouh, N. Survey of biological components efficiency on safety and productivity of different tomato cultivars. Res. Crops. 2017, 18, 283–292. [Google Scholar] [CrossRef]
- Bekele, S. Impacts of climate change on livestock production: A review. J. Nat. Sci. Res. 2017, 7, 53–59. [Google Scholar]
- Lukyanova, M.; Kovshov, V.; Zalilova, Z.; Lukyanov, V.; Araslanbaev, I. A systemic comparative economic approach efficiency of fodder production. J. Innov. Entrep. 2021, 10, 48. [Google Scholar] [CrossRef]
- Koch, D.W.; Mitchell, J.R. Potential of Japanese Millet as an Initial Crop in a No-Till Forage Renovation Program. Agron. J. 1988, 80, 471–474. [Google Scholar] [CrossRef]
- Sanderson, M.A.; Adler, P.R. Perennial forages as second generation bioenergy crops. Int. J. Mol. Sci. 2008, 9, 768–788. [Google Scholar] [CrossRef]
- Zargar, M.; Najafi, H.; Fakhri, K.; Mafakheri, S.; Sarajuoghi, M. Agronomic evaluation of mechanical and chemical weed management for reducing use of herbicides in single vs. twinrow sugarbeet. Res. Crops. 2011, 12, 173–178. [Google Scholar]
- Ojeda, J.J.; Pembleton, K.G.; Islam, M.R.; Agnusdei, M.G.; Garcia, S.C. Evaluation of the agricultural production systems simulator simulating Lucerne and annual ryegrass dry matter yield in the Argentine Pampas and south-eastern Australia. Agric. Syst. 2016, 143, 61–75. [Google Scholar] [CrossRef]
- de Assis, R.L.; de Freitas, R.S.; Mason, S.C. Pearl millet production practices in Brazil: A review. Exp. Agric. 2018, 54, 699–718. [Google Scholar] [CrossRef]
- Yadav, O.P.; Rai, K.N. Hybridization of Indian landraces and African elite composites of pearl millet results in biomass and stover yield improvement under arid zone conditions. Crop Sci. 2011, 51, 1980–1987. [Google Scholar] [CrossRef]
- Zhang, Z.; Yu, K.; Siddique, K.H.; Nan, Z. Phenology and sowing time affect water use in four warm-season annual grasses under a semi-arid environment. Agric. For. Meteorol. 2019, 269, 257–269. [Google Scholar] [CrossRef]
- Mukhanov, N.; Serekpayev, N.; Stybayev, G.; Baitelenova, A.; Nogayev, A.; Khurmetbek, O.; Zotikov, V. Comparative evaluation of the chemical composition and yield of barnyard millet depending on climate conditions, sowing times and the development phase under the conditions of the steppe zone of North Kazakhstan. Ecol. Environ. Conserv. 2018, 24, 1085–1091. [Google Scholar]
- Shaltout, K.H.; Galal, T.M.; El-Komi, T.M. Phenology, biomass and nutrients of Imperata cylindrica and Desmostachya bipinnata along the water courses in Nile Delta, Egypt. Rend. Lincei 2016, 27, 215–228. [Google Scholar] [CrossRef]
- Vojnov, B.; Jaćimović, G.; Šeremešić, S.; Pezo, L.; Lončar, B.; Krstić, Đ.; Vujić, S.; Ćupina, B. The Effects of Winter Cover Crops on Maize Yield and Crop Performance in Semiarid Conditions—Artificial Neural Network Approach. Agronomy 2022, 12, 2670. [Google Scholar] [CrossRef]
- Ziki, S.J.L.; Zeidan, E.M.I.; El-Banna, A.Y.A.; Omar, A.E.A. Influence of cutting date and nitrogen fertilizer levels on growth, forage yield, and quality of sudan grass in a semiarid environment. Int. J. Agron. 2019, 2019, 6972639. [Google Scholar] [CrossRef]
- Petrosino, J.S.; Dille, J.A.; Holman, J.D.; Roozeboom, K.L. Kochia Suppression with Cover Crops in Southwestern Kansas. Crop Forage Turfgrass Manag. 2015, 1, 1–8. [Google Scholar] [CrossRef]
Month | Temperature by Year, °C | Long-Term Average, °C (2011–2020) | |
---|---|---|---|
2021 | 2022 | ||
January | −14.5 | −12.3 | −15 |
February | −7.6 | −14.2 | −15.2 |
March | −0.6 | −8.8 | −8.8 |
April | 9.9 | 5.9 | 5.1 |
May | 14.2 | 14.8 | 13.3 |
June | 18.3 | 21.5 | 19.3 |
July | 19.8 | 20.3 | 20.9 |
August | 20.1 | 19.9 | 18.1 |
September | 15.5 | 12.4 | 17.1 |
Month | Precipitation by Year, mm | Long-Term Average 2011–2020 Precipitation, mm | |
---|---|---|---|
2021 | 2022 | ||
January | 19.8 | 20.8 | 18.0 |
February | 10.1 | 22.5 | 14.0 |
March | 19.3 | 15.5 | 14.0 |
April | 35.6 | 36.0 | 23.0 |
May | 12.3 | 12.0 | 34.0 |
June | 73.7 | 22.0 | 36.0 |
July | 106.0 | 27.0 | 49.0 |
August | 4.1 | 29.0 | 29.0 |
September | 9.4 | 17.0 | 22.0 |
Factor A Crops and Grass Mixtures | Factor B Sowing Time | Factor C Mowing Term |
---|---|---|
Sorghum p. | II/V; III/V; I/VI | 1. In the phase of exiting from the tubes of cereals 2. In the phase of heading of the grain |
Brassica napus | II/V; III/V; I/VI | 1. Flowering 2. Pod formation |
Brassica napus + Hordeum vulgare L. + Pisum sativum L. + Sorghum + Sorghum saccharatum × S. Sudanense | II/V; III/V; I/VI | 1. In the phases of stemming and earing of cereal crops, flowering of legumes, and rape 2. In the phases of milky ripeness and heading of cereal crops, the formation of beans of legumes, the formation of pods of rape |
E. frumentacea | II/V; III/V; I/VI | 1. In the phase of exiting from the tubes of cereals 2. In the phase of heading of the grain |
Echinochloa frumentacea L. + Hordeum vulgare L. + Pisum sativum L. + Sorghum + Sorghum saccharatum × S. Sudanense | II/V; III/V; I/VI | 1. In the phases of stemming and earing of cereal crops, flowering of legumes, and rape 2. In the phases of milky ripeness and heading of cereal crops, the formation of beans of legumes, the formation of pods of rape |
Pennisetum glaucum | II/V; III/V; I/VI | 1. In the phase of exiting from the tube of cereals 2. In the phase of heading of the grain |
Pennisetum glaucum + Hordeum vulgare L. + Pisum sativum L. + Sorghum + Sorghum saccharatum × S. Sudanense | II/V; III/V; I/VI | 1. In the phases of stemming and earing of cereal crops, flowering of legumes, and rape 2. In the phases of milky ripeness and heading of cereal crops, the formation of beans of legumes, the formation of pods of rape |
Sowing Period | Stages of Crop Development (for Crops of Grain/Bean/Rape), Number of Days | Periods after Germination, Number of Days | ||||||
---|---|---|---|---|---|---|---|---|
From Sowing to Full Shoots | From Full Shoots to Binding/Branching | From Binding/Branching to Tube Exit/Branching | From Tube Exit/Branching to Spike/Collapse | For Legumes and Rape | From Full Shoots to Tube Exit/Spike/Flowering | From Full Shoots to Milkweed Ripeness/Fringing/ Formation of Legumes | ||
Flowering | Pea Formation | |||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
Sudanese (st) | ||||||||
II/V | 12 | 26 | 29 | 16 | - | - | 55 | 71 |
III/V | 26 | 33 | 18 | 10 | - | - | 51 | 61 |
I/VI | 22 | 31 | 24 | 7 | - | - | 55 | 62 |
Spring rapeseed | ||||||||
II/V | 16 | 10 | 28 | 14 | 4 | 13 | 56 | 69 |
III/V | 26 | 4 | 25 | 12 | 9 | 11 | 50 | 61 |
I/VI | 20 | 4 | 29 | 11 | 11 | 8 | 55 | 63 |
Japanese millet | ||||||||
II/V | 13 | 23 | 34 | 13 | - | - | 57 | 70 |
III/V | 27 | 33 | 17 | 11 | - | - | 50 | 61 |
I/VI | 21 | 32 | 24 | 8 | - | - | 56 | 64 |
Pearl millet | ||||||||
II/V | 12 | 25 | 32 | 16 | - | - | 57 | 73 |
III/V | 26 | 34 | 16 | 12 | - | - | 50 | 62 |
I/VI | 22 | 32 | 24 | 7 | - | - | 56 | 63 |
Spring rapeseed + barley + peas + Sudanese + sorghum–Sudanese hybrid | ||||||||
II/V | 14 | 22 | 38 | 10 | - | - | 60 | 70 |
III/V | 27 | 33 | 16 | 12 | - | - | 49 | 61 |
I/VI | 19 | 35 | 23 | 9 | - | - | 58 | 67 |
Japanese millet + barley + peas + Sudanese + sorghum–Sudanese hybrid | ||||||||
II/V | 16 | 21 | 37 | 10 | - | - | 58 | 68 |
III/V | 26 | 36 | 15 | 10 | - | - | 51 | 61 |
I/VI | 22 | 32 | 24 | 6 | - | - | 56 | 62 |
Pearl millet + barley + peas + Sudanese + sorghum–Sudanese hybrid | ||||||||
II/V | 15 | 21 | 38 | 10 | - | - | 59 | 69 |
III/V | 26 | 34 | 13 | 15 | - | - | 47 | 62 |
I/VI | 23 | 32 | 22 | 7 | - | - | 54 | 61 |
Crops/Crop Mixes | Weeds | |||||
---|---|---|---|---|---|---|
Annual | Perennial | Total | ||||
Amaranthus albus | Chenopodium album | Setaria viridis | Avena fatua | Convolvulus arvensis | ||
Sudanese (st) | 5 | 1 | 3 | 1 | 1 | 11 |
Spring rapeseed | 8 | 10 | 5 | 13 | 2 | 38 |
Japanese millet | 8 | 6 | 5 | 12 | 3 | 35 |
Pearl millet | 8 | 7 | 6 | 15 | 4 | 41 |
Spring rapeseed + barley + peas + Sudanese + sorghum–Sudanese hybrid | 1 | 2 | 1 | 2 | - | 6 |
Japanese millet + barley + peas + Sudanese + sorghum–Sudanese hybrid | 15 | 2 | 1 | - | 1 | 19 |
Pearl millet + barley + peas + Sudanese + sorghum–Sudanese hybrid | - | - | 2 | 1 | 3 | 6 |
Crops/Crop Mixes | Weeds | |||||
---|---|---|---|---|---|---|
Annual | Perennial | Total | ||||
Amaranthus albus | Chenopodium album | Setaria viridis | Avena fatua | Convolvulus arvensis | ||
Sudanese (st) | 4 | 1 | 2 | 3 | 4 | 14 |
Spring rapeseed | 10 | 9 | - | 9 | 3 | 31 |
Japanese millet | 10 | 9 | 5 | 6 | 4 | 34 |
Pearl millet | 6 | 6 | 3 | 7 | 3 | 25 |
Spring rapeseed + barley + peas + Sudanese + sorghum–Sudanese hybrid | - | 1 | 1 | - | 1 | 3 |
Japanese millet + barley + peas + Sudanese + sorghum–Sudanese hybrid | 9 | 3 | 4 | - | 2 | 17 |
Pearl millet + barley + peas + Sudanese + sorghum–Sudanese hybrid | - | - | 1 | - | 5 | 6 |
Crops/Crop Mixes | Weeds | |||||
---|---|---|---|---|---|---|
Annual | Perennial | Total | ||||
Amaranthus albus | Chenopodium album | Setaria viridis | Avena fatua | Convolvulus arvensis | ||
Sudanese (st) | 12 | 2 | 1 | 5 | 4 | 23 |
Spring rapeseed | 9 | 11 | 6 | 14 | 3 | 43 |
Japanese millet | 9 | 7 | 6 | 13 | 4 | 40 |
Pearl millet | 9 | 8 | 7 | 16 | 5 | 46 |
Spring rapeseed + barley + peas + Sudanese + sorghum–Sudanese hybrid | 3 | 2 | 1 | 2 | 1 | 9 |
Japanese millet + barley + peas + Sudanese + sorghum–Sudanese hybrid | 11 | 2 | 1 | 1 | 2 | 18 |
Pearl millet + barley + peas + Sudanese + sorghum–Sudanese hybrid | - | - | 2 | 2 | 3 | 7 |
Sowing Date | Weeds | |||||
---|---|---|---|---|---|---|
Annual | Perennial | Total | ||||
Amaranthus albus | Chenopodium album | Setaria Viridis | Avena fatua | Convolvulus arvensis | ||
II/V | 6.0 | 4.0 | 3.0 | 7.0 | 2.0 | 22.0 |
III/V | 7.0 | 5.0 | 2.0 | 5.0 | 3.0 | 21.0 |
I/VI | 10.0 | 5.0 | 3.0 | 9.0 | 3.0 | 30.0 |
Sole Crops/Crop Mixes | Sowing Date | ||
---|---|---|---|
II/V | III/V | I/VI | |
Sudanese (st) | 3.2 | 3.4 | 3.3 |
Spring rapeseed | 1.1 | 1.5 | 1.3 |
Japanese millet | 2.3 | 2.3 | 2.3 |
Pearl millet | 2.0 | 2.6 | 2.3 |
Spring rapeseed + barley + peas + Sudanese + sorghum–Sudanese hybrid | 1.5 | 1.8 | 1.9 |
Japanese millet + barley + peas + Sudanese + sorghum–Sudanese hybrid | 1.9 | 1.9 | 2.2 |
Pearl millet + barley + peas + Sudanese + sorghum–Sudanese hybrid | 2.2 | 2.4 | 2.2 |
Sole Crops/Crop Mixes | Sowing Date | ||
---|---|---|---|
II/V (st) | III/V | I/VI | |
Exit from the tube, spikelet, flowering periods | |||
Sudanese (st) | 68.1 | 70.2 | 67.9 |
Spring rapeseed | 69.5 | 71.6 | 67.5 |
Japanese millet | 71.1 | 73.6 | 72.1 |
Pearl millet | 70.2 | 80.6 | 79.6 |
Spring rapeseed + barley + peas + Sudanese + sorghum–Sudanese hybrid | 70.5 | 79.9 | 73.4 |
Japanese millet + barley + peas + Sudanese + sorghum–Sudanese hybrid | 73.5 | 76.7 | 73.2 |
Pearl millet + barley + peas + Sudanese + sorghum–Sudanese hybrid | 76.2 | 85.5 | 83.3 |
Milkweed ripeness/fringing/formation of legume periods | |||
Sudanese (st) | 89.8 | 90.8 | 88.5 |
Spring rapeseed | 93.5 | 95.1 | 92.0 |
Japanese millet | 90.0 | 96.6 | 92.2 |
Pearl millet | 96.1 | 97.7 | 94.9 |
Spring rapeseed + barley + peas + Sudanese + sorghum–Sudanese hybrid | 96.5 | 98.7 | 94.3 |
Japanese millet + barley + peas + Sudanese + sorghum–Sudanese hybrid | 91.7 | 97.9 | 95.9 |
Pearl millet + barley + peas + Sudanese + sorghum–Sudanese hybrid | 99.2 | 101.9 | 97.6 |
Sole Crops/Crop Mixes | Productivity, c/ha−1 | |||||
---|---|---|---|---|---|---|
Green Mass | Hay | |||||
Sowing Date | ||||||
II/V | III/V | I/VI | II/V | III/V | I/VI | |
Sudanese (st) | 119.3 | 139.2 | 119.6 | 24.7 | 23.6 | 24.7 |
Spring rapeseed | 156.5 | 176.3 | 160.7 | 26.2 | 25.1 | 26.0 |
Japanese millet | 191.2 | 214.7 | 196.3 | 25.6 | 25.5 | 25.6 |
Pearl millet | 191.7 | 253.4 | 217.0 | 25.3 | 26.2 | 25.3 |
Spring rapeseed + barley + peas + Sudanese + sorghum–Sudanese hybrid | 163.4 | 196.9 | 186.3 | 26.1 | 25.7 | 26.3 |
Japanese millet + barley + peas + Sudanese + sorghum–Sudanese hybrid | 221.9 | 249.3 | 236.3 | 26.5 | 26.8 | 26.5 |
Pearl millet + barley + peas + Sudanese + sorghum–Sudanese hybrid | 239.5 | 280.4 | 258.8 | 23.7 | 27.6 | 23.3 |
p-value | 0.05 | 0.05 | 0.05 | 0.221 | 0.232 | 0.446 |
Sole Crops/Crop Mixes | Dry Matter | Raw Protein | Raw Fat | Raw Lentils | Raw Ash | WNE | Starch | Carotene, mg/kg | Calcium | Phosphorus |
---|---|---|---|---|---|---|---|---|---|---|
Exit from the tube, spikelet, and flowering periods (st) | ||||||||||
Sudanese (st) | 23.47 | 3.51 | 0.44 | 7.64 | 2.12 | 11.12 | 0.49 | 5.23 | 0.09 | 0.06 |
Spring rapeseed | 22.60 | 2.71 | 0.32 | 6.09 | 1.94 | 9.55 | 0.30 | 5.07 | 0.05 | 0.04 |
Japanese millet | 24.38 | 2.84 | 0.37 | 4.97 | 2.17 | 8.15 | 0.36 | 5.36 | 0.05 | 0.06 |
Pearl millet | 23.38 | 3.29 | 0.44 | 6.70 | 2.13 | 11.00 | 0.20 | 5.00 | 0.08 | 0.06 |
Spring rapeseed + barley + peas + Sudanese + sorghum–Sudanese hybrid | 22.60 | 3.29 | 0.45 | 6.11 | 2.22 | 9.30 | 0.26 | 5.63 | 0.06 | 0.07 |
Japanese millet + barley + peas + Sudanese + sorghum–Sudanese hybrid | 23.93 | 2.86 | 0.32 | 4.60 | 2.10 | 8.12 | 0.28 | 5.10 | 0.06 | 0.04 |
Pearl millet + barley + peas + Sudanese + sorghum–Sudanese hybrid | 22.70 | 3.46 | 0.32 | 7.34 | 2.22 | 11.29 | 0.11 | 5.02 | 0.07 | 0.05 |
Milky ripeness/fringing/formation of legume periods | ||||||||||
Sudanese (st) | 25.58 | 2.19 | 0.29 | 4.40 | 2.15 | 10.47 | 0.07 | 4.66 | 0.06 | 0.04 |
Spring rapeseed | 23.92 | 2.84 | 0.26 | 4.06 | 2.23 | 9.44 | 0.13 | 5.17 | 0.06 | 0.02 |
Japanese millet | 25.71 | 2.19 | 0.28 | 7.00 | 2.15 | 10.86 | 0.14 | 5.47 | 0.07 | 0.04 |
Pearl millet | 23.54 | 2.96 | 0.29 | 6.59 | 2.04 | 13.13 | 0.14 | 4.38 | 0.10 | 0.05 |
Spring rapeseed + barley + peas + Sudanese + sorghum–Sudanese hybrid | 25.10 | 2.73 | 0.29 | 7.04 | 2.33 | 12.76 | 0.11 | 4.93 | 0.08 | 0.03 |
Japanese millet + barley + peas + Sudanese + sorghum–Sudanese hybrid | 22.70 | 2.03 | 0.32 | 4.57 | 2.13 | 9.96 | 0.12 | 4.33 | 0.08 | 0.06 |
Pearl millet + barley + peas + Sudanese + sorghum–Sudanese hybrid | 26.19 | 2.18 | 0.21 | 6.18 | 1.97 | 12.04 | 0.11 | 4.53 | 0.07 | 0.06 |
Sole Crops/Crop Mixes | Dry Matter | Raw Protein | Raw Fat | Raw Lentils | Raw Ash | WNE | Starch | Carotene, mg/kg | Calcium | Phosphorus |
---|---|---|---|---|---|---|---|---|---|---|
Exit from the tube, spikelet, and flowering periods (st) | ||||||||||
Sudanese (st) | 25.76 | 5.58 | 1.07 | 9.06 | 3.75 | 13.16 | 2.48 | 5.48 | 0.93 | 0.20 |
Spring rapeseed | 24.82 | 4.31 | 0.89 | 7.04 | 3.51 | 11.13 | 2.24 | 5.27 | 0.82 | 0.11 |
Japanese millet | 26.85 | 4.39 | 0.90 | 5.88 | 3.70 | 9.67 | 2.26 | 5.52 | 0.86 | 0.17 |
Pearl millet | 25.69 | 5.52 | 1.24 | 8.29 | 3.93 | 13.20 | 2.36 | 5.42 | 1.07 | 0.35 |
Spring rapeseed + barley + peas + Sudanese + sorghum–Sudanese hybrid | 25.09 | 5.19 | 1.00 | 7.36 | 3.77 | 11.17 | 2.17 | 5.80 | 0.88 | 0.18 |
Japanese millet + barley + peas + Sudanese + sorghum–Sudanese hybrid | 25.82 | 4.63 | 1.02 | 5.73 | 3.79 | 9.86 | 2.34 | 5.42 | 0.99 | 0.27 |
Pearl millet + barley + peas + Sudanese + sorghum–Sudanese hybrid | 26.57 | 5.71 | 0.89 | 8.95 | 3.79 | 13.51 | 2.04 | 5.21 | 0.83 | 0.11 |
Milky ripeness/fringing/formation of legume periods | ||||||||||
Sudanese (st) | 28.75 | 3.44 | 0.83 | 5.02 | 3.69 | 11.70 | 1.97 | 4.82 | 0.87 | 0.14 |
Spring rapeseed | 27.17 | 4.54 | 0.76 | 5.12 | 3.80 | 11.11 | 2.06 | 5.36 | 0.89 | 0.16 |
Japanese millet | 27.49 | 3.53 | 1.03 | 7.70 | 3.90 | 12.17 | 2.26 | 5.85 | 1.03 | 0.31 |
Pearl millet | 26.75 | 5.31 | 0.93 | 8.31 | 3.67 | 15.46 | 2.14 | 4.64 | 0.99 | 0.24 |
Spring rapeseed + barley + peas + Sudanese + sorghum–Sudanese hybrid | 27.24 | 4.66 | 0.90 | 8.32 | 3.94 | 14.66 | 2.08 | 5.16 | 0.91 | 0.16 |
Japanese millet + barley + peas + Sudanese + sorghum–Sudanese hybrid | 25.25 | 3.56 | 1.12 | 5.45 | 3.93 | 11.46 | 2.28 | 4.75 | 1.14 | 0.41 |
Pearl millet + barley + peas + Sudanese + sorghum–Sudanese hybrid | 29.66 | 3.75 | 0.77 | 7.11 | 3.53 | 13.59 | 2.03 | 4.71 | 0.91 | 0.20 |
Sole Crop/Crop Mixes | Dry Matter | Raw Protein | Raw Fat | Raw Lentils | Raw Ash | WNE | Starch | Carotene, mg/kg | Calcium | Phosphorus |
---|---|---|---|---|---|---|---|---|---|---|
Exit from the tube, spikelet, and flowering periods (st) | ||||||||||
Sudanese (st) | 21.40 | 2.83 | 0.21 | 6.21 | 1.49 | 8.29 | 0.32 | 4.66 | 0.18 | 0.16 |
Spring rapeseed | 21.00 | 2.09 | 0.22 | 4.72 | 1.37 | 7.19 | 0.21 | 4.58 | 0.10 | 0.08 |
Japanese millet | 22.83 | 2.25 | 0.29 | 4.42 | 1.63 | 5.84 | 0.22 | 4.82 | 0.11 | 0.13 |
Pearl millet | 21.15 | 2.44 | 0.21 | 5.11 | 1.33 | 8.01 | 0.36 | 4.28 | 0.31 | 0.31 |
Spring rapeseed + barley + peas + Sudanese + sorghum–Sudanese hybrid | 20.70 | 2.69 | 0.28 | 4.76 | 1.67 | 6.64 | 0.12 | 5.09 | 0.12 | 0.13 |
Japanese millet + barley + peas + Sudanese + sorghum–Sudanese hybrid | 22.16 | 2.11 | 0.15 | 4.13 | 1.40 | 5.59 | 0.26 | 4.44 | 0.28 | 0.25 |
Pearl millet + barley + peas + Sudanese + sorghum–Sudanese hybrid | 20.45 | 2.84 | 0.25 | 5.97 | 1.65 | 8.27 | 0.10 | 4.53 | 0.12 | 0.09 |
Milky ripeness/fringing/formation of legume periods | ||||||||||
Sudanese (st) | 24.33 | 1.60 | 0.22 | 4.52 | 1.62 | 8.45 | 0.08 | 4.12 | 0.14 | 0.11 |
Spring rapeseed | 22.22 | 2.22 | 0.19 | 4.25 | 1.66 | 6.97 | 0.09 | 4.61 | 0.17 | 0.13 |
Japanese millet | 24.37 | 1.38 | 0.11 | 5.45 | 1.39 | 8.75 | 0.30 | 4.78 | 0.28 | 0.26 |
Pearl millet | 21.18 | 2.27 | 0.10 | 5.16 | 1.40 | 10.01 | 0.20 | 3.76 | 0.22 | 0.19 |
Spring rapeseed + barley + peas + Sudanese + sorghum–Sudanese hybrid | 23.18 | 2.08 | 0.18 | 5.63 | 1.73 | 10.08 | 0.15 | 4.37 | 0.19 | 0.14 |
Japanese millet + barley + peas + Sudanese + sorghum–Sudanese hybrid | 21.18 | 1.18 | 0.26 | 4.14 | 1.33 | 7.67 | 0.37 | 3.54 | 0.37 | 0.36 |
Pearl millet + barley + peas + Sudanese + sorghum–Sudanese hybrid | 24.62 | 1.57 | 0.19 | 4.82 | 1.40 | 9.71 | 0.10 | 3.96 | 0.15 | 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurbanbayev, A.; Zargar, M.; Yancheva, H.; Stybayev, G.; Serekpayev, N.; Baitelenova, A.; Mukhanov, N.; Nogayev, A.; Akhylbekova, B.; Abdelkader, M. Ameliorating Forage Crop Resilience in Dry Steppe Zone Using Millet Growth Dynamics. Agronomy 2023, 13, 3053. https://doi.org/10.3390/agronomy13123053
Kurbanbayev A, Zargar M, Yancheva H, Stybayev G, Serekpayev N, Baitelenova A, Mukhanov N, Nogayev A, Akhylbekova B, Abdelkader M. Ameliorating Forage Crop Resilience in Dry Steppe Zone Using Millet Growth Dynamics. Agronomy. 2023; 13(12):3053. https://doi.org/10.3390/agronomy13123053
Chicago/Turabian StyleKurbanbayev, Almas, Meisam Zargar, Hristina Yancheva, Gani Stybayev, Nurlan Serekpayev, Aliya Baitelenova, Nurbolat Mukhanov, Adilbek Nogayev, Balzhan Akhylbekova, and Mostafa Abdelkader. 2023. "Ameliorating Forage Crop Resilience in Dry Steppe Zone Using Millet Growth Dynamics" Agronomy 13, no. 12: 3053. https://doi.org/10.3390/agronomy13123053
APA StyleKurbanbayev, A., Zargar, M., Yancheva, H., Stybayev, G., Serekpayev, N., Baitelenova, A., Mukhanov, N., Nogayev, A., Akhylbekova, B., & Abdelkader, M. (2023). Ameliorating Forage Crop Resilience in Dry Steppe Zone Using Millet Growth Dynamics. Agronomy, 13(12), 3053. https://doi.org/10.3390/agronomy13123053