Estimation of Evapotranspiration from the People’s Victory Irrigation District Based on the Data Mining Sharpener Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Remote Sensing Data
2.2.2. Digital Elevation Model
2.2.3. Meteorological Data
2.2.4. Validation Data
2.3. Methodology
2.3.1. SEBS Model
2.3.2. Data Mining Sharpener Model
2.3.3. Statistical Metrics
3. Results
3.1. Soil Information Extraction in the Study Area
3.2. Evaluation of DMS
3.3. Evaluation of Sharpened ET
3.4. Analysis of ET Influence Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Katul, G.G.; Oren, R.; Manzoni, S.; Higgins, C.; Parlange, M.B. Evapotranspiration: A process driving mass transport and energy exchange in the soil-plant-atmosphere-climate system. Rev. Geophys. 2012, 50, 3. [Google Scholar] [CrossRef]
- Wang, S.; Wang, C.; Zhang, C.; Xue, J.; Wang, P.; Wang, X.; Wang, W.; Zhang, X.; Li, W.; Huang, G.; et al. A classification-based spatiotemporal adaptive fusion model for the evaluation of remotely sensed evapotranspiration in heterogeneous irrigated agricultural area. Remote Sens. Environ. 2022, 273, 112962. [Google Scholar] [CrossRef]
- Weiss, M.; Jacob, F.; Duveiller, G. Remote sensing for agricultural applications: A meta-review. Remote Sens. Environ. 2020, 236, 111402. [Google Scholar] [CrossRef]
- Song, L.; Liu, S.; Xu, T.; Xu, Z.; Ma, Y. Soil evaporation and vegetation transpiration: Remotely sensed estimation and validation. J. Remote Sens. 2017, 21, 966–981. [Google Scholar] [CrossRef]
- Zhaoliang, L.; Sibo, D.; Bohui, T.; Hua, W.U.; Huazhong, R.E.N.; Guangjian, Y.A.N.; Ronglin, T.; Pei, L. Review of methods for land surface temperature derived from thermal infrared remotely sensed data. J. Remote Sens. 2016, 20, 899–920. [Google Scholar] [CrossRef]
- Chen, Z.; Ren, J.; Tang, H.; Shi, Y.; Leng, P.; Liu, J.; Wang, L.; Wu, W.; Yao, Y.; Hasiyuya, T. Progress and perspectives on agricultural remote sensing research and applications in China. J. Remote Sens. 2016, 20, 748–767. [Google Scholar]
- Liang, S.; Bai, R.; Chen, X.; Cheng, J.; Fan, W.; He, T.; Jia, K.; Jiang, B.; Jiang, L.; Jiao, Z.; et al. Review of China’s land surface quantitative remote sensing development in 2019. J. Remote Sens. 2020, 24, 618–671. [Google Scholar]
- Li, S.; Wang, J.; Li, D.; Ran, Z.; Yang, B. Evaluation of Landsat 8-like Land Surface Temperature by Fusing Landsat 8 and MODIS Land Surface Temperature Product. Processes 2021, 9, 2262. [Google Scholar] [CrossRef]
- Anderson, M.; Gao, F.; Knipper, K.; Hain, C.; Dulaney, W.; Baldocchi, D.; Eichelmann, E.; Hemes, K.; Yang, Y.; Medellin-Azuara, J.; et al. Field-Scale Assessment of Land and Water Use Change over the California Delta Using Remote Sensing. Remote Sens. 2018, 10, 889. [Google Scholar] [CrossRef]
- Firozjaei, M.K.; Kiavarz, M.; Alavipanah, S.K. Satellite-derived land surface temperature spatial sharpening: A comprehensive review on current status and perspectives. Eur. J. Remote Sens. 2022, 55, 644–664. [Google Scholar] [CrossRef]
- Mokhtari, A.; Noory, H.; Pourshakouri, F.; Haghighatmehr, P.; Afrasiabian, Y.; Razavi, M.; Fereydooni, F.; Sadeghi Naeni, A. Calculating potential evapotranspiration and single crop coefficient based on energy balance equation using Landsat 8 and Sentinel-2. ISPRS J. Photogramm. Remote Sens. 2019, 154, 231–245. [Google Scholar] [CrossRef]
- Ha, W.; Gowda, P.H.; Howell, T.A. Downscaling of Land Surface Temperature Maps in the Texas High Plains with the TsHARP Method. GISci. Remote Sens. 2011, 48, 583–599. [Google Scholar] [CrossRef]
- Mukherjee, S.; Joshi, P.K.; Garg, R.D. Evaluation of LST downscaling algorithms on seasonal thermal data in humid subtropical regions of India. Int. J. Remote Sens. 2015, 36, 2503–2523. [Google Scholar] [CrossRef]
- Sattari, F.; Hashim, M.; Sookhak, M.; Banihashemi, S.; Pour, A.B. Assessment of the TsHARP method for spatial downscaling of land surface temperature over urban regions. Urban Clim. 2022, 45, 101265. [Google Scholar] [CrossRef]
- Huang, S.; Zhang, X.; Wang, C.; Chen, N. Two-step fusion method for generating 1 km seamless multi-layer soil moisture with high accuracy in the Qinghai-Tibet plateau. ISPRS J. Photogramm. Remote Sens. 2023, 197, 346–363. [Google Scholar] [CrossRef]
- Bai, Y.; Wong, M.; Shi, W.Z.; Wu, L.X.; Qin, K. Advancing of Land Surface Temperature Retrieval Using Extreme Learning Machine and Spatio-Temporal Adaptive Data Fusion Algorithm. Remote Sens. 2015, 7, 4424–4441. [Google Scholar] [CrossRef]
- Gao, F.; Kustas, W.; Anderson, M. A Data Mining Approach for Sharpening Thermal Satellite Imagery over Land. Remote Sens. 2012, 4, 3287–3319. [Google Scholar] [CrossRef]
- Guzinski, R.; Nieto, H. Evaluating the feasibility of using Sentinel-2 and Sentinel-3 satellites for high-resolution evapotranspiration estimations. Remote Sens. Environ. 2019, 221, 157–172. [Google Scholar] [CrossRef]
- Fisher, J.B.; Melton, F.; Middleton, E.; Hain, C.; Anderson, M.; Allen, R.; McCabe, M.F.; Hook, S.; Baldocchi, D.; Townsend, P.A.; et al. The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources. Water Resour. Res. 2017, 53, 2618–2626. [Google Scholar] [CrossRef]
- Xu, S.; Cheng, J. A new land surface temperature fusion strategy based on cumulative distribution function matching and multiresolution Kalman filtering. Remote Sens. Environ. 2021, 254, 112256. [Google Scholar] [CrossRef]
- Liu, K.; Su, H.; Li, X.; Chen, S. Development of a 250-m Downscaled Land Surface Temperature Data Set and its Application to Improving Remotely Sensed Evapotranspiration Over Large Landscapes in Northern China. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5000112. [Google Scholar] [CrossRef]
- Liu, J.; Si, Z.; Li, S.; Kader Mounkaila Hamani, A.; Zhang, Y.; Wu, L.; Gao, Y.; Duan, A. Variations in water sources used by winter wheat across distinct rainfall years in the North China Plain. J. Hydrol. 2023, 618, 129186. [Google Scholar] [CrossRef]
- Liu, J.; Si, Z.; Wu, L.; Chen, J.; Gao, Y.; Duan, A. Using stable isotopes to quantify root water uptake under a new planting pattern of high-low seed beds cultivation in winter wheat. Soil. Tillage Res. 2021, 205, 104816. [Google Scholar] [CrossRef]
- Liu, J.; Si, Z.; Wu, L.; Shen, X.; Gao, Y.; Duan, A. High-low seedbed cultivation drives the efficient utilization of key production resources and the improvement of wheat productivity in the North China Plain. Agr. Water. Manag. 2023, 285, 108357. [Google Scholar] [CrossRef]
- Chang, D.; Huang, Z.; Qi, X.; Han, Y.; Liang, Z. Analysis on spatio-temporal variability and influencing factors of net irrigation requirement in People’s Victory Canal Irrigation Area. Chin. Soc. Agric. Eng. 2017, 33, 118–125. [Google Scholar]
- Meng, X.; Cheng, J.; Guo, H.; Guo, Y.; Yao, B. Accuracy Evaluation of the Landsat 9 Land Surface Temperature Product. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 8694–8703. [Google Scholar] [CrossRef]
- Su, Z. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrol. Earth Syst. Sci. 2002, 6, 85–100. [Google Scholar] [CrossRef]
- Zhao, G.; Zhang, Y.; Tan, J.; Li, C.; Ren, Y. A Data Fusion Modeling Framework for Retrieval of Land Surface Temperature from Landsat-8 and MODIS Data. Sensors 2020, 20, 4337. [Google Scholar] [CrossRef]
- Zhang, C.; Long, D.; Zhang, Y.; Anderson, M.C.; Kustas, W.P.; Yang, Y. A decadal (2008–2017) daily evapotranspiration data set of 1 km spatial resolution and spatial completeness across the North China Plain using TSEB and data fusion. Remote Sens. Environ. 2021, 262, 112519. [Google Scholar] [CrossRef]
- Duan, S.B.; Li, Z.L.; Zhao, W.; Wu, P.; Huang, C.; Han, X.J.; Gao, M.; Leng, P.; Shang, G. Validation of Landsat land surface temperature product in the conterminous United States using in situ measurements from SURFRAD, ARM, and NDBC sites. Int. J. Digit. Earth 2020, 14, 640–660. [Google Scholar] [CrossRef]
- Cheng, L.; Liu, S.; Mo, X.; Hu, S.; Zhou, H.; Xie, C.; Nielsen, S.; Grosen, H.; Bauer-Gottwein, P. Assessing the Potential of 10-m Resolution TVDI Based on Downscaled LST to Monitor Soil Moisture in Tang River Basin, China. Remote Sens. 2023, 15, 744. [Google Scholar] [CrossRef]
- Bellvert, J.; Jofre-Cekalovic, C.; Pelecha, A.; Mata, M.; Nieto, H. Feasibility of Using the Two-Source Energy Balance Model (TSEB) with Sentinel-2 and Sentinel-3 Images to Analyze the Spatio-Temporal Variability of Vine Water Status in a Vineyard. Remote Sens. 2020, 12, 14. [Google Scholar] [CrossRef]
- Aguirre-García, S.D.; Aranda-Barranco, S.; Nieto, H.; Serrano-Ortiz, P.; Sánchez-Cañete, E.P.; Guerrero-Rascado, J.L. Modelling actual evapotranspiration using a two source energy balance model with Sentinel imagery in herbaceous-free and herbaceous-cover Mediterranean olive orchards. Agr. Forest. Meteorol. 2021, 311, 108692. [Google Scholar] [CrossRef]
- Zhang, Y. Estimation of ET in Wheat Area of Henan Province Based on SEBS Model. Ph.D. Thesis, Zhengzhou University, Zhengzhou, China, 2019. [Google Scholar]
- Jiang, B.; Meng, D.; Guo, X.; Zhu, L. Spatial and temporal distribution of surface ET in winter wheat planting area based on Landsat-8 remote sensing data. Irrig. Drain. 2022, 41, 140–146. [Google Scholar]
- Geli, H.M.E.; González-Piqueras, J.; Neale, C.M.U.; Balbontín, C.; Campos, I.; Calera, A. Effects of Surface Heterogeneity Due to Drip Irrigation on Scintillometer Estimates of Sensible, Latent Heat Fluxes and Evapotranspiration over Vineyards. Water 2019, 12, 81. [Google Scholar] [CrossRef]
- Guzinski, R.; Nieto, H.; Sandholt, I.; Karamitilios, G. Modelling High-Resolution Actual Evapotranspiration through Sentinel-2 and Sentinel-3 Data Fusion. Remote Sens. 2020, 12, 1433. [Google Scholar] [CrossRef]
- Xue, J.; Anderson, M.C.; Gao, F.; Hain, C.; Yang, Y.; Knipper, K.R.; Kustas, W.P.; Yang, Y. Mapping Daily Evapotranspiration at Field Scale Using the Harmonized Landsat and Sentinel-2 Dataset, with Sharpened VIIRS as a Sentinel-2 Thermal Proxy. Remote Sens. 2021, 13, 3420. [Google Scholar] [CrossRef]
- Yang, Y.; Anderson, M.; Gao, F.; Hain, C.; Noormets, A.; Sun, G.; Wynne, R.; Thomas, V.; Sun, L. Investigating impacts of drought and disturbance on evapotranspiration over a forested landscape in North Carolina, USA using high spatiotemporal resolution remotely sensed data. Remote Sens. Environ. 2020, 238, 111018. [Google Scholar] [CrossRef]
- Semmens, K.A.; Anderson, M.C.; Kustas, W.P.; Gao, F.; Alfieri, J.G.; McKee, L.; Prueger, J.H.; Hain, C.R.; Cammalleri, C.; Yang, Y.; et al. Monitoring daily evapotranspiration over two California vineyards using Landsat 8 in a multi-sensor data fusion approach. Remote Sens. Environ. 2016, 185, 155–170. [Google Scholar] [CrossRef]
Platform Sensor | Date of Collection | Wrs_ Path | Wrs_ Row | Scene_Center_Latitude | Scene_Center_Longitude | Start_ Time | Spatial Resolution | Temporal Resolution | |
---|---|---|---|---|---|---|---|---|---|
SR Bands | TIR Bands | ||||||||
Landsat-8 | 28 November 2019 | 124 | 35/36 | 34.6109 | 113.4667 | 3:00/3:01 | 30 m | 100 m | 16 day |
Landsat-8 | 30 December 2019 | 124 | 35/36 | 36.0430 | 113.8780 | 3:00/3:01 | 30 m | 100 m | 16 day |
Landsat-8 | 31 January 2020 | 124 | 35/36 | 36.0430 | 113.8766 | 3:00/3:01 | 30 m | 100 m | 16 day |
Landsat-8 | 16 February 2020 | 124 | 35/36 | 36.0433 | 113.8682 | 3:00/3:01 | 30 m | 100 m | 16 day |
Landsat-8 | 19 March 2020 | 124 | 35/36 | 36.0435 | 113.8555 | 3:00/3:01 | 30 m | 100 m | 16 day |
Landsat-8 | 4 April 2020 | 124 | 35/36 | 36.0431 | 113.8549 | 3:00/3:01 | 30 m | 100 m | 16 day |
Landsat-8 | 1 January 2021 | 124 | 35/36 | 36.0431 | 113.8648 | 3:00/3:01 | 30 m | 100 m | 16 day |
Landsat-8 | 17 January 2021 | 124 | 35/36 | 36.0433 | 113.8815 | 3:00/3:01 | 30 m | 100 m | 16 day |
Landsat-8 | 2 February 2021 | 124 | 35/36 | 36.0430 | 113.8707 | 3:00/3:01 | 30 m | 100 m | 16 day |
Landsat-8 | 22 March 2021 | 124 | 35/36 | 36.0435 | 113.8665 | 3:00/3:01 | 30 m | 100 m | 16 day |
Landsat-8 | 17 November 2021 | 124 | 35/36 | 36.0434 | 113.8760 | 3:00/3:01 | 30 m | 100 m | 16 day |
Landsat-8 | 3 December 2021 | 124 | 35/36 | 36.0435 | 113.8638 | 3:00/3:01 | 30 m | 100 m | 16 day |
Landsat-9 | 27 December 2021 | 124 | 35/36 | 36.0431 | 113.8501 | 3:00/3:01 | 30 m | 100 m | 16 day |
Landsat-9 | 1 March 2022 | 124 | 35/36 | 36.0434 | 113.8680 | 3:00/3:01 | 30 m | 100 m | 16 day |
Landsat-9 | 2 April 2022 | 124 | 35/36 | 36.0432 | 113.8304 | 3:00/3:01 | 30 m | 100 m | 16 day |
Dates | CNR4/°C | 100 mLST/°C | 30 mLST/°C | Image Correlation Coefficient |
---|---|---|---|---|
28 November 2019 | 8.191 | 10.548 | 10.614 | 0.993 |
30 December 2019 | 5.291 | 7.456 | 5.995 | 0.989 |
31 January 2020 | 8.643 | 11.798 | 12.028 | 0.995 |
16 February 2020 | 8.259 | 12.594 | 11.363 | 0.993 |
19 March 2020 | 17.814 | 19.923 | 18.648 | 0.994 |
4 April 2020 | 20.454 | 19.899 | 22.052 | 0.882 |
1 January 2021 | 6.517 | 8.773 | 8.855 | 0.975 |
17 January 2021 | 6.906 | 8.681 | 8.274 | 0.975 |
2 February 2021 | 9.653 | 10.817 | 11.832 | 0.989 |
22 March 2021 | 16.072 | 18.277 | 17.292 | 0.986 |
17 November 2021 | 16.507 | 18.055 | 17.857 | 0.663 |
3 December 2021 | 15.527 | 18.328 | 18.556 | 0.652 |
27 December 2021 | 4.308 | 6.819 | 6.427 | 0.968 |
1 March 2022 | 12.156 | 14.688 | 14.156 | 0.543 |
2 April 2022 | 18.083 | 20.149 | 19.663 | 0.737 |
Dates | 100 mET/mm | 30 mET/mm | EC/mm |
---|---|---|---|
28 November 2019 | 1.072 | 1.071 | 0.862 |
30 December 2019 | 1.002 | 0.988 | 1.138 |
31 January 2020 | 1.307 | 1.306 | 1.150 |
16 February 2020 | 1.744 | 1.751 | 1.761 |
19 March 2020 | 2.657 | 2.713 | 4.732 |
4 April 2020 | 3.258 | 3.281 | 3.289 |
1 January 2021 | 1.072 | 1.073 | 0.972 |
17 January 2021 | 1.200 | 1.204 | 1.158 |
2 February 2021 | 1.506 | 1.501 | 1.504 |
22 March 2021 | 2.752 | 2.772 | 3.342 |
17 November 2021 | 1.295 | 1.275 | 1.064 |
3 December 2021 | 1.109 | 1.110 | 1.129 |
27 December 2021 | 1.052 | 1.043 | 0.935 |
1 March 2022 | 2.289 | 2.281 | 2.254 |
2 April 2022 | 3.241 | 3.231 | 3.275 |
Impact Factor | R | Direct Path Coefficient | Indirect Path Coefficient | Total | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ta | RH | E | WS | Rn | Soil-T | Soil-VWC | LST | ||||
Ta | 0.667 | 0.586 | — | −0.233 | 0.489 | −0.004 | 0.472 | 0.568 | −0.389 | 0.562 | 1.467 |
RH | −0.566 | −0.058 | 0.023 | — | −0.003 | 0.007 | 0.029 | 0.021 | −0.011 | 0.026 | 0.093 |
E | 0.465 | −0.080 | −0.067 | −0.004 | — | 0.011 | −0.053 | −0.068 | 0.054 | −0.067 | −0.194 |
WS | 0.083 | 0.143 | −0.001 | −0.017 | −0.019 | — | −0.015 | −0.009 | 0.013 | −0.011 | −0.060 |
Rn | 0.869 | 0.992 | 0.800 | −0.502 | 0.654 | −0.105 | — | 0.829 | −0.631 | 0.882 | 1.926 |
Soil-VWC | −0.530 | −0.194 | 0.129 | −0.036 | 0.130 | −0.018 | 0.123 | 0.144 | — | 0.129 | 0.602 |
LST | 0.736 | 0.184 | 0.176 | −0.081 | 0.155 | −0.014 | 0.164 | 0.177 | −0.123 | — | 0.453 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Li, S.; Wang, J.; Chen, Z. Estimation of Evapotranspiration from the People’s Victory Irrigation District Based on the Data Mining Sharpener Model. Agronomy 2023, 13, 3082. https://doi.org/10.3390/agronomy13123082
Zhang J, Li S, Wang J, Chen Z. Estimation of Evapotranspiration from the People’s Victory Irrigation District Based on the Data Mining Sharpener Model. Agronomy. 2023; 13(12):3082. https://doi.org/10.3390/agronomy13123082
Chicago/Turabian StyleZhang, Jie, Shenglin Li, Jinglei Wang, and Zhifang Chen. 2023. "Estimation of Evapotranspiration from the People’s Victory Irrigation District Based on the Data Mining Sharpener Model" Agronomy 13, no. 12: 3082. https://doi.org/10.3390/agronomy13123082