Effects of Arbuscular Mycorrhizal Fungi on Leaf N: P: K Stoichiometry in Agroecosystem
Abstract
:1. Introduction
2. Materials and Methods
2.1. Establishment of Database
2.2. The Meta-Analysis of Effect Size
2.3. Statistical Analysis
3. Results
3.1. AMF Effects on Leaf Nutrients and Their Stoichiometry
3.2. AMF Identity Effects on Leaf Nutrients and Their Stoichiometry
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bihari, B.; Singh, Y.K.; Shambhavi, S.; Mandal, J.; Kumar, S.; Kumar, R. Nutrient use efficiency indices of N, P, and K under rice-wheat cropping system in LTFE after 34th crop cycle. J. Plant Nutr. 2021, 45, 123–140. [Google Scholar] [CrossRef]
- Zuluaga, D.L.; Sonnante, G. The Use of Nitrogen and Its Regulation in Cereals: Structural Genes, Transcription Factors, and the Role of miRNAs. Plants 2019, 8, 294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, J.; Yan, Q.L.; Yuan, J.F.; Li, R.; Lu, X.T.; Liu, S.L.; Zhu, J.J. Temporal effects of thinning on the leaf C:N: P stoichiometry of regenerated broad leaved trees in larch plantations. Forests 2020, 11, 54. [Google Scholar] [CrossRef] [Green Version]
- Hessen, D.O.; Elser, J.J.; Sterner, R.W.; Urabe, J. Ecological stoichiometry: An elementary approach using basic principles. Limnol. Oceanogr. 2013, 58, 2219–2236. [Google Scholar] [CrossRef]
- Sterner, R.W.; Elser, J.J. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere; Princeton University Press: Princeton, NJ, USA, 2002; pp. 225–226. [Google Scholar]
- Elser, J.J.; Bracken, M.E.S.; Cleland, E.E.; Gruner, D.S.; Harpole, W.S.; Hillebrand, H.; Ngai, J.T.; Seabloom, E.W.; Shurin, J.B.; Smith, J.E. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 2007, 10, 1135–1142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arba, M.; Falisse, A.; Choukr-Allah, R.; Sindic, M. Effects of nitrogen and phosphorus fertilization on fruit yield and quality of cactus pear Opuntia ficus-indica (L. ) Mill. Fruits 2017, 72, 212–220. [Google Scholar] [CrossRef]
- Thamrin, M.; Susanto, S.; Susila, A.D.; Suta, D.A. Correlation between nitrogen, phosphorus and potassium leaf nutrient with fruit production of Pummelo citrus (Citrus maxima). Asian J. Appl. Sci. 2014, 7, 129–139. [Google Scholar] [CrossRef] [Green Version]
- Olivos, A.; Johnson, S.; Qin, X.Q.; Carlos, C.H. Fruit phosphorous and nitrogen deficiencies affect ‘Grand Pearl’ nectarine flesh browning. Hortscience 2012, 47, 391–394. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Z.Y.; Chen, H.Y.H. Negative effects of fertilization on plant nutrient resorption. Ecology 2015, 96, 373–380. [Google Scholar] [CrossRef]
- Güsewell, S. N:P ratios in terrestrial plants: Variation and functional significance. New Phytol. 2004, 164, 243–266. [Google Scholar] [CrossRef]
- Wright, I.J.; Reich, P.B.; Westoby, M.; Ackerly, D.D.; Baruch, Z.; Bongers, F.; Cavender-Bares, J.; Chapin, T.; Cornelissen, J.H.C.; Diemer, M.; et al. The worldwide leaf economics spectrum. Nature 2004, 428, 821–827. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Stagg, C.L.; Cai, Y.; Lü, X.; Wang, X.; Shen, R.; Lan, Z. Scaling responses of leaf nutrient stoichiometry to the lakeshore flooding duration gradient across different organizational levels. Sci. Total. Environ. 2020, 740, 139740. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Liu, B.; You, Y.; Li, W.; Liu, M.; Shang, H.; He, J.-S. Solar radiation regulates the leaf nitrogen and phosphorus stoichiometry across alpine meadows of the Tibetan Plateau. Agric. For. Meteorol. 2019, 271, 92–101. [Google Scholar] [CrossRef]
- Yang, D.; Song, L.; Jin, G. The soil C:N:P stoichiometry is more sensitive than the leaf C:N:P stoichiometry to nitrogen addition: A four-year nitrogen addition experiment in a Pinus koraiensis plantation. Plant Soil 2019, 442, 183–198. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, M.; Wen, Y.; Tong, R.; Wang, G.; Wu, Q.; Li, Y.; Wu, T. The effects of stand age on leaf N:P cannot be neglected: A global synthesis. For. Ecol. Manag. 2022, 518, 120294. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, B.; Yue, Z.; Zeng, F.; Li, X.; Li, L. Effects of short-term nitrogen and phosphorus addition on leaf stoichiometry of a dominant alpine grass. Peerj 2021, 9, e12611. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, X.; He, N.; Pan, X.; Long, S.; Li, W.; Zhang, M.; Cui, L. Global patterns in leaf stoichiometry across coastal wetlands. Glob. Ecol. Biogeogr. 2021, 30, 852–869. [Google Scholar] [CrossRef]
- Yuan, Z.Y.; Chen, H.Y.H. Decoupling of nitrogen and phosphorus in terrestrial plants associated with global changes. Nat. Clim. Chang. 2015, 5, 465–469. [Google Scholar] [CrossRef]
- Shi, L.; Li, Q.; Fu, X.; Kou, L.; Dai, X.; Wang, H. Foliar, root and rhizospheric soil C:N:P stoichiometries of overstory and understory species in subtropical plantations. Catena 2020, 198, 105020. [Google Scholar] [CrossRef]
- Li, X.; Bi, Y.; Du, S.; Wang, Y.; Chen, G.; Christie, P. Response of Ecological Stoichiometry and Stoichiometric Homeostasis in the Plant-Litter-Soil System to Re-Vegetation Type in Arid Mining Subsidence Areas. J. Arid. Environ. 2021, 184, 104298. [Google Scholar]
- Su, H.; Wu, Y.; Xia, W.; Yang, L.; Chen, J.; Han, W.; Fang, J.; Xie, P. Stoichiometric mechanisms of regime shifts in freshwater ecosystem. Water Res. 2018, 149, 302–310. [Google Scholar] [CrossRef] [PubMed]
- Bakhshandeh, S.; Corneo, P.E.; Mariotte, P.; Kertesz, M.A.; Dijkstra, F.A. Effect of crop rotation on mycorrhizal colonization and wheat yield under different fertilizer treatments. Agric. Ecosyst. Environ. 2017, 247, 130–136. [Google Scholar] [CrossRef]
- Kikuta, M.; Makihara, D.; Arita, N.; Miyazaki, A.; Yamamoto, Y. Growth and yield responses of upland NERICAs to variable water management under field conditions. Plant Prod. Sci. 2016, 20, 36–46. [Google Scholar] [CrossRef]
- Sadras, V.; Rodriguez, D. Modelling the nitrogen-driven trade-off between nitrogen utilisation efficiency and water use efficiency of wheat in eastern Australia. Field Crop. Res. 2010, 118, 297–305. [Google Scholar] [CrossRef]
- Ali, A.; Ghani, M.I.; Ding, H.; Fan, Y.; Cheng, Z.; Iqbal, M. Co-Amended Synergistic Interactions between Arbuscular Mycorrhizal Fungi and the Organic Substrate-Induced Cucumber Yield and Fruit Quality Associated with the Regulation of the AM-Fungal Community Structure under Anthropogenic Cultivated Soil. Int. J. Mol. Sci. 2019, 20, 1539. [Google Scholar] [CrossRef] [Green Version]
- Abd_Allah, E.F.; Hashem, A.; Alqarawi, A.A.; Bahkali, A.H.; Alwhibi, M.S. Enhancing growth performance and systemic acquired resistance of medicinal plant Sesbania sesban (L.) Merr using arbuscular mycorrhizal fungi under salt stress. Saudi J. Biol. Sci. 2015, 22, 274–283. [Google Scholar] [CrossRef]
- Bonfante, P. The future has roots in the past: The ideas and scientists that shaped mycorrhizal research. New Phytol. 2018, 220, 982–995. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.-J.; Yang, Y.-J.; Liu, C.-Y.; Zhang, F.; Hu, W.; Gong, S.-B.; Wu, Q.-S. Auxin modulates root-hair growth through its signaling pathway in citrus. Sci. Hortic. 2018, 236, 73–78. [Google Scholar] [CrossRef]
- Rillig, M.C.; Aguilar-Trigueros, C.A.; Camenzind, T.; Cavagnaro, T.R.; Degrune, F.; Hohmann, P.; Lammel, D.R.; Mansour, I.; Roy, J.; van der Heijden, M.G.A.; et al. Why farmers should manage the arbuscular mycorrhizal symbiosis. New Phytol. 2019, 222, 1171–1175. [Google Scholar] [CrossRef] [Green Version]
- Ryan, M.H.; Graham, J.H. Little evidence that farmers should consider abundance or diversity of arbuscular mycorrhizal fungi when managing crops. New Phytol. 2018, 220, 1092–1107. [Google Scholar] [CrossRef] [Green Version]
- Karagiannidis, N.; Bletsos, F.; Stavropoulos, N. Effect of Verticillium wilt (Verticillium dahliae Kleb.) and mycorrhiza (Glomus mosseae) on root colonization, growth and nutrient uptake in tomato and eggplant seedlings. Sci. Hortic. 2002, 94, 145–156. [Google Scholar] [CrossRef]
- Evelin, H.; Kapoor, R.; Giri, B. Arbuscular mycorrhizal fungi in alleviation of salt stress: A review. Ann. Bot. 2009, 104, 1263–1280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, S.; Shi, Z.; Chen, X.; Gao, J.; Wang, X. Arbuscular mycorrhizal fungi increase crop yields by improving biomass under rainfed condition: A meta-analysis. Peerj 2022, 10, e12861. [Google Scholar] [CrossRef] [PubMed]
- Wright, S.F.; Franke-Snyder, M.; Morton, J.B.; Upadhyaya, A. Time-course study and partial characterization of a protein on hyphae of arbuscular mycorrhizal fungi during active colonization of roots. Plant Soil 1996, 181, 193–203. [Google Scholar] [CrossRef]
- He, S.; Long, M.; He, X.; Guo, L.; Yang, J.; Yang, P.; Hu, T. Arbuscular mycorrhizal fungi and water availability affect biomass and C:N:P ecological stoichiometry in alfalfa (Medicago sativa L.) during regrowth. Acta Physiol. Plant. 2017, 39, 199. [Google Scholar] [CrossRef]
- Smith, L.T.; Allaith, A.A.; Smith, G.M. Nutrient Transport in Mycorrhizas: Structure, Physiology and Consequences for Efficiency of the Symbiosis. Plant Soil 1994, 161, 103–113. [Google Scholar] [CrossRef]
- Cozzolino, V.; Pigna, M.; Di Meo, V.; Caporale, A.; Violante, A. Effects of arbuscular mycorrhizal inoculation and phosphorus supply on the growth of Lactuca sativa L. and arsenic and phosphorus availability in an arsenic polluted soil under non-sterile conditions. Appl. Soil Ecol. 2010, 45, 262–268. [Google Scholar] [CrossRef] [Green Version]
- Giovannetti, M.; Tolosano, M.; Volpe, V.; Kopriva, S.; Bonfante, P. Identification and Functional Characterization of a Sulfate Transporter Induced by Both Sulfur Starvation and Mycorrhiza Formation in Lotus Japonicus. New Phytol. 2015, 204, 609–619. [Google Scholar] [CrossRef]
- Wu, Q.-S.; He, J.-D.; Srivastava, A.K.; Zhang, F.; Zou, Y.-N. Development of propagation technique of indigenous AMF and their inoculation response in citrus. Indian J. Agric. Sci. 2019, 89, 130–134. [Google Scholar] [CrossRef]
- Jansa, J.; Smith, F.; Smith, S.E. Are There Benefits of Simultaneous Root Colonization by Different Arbuscular Mycorrhizal Fungi? New Phytol. 2008, 177, 779–789. [Google Scholar] [CrossRef]
- da Silva, I.R.; da Silva, D.; de Souza, F.; Oehl, F.; Maia, L.C. Changes in Arbuscular Mycorrhizal Fungal Communities Along a River Delta Island in Northeastern Brazil. Acta Oecologica-Int. J. Ecol. 2017, 79, 798–817. [Google Scholar] [CrossRef]
- Crossay, T.; Majorel, C.; Redecker, D.; Gensous, S.; Medevielle, V.; Durrieu, G.; Cavaloc, Y.; Amir, H. Is a Mixture of Arbuscular Mycorrhizal Fungi Better for Plant Growth Than Single-Species Inoculants? Mycorrhiza 2019, 29, 325–339. [Google Scholar] [CrossRef] [PubMed]
- Rocha, I.; Duarte, I.; Ma, Y.; Souza-Alonso, P.; Látr, A.; Vosátka, M.; Freitas, H.; Rui, S. Oliveira. Seed Coating with Arbuscular Mycorrhizal Fungi for Improved Field Production of Chickpea. Agronomy 2019, 9, 471. [Google Scholar] [CrossRef] [Green Version]
- Koch, A.M.; Antunes, P.M.; Klironomos, J.N. Diversity Effects on Productivity Are Stronger within than between Trophic Groups in the Arbuscular Mycorrhizal Symbiosis. PLoS ONE 2012, 7, e36950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janoušková, M.; Seddas, P.; Mrnka, L.; Van Tuinen, D.; Dvořáčková, A.; Tollot, M.; Gianinazzi-Pearson, V.; Vosátka, M.; Gollotte, A. Development and activity of Glomus intraradices as affected by co-existence with Glomus claroideum in one root system. Mycorrhiza 2009, 19, 393–402. [Google Scholar] [CrossRef] [PubMed]
- Tavasolee, A.; Aliasgharzad, N.; SalehiJouzani, G.; Mardi, M.; Asgharzadeh, A. Interactive Effects of Arbuscular Mycorrhizal Fungi and Rhizobial Strains on Chickpea Growth and Nutrient Content in Plant. Afr. J. Biotechnol. 2011, 10, 7585–7591. [Google Scholar]
- Sharma, D.; Kayang, H. Effects of arbuscular mycorrhizal fungi (amf) on Camellia sinensis (L.) o. kuntze under greenhouse conditions. J. Exp. Biol. Agric. Sci. 2017, 5, 235–241. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, S.; Bücking, H. Arbuscular mycorrhizal growth responses are fungal specific but do not differ between soybean genotypes with different phosphate efficiency. Ann. Bot. 2016, 118, 11–21. [Google Scholar] [CrossRef] [Green Version]
- Pandey, R.; Garg, N. High effectiveness of Rhizophagus irregularis is linked to superior modulation of antioxidant defence mechanisms in Cajanus cajan (L.) Millsp. genotypes grown under salinity stress. Mycorrhiza 2017, 27, 669–682. [Google Scholar] [CrossRef]
- Di Martino, C.; Palumbo, G.; Vitullo, D.; Di Santo, P.; Fuggi, A. Regulation of mycorrhiza development in durum wheat by P fertilization: Effect on plant nitrogen metabolism. J. Plant Nutr. Soil Sci. 2018, 181, 429–440. [Google Scholar] [CrossRef]
- Ma, J.; Wang, W.; Yang, J.; Qin, S.; Yang, Y.; Sun, C.; Pei, G.; Zeeshan, M.; Liao, H.; Liu, L.; et al. Mycorrhizal symbiosis promotes the nutrient content accumulation and affects the root exudates in maize. BMC Plant Biol. 2022, 22, 64. [Google Scholar] [CrossRef]
- Gómez-Bellot, M.J.; Lorente, B.; Nortes, P.; Ortuño, M.; Sánchez-Blanco, M.; Alarcón, J.J. Effect of Mixed Substrate with Different Mycorrhizal Fungi Concentrations on the Physiological and Productive Response of Three Varieties of Tomato. Sci. Hortic. 2021, 283, 110040. [Google Scholar] [CrossRef]
- Kaya, C.; Ashraf, M.; Sonmez, O.; Aydemir, S.; Tuna, A.L.; Cullu, M.A. The influence of arbuscular mycorrhizal colonisation on key growth parameters and fruit yield of pepper plants grown at high salinity. Sci. Hortic. 2009, 121, 1–6. [Google Scholar] [CrossRef]
- Zhang, S.; Lehmann, A.; Zheng, W.; You, Z.; Rillig, M.C. Arbuscular mycorrhizal fungi increase grain yields: A meta-analysis. New Phytol. 2018, 222, 543–555. [Google Scholar] [CrossRef]
- Hoeksema, J.D.; Chaudhary, V.B.; Gehring, C.A.; Johnson, N.C.; Karst, J.; Koide, R.; Pringle, A.; Zabinski, C.; Bever, J.D.; Moore, J.C.; et al. A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol. Lett. 2010, 13, 394–407. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekaran, M. Arbuscular Mycorrhizal Fungi Mediated Enhanced Biomass, Root Morphological Traits and Nutrient Uptake under Drought Stress: A Meta-Analysis. J. Fungi 2022, 8, 660. [Google Scholar] [CrossRef]
- Cooper, H.; Hedges, L.V.; Valentine, J.C. The Handbook of Research Synthesis and Meta-Analysis; Russell Sage Foundation: New York, NY, USA, 2009. [Google Scholar]
- Viechtbauer, W. Conducting Meta-Analyses in R with the Metafor Package. J. Stat. Softw. 2010, 36, 1–48. [Google Scholar] [CrossRef] [Green Version]
- Shi, Z.Y.; Xu, S.X.; Yang, M.; Zhang, M.G.; Lu, S.C.; Chang, H.Q.; Wang, X.G.; Chen, X.N. Leaf Nitrogen and Phosphorus Stoichiometry are Closely Linked with Mycorrhizal Type Traits of Legume Species. Legum. Res.-Int. J. 2020, 44, 81–87. [Google Scholar] [CrossRef]
- Rubio-Sanz, L.; Jaizme-Vega, M.C. Mycorrhization of Moringa oleifera Improves Growth and Nutrient Accumulation in Leaves. J. Plant Nutr. 2022, 45, 1765–1773. [Google Scholar] [CrossRef]
- Smith, S.E.; Read, D.J. The Symbionts Forming Arbuscular Mycorrhizas. In In Mycorrhizal Symbiosis; Smith, E.S., Read, D.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 13–41. [Google Scholar]
- Berta, G.; Trotta, A.; Fusconi, A.; Hooker, J.E.; Munro, M.; Atkinson, D.; Giovannetti, M.; Morini, S.; Fortuna, P.; Tisserant, B.; et al. Arbuscular mycorrhizal induced changes to plant growth and root system morphology in Prunus cerasifera. Tree Physiol. 1995, 15, 281–293. [Google Scholar] [CrossRef]
- Lozano, J.M.R.; Azcón, R. Symbiotic efficiency and infectivity of an autochthonous arbuscular mycorrhizal Glomus sp. from saline soils and Glomus deserticola under salinity. Mycorrhiza 2000, 10, 137–143. [Google Scholar] [CrossRef]
- Wang, J.; Zhai, L.; Ma, J.; Zhang, J.; Wang, G.G.; Liu, X.; Zhang, S.; Song, J.; Wu, Y. Comparative physiological mechanisms of arbuscular mycorrhizal fungi in mitigating salt-induced adverse effects on leaves and roots of Zelkova serrata. Mycorrhiza 2020, 30, 341–355. [Google Scholar] [CrossRef] [PubMed]
- Cleveland, C.C.; Townsend, A.R.; Taylor, P.; Alvarez-Clare, S.; Bustamante, M.M.C.; Chuyong, G.; Dobrowski, S.Z.; Grierson, P.; Harms, K.E.; Houlton, B.Z.; et al. Relationships among net primary productivity, nutrients and climate in tropical rain forest: A pan-tropical analysis. Ecol. Lett. 2011, 14, 939–947. [Google Scholar] [CrossRef] [PubMed]
- Propster, J.R.; Johnson, N.C. Uncoupling the effects of phosphorus and precipitation on arbuscular mycorrhizas in the Serengeti. Plant Soil 2015, 388, 21–34. [Google Scholar] [CrossRef]
- Jin, J.; Tang, C.; Sale, P. The impact of elevated carbon dioxide on the phosphorus nutrition of plants: A review. Ann. Bot. 2015, 116, 987–999. [Google Scholar] [CrossRef] [Green Version]
- Lekberg, Y.; Koide, R.T. Is plant performance limited by abundance of arbuscular mycorrhizal fungi? A meta-analysis of studies published between 1988 and 2003. New Phytol. 2005, 168, 189–204. [Google Scholar] [CrossRef]
- Ferrol, N.; Azcón-Aguilar, C.; Pérez-Tienda, J. Review: Arbuscular mycorrhizas as key players in sustainable plant phosphorus acquisition: An overview on the mechanisms involved. Plant Sci. 2019, 280, 441–447. [Google Scholar] [CrossRef] [Green Version]
- Khalil, H.A.; Eissa, A.M.; El-Shazly, S.M.; Nasr, A.M.A. Improved growth of salinity-stressed citrus after inoculation with mycorrhizal fungi. Sci. Hortic. 2011, 130, 624–632. [Google Scholar] [CrossRef]
- Sharma, S.D.; Kumar, P.; Bhardwaj, S.K. Screening of AM fungi and Azotobacter chroococcum under natural, solarization, chemical sterilization and moisture conservation practices for commercial mango nursery production in north-west Himalayas. Sci. Hortic. 2011, 128, 506–514. [Google Scholar] [CrossRef]
- Johnson, N.C.; Graham, J.H. The continuum concept remains a useful framework for studying mycorrhizal functioning. Plant Soil 2012, 363, 411–419. [Google Scholar] [CrossRef]
- Chen, W.; Meng, P.P.; Feng, H.; Wang, C.Y. Effects of Arbuscular Mycorrhizal Fungi on Growth and Physiological Performance of Catalpa Bungei Camey. Under Drought Stress. Forests 2020, 11, 1117. [Google Scholar] [CrossRef]
- Wu, H.-H.; Zou, Y.-N.; Rahman, M.M.; Ni, Q.-D.; Wu, Q.-S. Mycorrhizas alter sucrose and proline metabolism in trifoliate orange exposed to drought stress. Sci. Rep. 2017, 7, 42389. [Google Scholar] [CrossRef]
- Šmilauer, P.; Šmilauerová, M.; Kotilínek, M.; Košnar, J. Foraging speed and precision of arbuscular mycorrhizal fungi under field conditions: An experimental approach. Mol. Ecol. 2020, 29, 1574–1587. [Google Scholar] [CrossRef] [PubMed]
- Hart, M.M.; Reader, R.J. Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. New Phytol. 2002, 153, 335–344. [Google Scholar] [CrossRef] [Green Version]
- Hart, M.M.; Klironomos, J.N. Colonization of roots by arbuscular mycorrhizal fungi using different sources of inoculum. Mycorrhiza 2002, 12, 181–184. [Google Scholar] [CrossRef] [PubMed]
- Brundrett, M.C.; Abbott, L.K.; Jasper, D.A. Glomalean Mycorrhizal Fungi from Tropical Australia I. Comparison of the Effectiveness and Specificity of Different Isolation Procedures. Mycorrhiza 1999, 8, 305–314. [Google Scholar] [CrossRef]
- Chagnon, P.-L.; Bradley, R.L.; Maherali, H.; Klironomos, J.N. A trait-based framework to understand life history of mycorrhizal fungi. Trends Plant Sci. 2013, 18, 484–491. [Google Scholar] [CrossRef] [PubMed]
- Maherali, H.; Klironomos, J.N. Influence of Phylogeny on Fungal Community Assembly and Ecosystem Functioning. Science 2007, 316, 1746–1748. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Zhang, Q.; Koide, R.T.; Hoeksema, J.D.; Tang, J.; Bian, X.; Hu, S.; Chen, X. Taxonomic resolution is a determinant of biodiversity effects in arbuscular mycorrhizal fungal communities. J. Ecol. 2016, 105, 219–228. [Google Scholar] [CrossRef]
- Helgason, T.; Merryweather, J.W.; Denison, J.; Wilson, P.; Young, J.P.W.; Fitter, A.H. Selectivity and functional diversity in arbuscular mycorrhizas of co-occurring fungi and plants from a temperate deciduous woodland. J. Ecol. 2002, 90, 371–384. [Google Scholar] [CrossRef] [Green Version]
- Belay, Z.; Vestberg, M.; Assefa, F. Diversity and Abundance of Arbuscular Mycorrhizal Fungi Associated with Acacia Trees from Different Land Use Systems in Ethiopia. Afr. J. Microbiol. Res. 2013, 7, 5503–5515. [Google Scholar]
- Bainard, L.D.; Bainard, J.D.; Hamel, C.; Gan, Y. Spatial and temporal structuring of arbuscular mycorrhizal communities is differentially influenced by abiotic factors and host crop in a semi-arid prairie agroecosystem. FEMS Microbiol. Ecol. 2014, 88, 333–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hao, Z.; Xie, W.; Jiang, X.; Wu, Z.; Zhang, X.; Chen, B. Arbuscular Mycorrhizal Fungus Improves Rhizobium–Glycyrrhiza Seedling Symbiosis under Drought Stress. Agronomy 2019, 9, 572. [Google Scholar] [CrossRef]
- Hontoria, C.; García-González, I.; Quemada, M.; Roldán, A.; Alguacil, M. The cover crop determines the AMF community composition in soil and in roots of maize after a ten-year continuous crop rotation. Sci. Total. Environ. 2019, 660, 913–922. [Google Scholar] [CrossRef] [PubMed]
- Dodd, J.C.; Boddington, C.L.; Rodríguez, A.; Gonzalez-Chavez, C.; Mansur, I. Mycelium of Arbuscular Mycorrhizal fungi (AMF) from different genera: Form, function and detection. Plant Soil 2000, 226, 131–151. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, S.; Shi, Z.; Huang, M.; Li, Y.; Gao, J. Effects of Arbuscular Mycorrhizal Fungi on Leaf N: P: K Stoichiometry in Agroecosystem. Agronomy 2023, 13, 358. https://doi.org/10.3390/agronomy13020358
Wu S, Shi Z, Huang M, Li Y, Gao J. Effects of Arbuscular Mycorrhizal Fungi on Leaf N: P: K Stoichiometry in Agroecosystem. Agronomy. 2023; 13(2):358. https://doi.org/10.3390/agronomy13020358
Chicago/Turabian StyleWu, Shanwei, Zhaoyong Shi, Ming Huang, Youjun Li, and Jiakai Gao. 2023. "Effects of Arbuscular Mycorrhizal Fungi on Leaf N: P: K Stoichiometry in Agroecosystem" Agronomy 13, no. 2: 358. https://doi.org/10.3390/agronomy13020358
APA StyleWu, S., Shi, Z., Huang, M., Li, Y., & Gao, J. (2023). Effects of Arbuscular Mycorrhizal Fungi on Leaf N: P: K Stoichiometry in Agroecosystem. Agronomy, 13(2), 358. https://doi.org/10.3390/agronomy13020358