Estimation of Maize Yield and Protein Content under Different Density and N Rate Conditions Based on UAV Multi-Spectral Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Crop Management and Experimental Design
2.3. Observations and Measurements
2.3.1. Grain Yield
2.3.2. Grain Protein Content
2.3.3. Multi-Spectral Data Acquisition
2.4. Statistical Analysis
3. Results
3.1. Change in Vegetation Index
3.2. PCA of Vegetation Index of Different Treatments of Reduced Nitrogen Application at Different Densities
3.3. Comprehensive Score of Different Treatments of Reduced Nitrogen Application at Different Densities
3.4. Correlation and Model Construction between Vegetation Index and Grain Yield and Protein Content
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guo, P.H. Analysis on the development of China’s maize processing industry. Chin. Rural Econ. 2007, 7, 16–22. [Google Scholar]
- Hua, H.L.; Bian, Y.L.; Li, G.S.; Liu, D.L. Effects of density and nitrogen application on Yield and quality of Silage Maize. J. Shanghai Agric. 2014, 30, 81–84. [Google Scholar]
- Mann, C. Crop Scientists Seek a New Revolution. Science 1999, 283, 310. [Google Scholar] [CrossRef]
- Chen, G.P.; Liu, J.G.; Li, C.H.; Dong, S.T.; Li, S.K.; Yang, Q.F.; Liu, Y.H.; Wang, L.C.; Xue, J.Q.; Liu, J.G.; et al. Distribution, yield composition and key technologies of super high yield maize fields in China in recent years. Crop J. 2012, 38, 80–85. [Google Scholar]
- Testa, G.; Reyneri, A.; Cardinale, F.; Blandino, M. Grain Yield Enhancement through Fungicide Application on Maize Hybrids with Different Susceptibility to Northern Maize Leaf Blight. Cereal Resal Res Com. 2015, 43, 415–425. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.J. Analysis and Study on the impact of the development of agricultural chemical fertilizer industry on ecological environment. J. Environ. Sci. Manag. 2020, 45, 177–180. [Google Scholar]
- Xue, Z.C.; Gao, H.Y.; Peng, T.; Yao, G. Application of spectral analysis in plant physiological and ecological research. Plant Physiol. J. 2011, 47, 313–320. [Google Scholar]
- Xu, X.G.; Zhao, C.J.; Wang, J.H.; Huang, W.J.; Li, C.J.; Liu, H.J. Study on the relationship between characteristic parameters of new spectral curve and chlorophyll content of rice. Spectr. Spectr. Analys. 2011, 31, 188–191. [Google Scholar]
- Wang, Y.D.; Zhao, M.Q.; Fu, B.; Yue, H. Identification of flue-cured tobacco varieties based on visible-near infrared spectroscopy. Shandong Agric. Sci. 2016, 48, 119–124. [Google Scholar]
- Lu, N.; Wang, W.H.; Zhang, Q.F.; Li, D.; Yao, X.; Tian, Y.C.; Zhu, Y.; Cao, W.; Baret, R.; Liu, S.Y. Estimation of Nitrogen Nutrition Status in Winter Wheat From Unmanned Aerial Vehicle Based Multi-Angular Multispectral Imagery. Front. Plant Sci. 2019, 10, 1601. [Google Scholar] [CrossRef] [Green Version]
- Xu, R.; Li, C.Y.; Paterson, A.H. Multispectral imaging and unmanned aerial systems for cotton plant phenotyping. PLoS ONE 2019, 14, 11–17. [Google Scholar] [CrossRef] [Green Version]
- Duan, B. Rice Growth Parameters Extraction and Yield Estimation Based on UAV Multispectral Images; WuHan University: Wuhan, China, 2021. [Google Scholar]
- Wang, D.; Wang, K.; Wu, J.Z.; Han, P. Research progress in nondestructive rapid measurement of seed quality based on spectrum and imaging technology. Spectr. Spectr. Analys. 2021, 41, 52–59. [Google Scholar]
- Royoc Aparicio, N.; Villegas, D.; Casadesus, J.; Monneveux, P.; Araus, J.L. Usefulness of spectral reflectance indices as durum wheat yield predictors under contrasting Mediterranean conditions. Int. J. Remote Sens. 2003, 24, 4403–4419. [Google Scholar]
- Jing, Y.H.; Guo, Y.; Zhang, H.F.; Rong, Y.S.; Zhang, S.H.; Feng, W.; Wang, L.G.; He, J.; Liu, H.J.; Zheng, G.Q. Effect of UAV flying height on prediction model of nitrogen accumulation in winter wheat plants. Henan Agric. Sci. 2022, 51, 147–158. [Google Scholar]
- Mao, Z.H.; Deng, L.; Sun, J.; Zhang, A.W.; Chen, X.Y.; Zhao, Y. Application of UAV multispectral remote sensing in chlorophyll prediction of Maize Canopy. Spectr. Spectr. Analys. 2018, 38, 2923–2931. [Google Scholar]
- Qi, B.; Zhang, N.; Zhao, T.J.; Xing, G.N.; Zhao, J.M.; Gai, J.Y. Estimation of leaf area index of soybean breeding materials by Hyperspectral technique. Crop J. 2015, 41, 1073–1085. [Google Scholar]
- Xue, L.H.; Cao, W.X.; Luo, W.H. Rice yield prediction model based on canopy reflectance spectrum. J. Remote Sens. 2005, 1, 100–105. [Google Scholar]
- Tang, Y.L.; Huang, J.F.; Wang, R.C. Estimation of crude protein and starch content in rice by hyperspectral method. Chin. Agric. Sci. 2004, 9, 1282–1287. [Google Scholar]
- Liu, L.Y.; Wang, J.H.; Huang, W.J. The new spectral index was used to improve the precision of winter wheat yield estimation. J. Agric. Eng. 2004, 20, 172–175. [Google Scholar]
- Chang, X.Y.; Chang, Q.R.; Wang, X.F.; Chu, D.; Guo, R.X. Estimation of Chlorophyll Content in Maize Based on UAV Hyperspectral Image. Agric. Res. Arid Areas. 2019, 37, 66–73. [Google Scholar]
- Cao, X.R.; Zhou, Y.L.; Duan, X.Y.; Cheng, D.F. Hyperspectral remote sensing was used to estimate the effect of powdery mildew on wheat yield and protein content. J. Plant Prot. 2009, 36, 32–36. [Google Scholar]
- Reyniers, M.; Vrindts, E.; De Baerdemaeker, J. Comparison of an aerial based system and an on the ground continuous measuring device to predict yield of winter wheat. Eur. Agric. Sci. 2006, 24, 87–94. [Google Scholar] [CrossRef]
- Wang, Z.J.; Wang, J.H.; Liu, L.Y.; Huang, W.J.; Zhao, C.J.; Wang, C.Z. Prediction of grain protein content in winter wheat using plant pigment ratio (PPR). Field Crop Res. 2004, 90, 311–321. [Google Scholar] [CrossRef]
- Liu, L.Y.; Wang, J.J.; Bao, Y.S.; Huang, W.J.; Ma, Z.H.; Zhao, C.J. Predicting winter wheat condition, grain yield and protein content using multi-temporal EnviSat-ASAR and Landsat TM satellite images. Intern. J. Remote Sens. 2006, 27, 737–753. [Google Scholar] [CrossRef]
- Ci, D.W.; Jiang, D.; Dai, T.B.; Jing, Q.; Cao, W.X. Variation in cadmium tolerance and accumulation and their relationship in wheat recombinant inbred lines at seedling stage. Biol. Trace Elem. Res. 2011, 142–143. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, X.; Gao, S.R.; Zhai, H.Y.; Wu, S.Y.; Sun, P.; Zhang, X.L.; Liu, H.Y. Analysis of Drought Resistance of 80 Maize Inbred Lines at Germination Stage Based on the Method of subordinate function. Mol. Plant Breed. 2022, 1–9. [Google Scholar]
- Zhou, G.S.; Mei, F.Z.; Zhou, Z.Q.; Zhu, X.T. Comprehensive Evaluation and Prediction of Physiological Indexes of Moisture Tolerance in Different Wheat Cultivars. Chin. Agric. Sci. 2003, 1378–1382. [Google Scholar]
- Lu, Z.; Luo, M.; Tan, C.W.; Xu, F.F.; Liang, S.; Yang, X. Dynamic Monitoring of Winter Wheat Growth Based on the Analysis of Vegetation Index Variation of Remote Sensing Images. J. Wheat Crops. 2020, 40, 1257–1264. [Google Scholar]
- Niu, F.X.; Hua, X.X.; Guo, X.X.; Wu, J.Y.; Li, H.M.; Ding, C.W. Preliminary study on physiological indexes and comprehensive evaluation of drought resistance of potato varieties. J. Crops 1996, 4, 392–398. [Google Scholar]
- Xie, Z.J. Fuzzy Mathematics Method in Agricultural Mathematics; Huazhong University of Technology Press: Wuhan, China, 1983; pp. 99–193. [Google Scholar]
- Liu, C.J.; Gong, X.W.; Wang, H.L.; Dang, K.; Deng, X.P.; Feng, B.L. Low-nitrogen tolerance comprehensive evaluation and physiological response to nitrogen stress in broom maize millet (Panicum miliaceum L.) seedling. Plant Physiol. Bioch. 2020, 151, 233–242. [Google Scholar] [CrossRef]
- Li, S.Y. Dynamic Monitoring of Maize Growth Parameters under Drought Stress Based on UAV Remote Sensing; Ningxia University: Yinchuan, China, 2022. [Google Scholar]
- Tan, C.W.; Yang, X.; Luo, M.; Ma, C.; Yan, X.; Chen, T.T. Quantitative inversion of key seedling parameters of winter wheat at booting stage based on HJ-CCD image. Agric. Sci. Chin. 2015, 48, 2518–2527. [Google Scholar]
- Tan, C.W.; Huang, W.J.; Jin, X.L.; Wang, J.C.; Tong, L.; Wang, J.H.; Guo, W.S. Monitoring chlorophyll fluorescence parameter F of compact maize by hyperspectral vegetation index Fv/Fm. Spectr. Spectr. Analys. 2012, 32, 1287–1291. [Google Scholar]
- Du, G. Research and Application of Vegetation Index Monitoring Model Based on EOS/MODIS; Huazhong University of Science and Technology: Wuhan, China, 2005. [Google Scholar]
- An, Q.; Chen, S.B.; Sun, S.B. Study on remote estimation of maize based on MODIS-RVI. Geosp. Inf. 2018, 16, 14–16. [Google Scholar]
- Zhang, X.Y.; Hou, X.H.; Wang, M.; Wang, L.L.; Liu, F. Study on the relationship between photosynthetic rate and spectral index under wheat stripe rust stress. Spectr. Spectr. Analys. 2022, 42, 940–946. [Google Scholar]
- Ma, L.P. Transformation from multiple indicators to a few comprehensive indicators principal component analysis. Beijing Stat. 2000, 8, 35–37. [Google Scholar]
- Zhou, Y.; Huang, J.; Wu, Y.; Zhang, Y.Q.; Xi, J.; Zhang, X.C.; Li, Z.B. Comprehensive evaluation of sorghum varieties’ tolerance to deep sowing based on principal component and membership function analysis. Agric. Res. Arid Areas. 2020, 38, 214–220. [Google Scholar]
- Zhang, Z.M.; Wan, S.B.; Dai, L.X.; Song, W.W.; Chen, J.; Shi, Y.Q. Screening and evaluation of peanut drought resistance identification indicators. J. Plant Ecol. 2011, 35, 100–109. [Google Scholar] [CrossRef]
- Liu, X.H.; He, X.Y.; Su, D.M.; Wei, L.; Yuan, D.Y.; Wang, J.F. Construction and application of a comprehensive evaluation system for cold-resistance of winged pod provenance. Forestry Sci. 2007, 10, 45–50. [Google Scholar]
- Tian, Z.G.; Wang, F.; Zhang, W.E.; Zhao, X.M. Application of multivariate statistical analysis method in drought resistance evaluation of marigold varieties. J. Appl. Ecol. 2011, 22, 3315–3320. [Google Scholar]
- Liu, K.L.; Hu, H.W.; Hu, Z.H.; Li, D.M.; Zhou, L.J.; Huang, Q.H.; Yu, X.C.; Ye, H.C.; Xu, X.L.; Wang, S.L. Prediction of sesame yield after combined application of dicyandiamide based on canopy normalized vegetation index. Chin. J. Oil Crops. 2016, 38, 467–472. [Google Scholar]
- Huang, N.; Wang, Q.; Wang, P.; Zhang, G.Q.; Liu, L.F. Research on corn yield prediction using normalized vegetation index. Heilongjiang Agric. Sci. 2014, 236, 130–132. [Google Scholar]
- Han, W.T.; Peng, X.S.; Zhang, Y.L.; Niu, Y.X. Summer Maize Yield Estimation Based on Vegetation Index Derived from Multi- Temporal UAV Remote Sensing. Trans. Chin. Soc. Agricl. Mach. 2020, 1, 148–155. [Google Scholar]
- Ma, G.N.; Ding, C.Y. Prediction of maize yield based on vegetation index and optimal phenological period. Agric. Technol. 2017, 37, 17–18–25. [Google Scholar]
- Lin, B.W. Research on the Quality Monitoring and Prediction Model of Summer Maize Based on Near-Ground Hyperspectral Remote Sensing; Hubei University: Wuhan, China, 2020. [Google Scholar]
Band | Band Name | Central Wave Length (nm) |
---|---|---|
Band 1 | Blue | 475 |
Band 2 | Green | 560 |
Band 3 | Red | 668 |
Band 4 | Nir | 840 |
Band 5 | Red-edge | 717 |
Vegetation Index | Calculation Formulas | Reference |
---|---|---|
NDVI (Normalized vegetation index) | Serrano et al. (2000) | |
RVI (Ratio vegetation index) | Jacobsen et al. (2000) | |
DVI (Difference vegetation index) | Jordan (1969) | |
NCPI (Normalized pigment chlorophyll ratio index) | Penuelas et al. (1995) | |
PSRI (Plant senescence reflectance index) | Sims et al. (2002) | |
GNDVI (Green normalized difference vegetation index) | Daughtry et al. (2000) | |
GDVI (Generalized difference vegetation index) | Weicheng Wu (2014) | |
SIPI (Structure intensive pigment index) | Penuelas et al. (1995) | |
NRI (Nitrogen reflectance index) | Schleicher et al. (2001) | |
PPR(Plant pigment ratio) | Metternicht (2003) | |
A | This work. | |
B | This work. | |
C | This work. | |
D | This work. | |
E | This work. | |
F | This work. | |
G | This work. | |
H | This work. | |
I | This work. | |
J | This work. | |
K | This work. | |
L | This work. | |
M | This work. | |
N | This work. | |
O | This work. | |
P | This work. | |
Q | This work. | |
R | This work. | |
S | This work. |
Year | Variety | Items | Principal Component | |||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
2019 | Zhengdan 958 | Eigenvalue | 31.645 | 21.8 | 14.1 | 10.0 |
Contributive ratio (%) | 36.4 | 25.1 | 16.3 | 11.5 | ||
Cumulative contribution (%) | 36.4 | 61.5 | 77.7 | 89.2 | ||
Suyu 41 | Eigenvalue | 31.1 | 16.9 | 15.2 | 11.26 | |
Contributive ratio (%) | 35.8 | 19.4 | 17.5 | 12.9 | ||
Cumulative contribution (%) | 35.8 | 55.2 | 72.7 | 85.7 | ||
2020 | Zhengdan 958 | Eigenvalue | 58.4 | 11.5 | 8.3 | |
Contributive ratio (%) | 67.1 | 13.1 | 9.6 | |||
Cumulative contribution (%) | 67.1 | 80.3 | 89.9 | |||
Suyu 41 | Eigenvalue | 44.1 | 28.6 | 7.9 | ||
Contributive ratio (%) | 50.6 | 32.9 | 9.1 | |||
Cumulative contribution (%) | 50.6 | 83.5 | 92.6 |
Variety | Density | N Rate | Comprehensive Index | Subordinate Function Value | D Value | Correlation with Yield | Correlation with Protein Content | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cl(1) | Cl(2) | Cl(3) | Cl(4) | u(1) | u(2) | u(3) | u(4) | ||||||
Zhengdan 958 | LD | N300 | −4.680 | 3.861 | 3.683 | −3.071 | 0.238 | 0.749 | 0.902 | 0.113 | 0.486 | 0.8 | 0.87 |
N225 | −8.326 | 1.496 | −3.300 | 1.704 | 0.000 | 0.570 | 0.270 | 0.635 | 0.291 | ||||
N150 | −8.195 | −6.015 | 2.266 | −0.843 | 0.009 | 0.000 | 0.774 | 0.357 | 0.191 | ||||
MD | N300 | 7.025 | −0.318 | 1.377 | −4.105 | 1.000 | 0.432 | 0.693 | 0.000 | 0.656 | |||
N225 | 1.621 | 0.910 | −6.278 | −3.450 | 0.648 | 0.525 | 0.000 | 0.072 | 0.421 | ||||
N150 | 4.537 | −5.921 | 1.722 | −0.302 | 0.838 | 0.007 | 0.725 | 0.416 | 0.529 | ||||
HD | N300 | 2.312 | 7.168 | 4.761 | 2.788 | 0.693 | 1 | 1 | 0.754 | 0.843 | |||
N225 | 2.318 | 3.482 | −4.072 | 2.238 | 0.693 | 0.72 | 0.2 | 0.694 | 0.611 | ||||
N150 | 3.389 | −4.662 | −0.16 | 5.04 | 0.763 | 0.103 | 0.554 | 1 | 0.57 | ||||
Suyu 41 | LD | N300 | 2.558 | −4.656 | 3.413 | 4.612 | 0.686 | 0.083 | 0.913 | 0.991 | 0.641 | 0.64 | 0.79 |
N225 | −0.853 | −5.526 | 0.482 | −2.760 | 0.492 | 0.000 | 0.672 | 0.225 | 0.377 | ||||
N150 | −9.507 | −2.309 | 1.529 | 1.147 | 0.000 | 0.305 | 0.758 | 0.631 | 0.320 | ||||
MD | N300 | 4.884 | 3.028 | −0.884 | 2.082 | 0.818 | 0.812 | 0.560 | 0.728 | 0.750 | |||
N225 | 1.610 | −0.595 | −7.708 | 0.079 | 0.632 | 0.468 | 0.000 | 0.520 | 0.449 | ||||
N150 | −5.362 | 5.006 | −0.557 | 4.699 | 0.236 | 1.000 | 0.587 | 1.000 | 0.596 | ||||
HD | N300 | 8.091 | 2.530 | 4.475 | −0.359 | 1.000 | 0.765 | 1.000 | 0.475 | 0.867 | |||
N225 | 7.795 | −1.113 | −1.057 | −1.568 | 0.983 | 0.419 | 0.546 | 0.349 | 0.670 | ||||
N150 | −1.216 | 4.635 | 4.306 | −4.930 | 0.471 | 0.965 | 0.986 | 0.000 | 0.617 |
Variety | Density | N Rate | Comprehensive Index | Subordinate Function Value | D Value | Correlation with Yield | Correlation with Protein Content | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Cl(1) | Cl(2) | Cl(3) | u(1) | u(2) | u(3) | ||||||
Zhengdan 958 | LD | N300 | −5.937 | −1.254 | −2.877 | 0.396 | 0.512 | 0.165 | 0.388 | 0.67 | 0.68 |
N225 | −2.257 | 2.390 | 5.363 | 0.546 | 0.884 | 1.000 | 0.644 | ||||
N150 | −15.61 | 1.700 | 0.217 | 0.000 | 0.814 | 0.479 | 0.170 | ||||
MD | N300 | −1.448 | −6.268 | 0.453 | 0.580 | 0.000 | 0.502 | 0.486 | |||
N225 | 0.118 | 2.485 | −0.206 | 0.644 | 0.894 | 0.436 | 0.658 | ||||
N150 | 2.838 | −3.522 | −1.528 | 0.755 | 0.280 | 0.302 | 0.637 | ||||
HD | N300 | 8.823 | −1.865 | 2.483 | 1.000 | 0.450 | 0.708 | 0.888 | |||
N225 | 8.265 | 2.810 | 0.600 | 0.977 | 0.927 | 0.517 | 0.921 | ||||
N150 | 5.205 | 3.525 | −4.505 | 0.852 | 1.000 | 0.000 | 0.783 | ||||
Suyu 41 | LD | N300 | −0.086 | 0.313 | 0.618 | 0.290 | 1.000 | 1.000 | 0.612 | 0.77 | 0.76 |
N225 | −0.127 | 0.016 | −0.398 | 0.194 | 0.351 | 0.000 | 0.231 | ||||
N150 | −0.210 | −0.144 | 0.081 | 0.000 | 0.000 | 0.471 | 0.046 | ||||
MD | N300 | −0.073 | 0.183 | −0.209 | 0.321 | 0.716 | 0.186 | 0.448 | |||
N225 | −0.006 | −0.102 | −0.178 | 0.475 | 0.091 | 0.217 | 0.313 | ||||
N150 | −0.052 | −0.222 | 0.006 | 0.369 | −0.17 | 0.398 | 0.181 | ||||
HD | N300 | 0.219 | 0.183 | −0.385 | 1.000 | 0.715 | 0.013 | 0.802 | |||
N225 | 0.152 | −0.054 | −0.023 | 0.845 | 0.198 | 0.369 | 0.668 | ||||
N150 | 0.183 | −0.174 | 0.487 | 0.917 | −0.066 | 0.871 | 0.564 |
Variety | Density | N Rate | Grain Yield (t·ha−1) | Total Protein (%) | ||
---|---|---|---|---|---|---|
2019 | 2020 | 2019 | 2020 | |||
Zhengdan 958 | LD | N300 | 8.5 ± 0.3 de | 6.2 ± 0.9 c | 69 ± 0.1 c | 69.6 ± 1.2 b |
N225 | 9.0 ± 0.2 cd | 6.4 ± 0.0 c | 67.8 ± 0.1 c | 65.4 ± 1.4 b | ||
N150 | 7.8 ± 0.3 e | 5.2 ± 0.3 d | 63.6 ± 0.4 d | 58.2 ± 0.6 c | ||
MD | N300 | 9.5 ± 0.5 bc | 7.5 ± 0.2 b | 84 ± 0.2 b | 78.75 ± 0.4 ab | |
N225 | 9.6 ± 0.2 bc | 8.0 ± 0.1 ab | 81.75 ± 0.2 b | 69 ± 1.0 b | ||
N150 | 9.3 ± 0.4 cd | 6.2 ± 0.2 c | 76.5 ± 0.1 c | 63.75 ± 0.6 c | ||
HD | N300 | 10.8 ± 0.7 a | 7.5 ± 0.3 b | 95.4 ± 0.1 a | 87.3 ± 1.1 a | |
N225 | 11.0 ± 0.8 a | 8.3 ± 0.9 a | 93.6 ± 0.3 a | 79.2 ± 0.4 ab | ||
N150 | 10.2 ± 0.7 ab | 6.2 ± 0.1 c | 80.1 ± 0.4 b | 72 ± 0.4 ab | ||
Suyu 41 | LD | N300 | 9.0 ± 0.1 bcd | 7.5 ± 0.4 c | 68.4 ± 0.2 c | 70.2 ± 0.5 c |
N225 | 9.3 ± 0.4 cd | 7.3 ± 0.1 c | 66 ± 0.1 d | 61.8 ± 1.2 d | ||
N150 | 8.4 ± 0.4 d | 7.0 ± 0.0 c | 62.4 ± 0.5 d | 57 ± 0.4 d | ||
MD | N300 | 9.5 ± 0.3 bc | 8.2 ± 0.3 b | 82.5 ± 0.3 b | 83.25 ± 0.6 b | |
N225 | 9.5 ± 0.3 bcd | 8.3 ± 0.4 b | 80.25 ± 0.1 b | 75.75 ± 1.0 c | ||
N150 | 8.7 ± 0.5 cd | 7.2 ± 0.4 c | 72.75 ± 0.2 c | 67.5 ± 0.6 cd | ||
HD | N300 | 11.1 ± 0.6 a | 9.4 ± 0.2 a | 98.1 ± 0.4 a | 96.3 ± 0.1 a | |
N225 | 11.4 ± 0.3 a | 9.6 ± 0.4 a | 90.9 ± 0.1 ab | 93.6 ± 0.3 a | ||
N150 | 10.1 ± 0.5 b | 8.5 ± 0.1 b | 86.4 ± 0.2 b | 68.4 ± 0.8 cd | ||
ANOVA | ||||||
Variety(V) | 14.92 ** | 1.155 ns | ||||
Density(D) | 34.742 ** | 84.342 ** | ||||
N rate(N) | 12.449 ** | 29.835 ** | ||||
V × D | 1.837 ns | 1.414 ns | ||||
V × N | 0.285 ns | 0.282 ns | ||||
D × N | 0.168 ns | 1.399 ns | ||||
V × D × N | 0.065 ns | 0.163 ns |
Year | Variety | Period | Model | R2 | Mean Relative Error |
---|---|---|---|---|---|
2019 | Zhengdan 958 | R2 | Y = −0.369 + 2.367 NDVI + 25.354 DVI | 0.789 | 0.03934 |
Suyu 41 | R2 | Y = 12.941 + 12.197 DVI − 1.527 RVI | 0.926 | 0.09948 | |
2020 | Zhengdan 958 | R2 | Y = −58.245 + 87.269 NDVI | 0.496 | 0.28844 |
Suyu 41 | R2 | Y = −51.815 + 81.291 NDVI | 0.715 | 0.06903 | |
2019 | Zhengdan 958 | R4 | Y = 2.375 + 2.251 RVI | 0.723 | 0.04200 |
Suyu 41 | R4 | Y = 2.754 + 14.163 NDVI | 0.721 | 0.09173 | |
2020 | Zhengdan 958 | R4 | Y = −30.717 + 62.117 NDVI | 0.659 | 0.10646 |
Suyu 41 | R4 | Y = −40.234 + 81.256 NDVI | 0.906 | 0.11291 | |
2019 | Zhengdan 958 | R6 | Y = −0.369 + 23.67 NDVI + 25.354 DVI | 0.789 | 0.16427 |
Suyu 41 | R6 | Y = 12.941−81.527 NDVI + 12.197 DVI | 0.926 | 0.08832 | |
2020 | Zhengdan 958 | R6 | Y = −23.131 + 76.258 PPR | 0.734 | 0.19258 |
Suyu 41 | R6 | Y = −29.239 + 66.827 NDVI | 0.854 | 0.01172 |
Year | Variety | Period | Model | R2 | Mean Relative Error |
---|---|---|---|---|---|
2019 | Zhengdan 958 | R2 | Y = −42.277 + 64.089 NDVI + 250.383 DVI | 0.896 | 0.01542 |
Suyu 41 | R2 | Y = −124.5 + 386.413 NDVI | 0.920 | 0.02313 | |
2020 | Zhengdan 958 | R2 | Y = −581.423 + 875.514 NDVI | 0.654 | 0.05814 |
Suyu 41 | R2 | Y = −862.788 + 1267.862 NDVI | 0.404 | 0.17469 | |
2019 | Zhengdan 958 | R4 | Y = 24.799 − 83.397 NDVI + 29.702 RVI | 0.886 | 0.05005 |
Suyu 41 | R4 | Y = 66.06 + 83.832 DVI | 0.859 | 0.10013 | |
2020 | Zhengdan 958 | R4 | Y = −203.057 + 254.809 NDVI − 638.568 PSRI | 0.936 | 0.00821 |
Suyu 41 | R4 | Y = −566.872 + 1078.597 NDVI | 0.769 | 0.09336 | |
2019 | Zhengdan 958 | R6 | Y = 85.342 + 78.915 RVI − 465.082 PPR | 0.846 | 0.22184 |
Suyu 41 | R6 | Y = −61.299 + 432.759 NDVI | 0.803 | 0.05959 | |
2020 | Zhengdan 958 | R6 | Y = −26.796 + 33.921 NDVI | 0.447 | 0.11499 |
Suyu 41 | R6 | Y = −466.768 + 969.092 NDVI | 0.845 | 0.06755 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Y.; Wei, H.; Hou, S.; Yin, X.; Wei, S.; Jiang, D. Estimation of Maize Yield and Protein Content under Different Density and N Rate Conditions Based on UAV Multi-Spectral Images. Agronomy 2023, 13, 421. https://doi.org/10.3390/agronomy13020421
Jiang Y, Wei H, Hou S, Yin X, Wei S, Jiang D. Estimation of Maize Yield and Protein Content under Different Density and N Rate Conditions Based on UAV Multi-Spectral Images. Agronomy. 2023; 13(2):421. https://doi.org/10.3390/agronomy13020421
Chicago/Turabian StyleJiang, Yu, Huijuan Wei, Shengxi Hou, Xuebo Yin, Shanshan Wei, and Dong Jiang. 2023. "Estimation of Maize Yield and Protein Content under Different Density and N Rate Conditions Based on UAV Multi-Spectral Images" Agronomy 13, no. 2: 421. https://doi.org/10.3390/agronomy13020421
APA StyleJiang, Y., Wei, H., Hou, S., Yin, X., Wei, S., & Jiang, D. (2023). Estimation of Maize Yield and Protein Content under Different Density and N Rate Conditions Based on UAV Multi-Spectral Images. Agronomy, 13(2), 421. https://doi.org/10.3390/agronomy13020421