Foliar Applications of ZnO and SiO2 Nanoparticles Mitigate Water Deficit and Enhance Potato Yield and Quality Traits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Location
2.2. Plant Materials, Growth Conditions, and Experimental Design
2.3. Irrigation Levels and Nanoparticles (NPs)
2.4. Measurements
2.4.1. Tuber Yield and Traits
2.4.2. Tuber Physical Traits
2.4.3. Chemical Quality Analysis of Tubers
2.4.4. Data Analysis
3. Results and Discussion
3.1. Yield Traits
3.2. Quality of Tubers
3.2.1. Physical Traits
3.2.2. Nutraceutical and Mineral Content in Potato Tubers
Nutraceutical Content
Mineral Contents
3.3. Attributes Interrelationship
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Francini, A.; Sebastiani, L. Abiotic stress effects on performance of horticultural crops. Horticulturae 2019, 5, 67. [Google Scholar] [CrossRef]
- Seleiman, M.F.; Al-Suhaibani, N.; Ali, N.; Akmal, M.; Alotaibi, M.; Refay, Y.; Dindaroglu, T.; Abdul-Wajid, H.H.; Battaglia, M.L. Drought Stress Impacts on Plants and Different Approaches to Alleviate Its Adverse Effects. Plants 2021, 10, 259. [Google Scholar] [CrossRef]
- Seleiman, M.F.; Selim, S.; Alhammad, B.A.; Alharbi, B.M.; Juliatti, F.C. Will novel coronavirus (COVID-19) pandemic impact agriculture, food security and animal sectors? Biosci. J. 2020, 36, 1315–1326. [Google Scholar] [CrossRef]
- Faostat. Available online: http://www.fao.org/faostat/en/#data/QC/visualize (accessed on 10 December 2022).
- Lal, M.K.; Tiwari, R.K.; Kumar, A.; Dey, A.; Kumar, R.; Kumar, D.; Jaiswal, A.; Changan, S.S.; Raigond, P.; Dutt, S. Mechanistic Concept of Physiological, Biochemical, and Molecular Responses of the Potato Crop to Heat and Drought Stress. Plants 2022, 11, 2857. [Google Scholar] [CrossRef] [PubMed]
- Mukhtar, T.; Rehman, S.u.; Smith, D.; Sultan, T.; Seleiman, M.F.; Alsadon, A.A.; Amna; Ali, S.; Chaudhary, H.J.; Solieman, T.H.I.; et al. Mitigation of Heat Stress in Solanum lycopersicum L. by ACC-deaminase and Exopolysaccharide Producing Bacillus cereus: Effects on Biochemical Profiling. Sustainability 2020, 12, 2159. [Google Scholar] [CrossRef]
- Mwakidoshi, E.R.; Gitari, H.I.; Muindi, E.M.; Wamukota, A.W.; Seleiman, M.F.; Maitra, S. Smallholder farmers’ knowledge of the use of bioslurry as a soil fertility amendment for potato production in Kenya. Land Degrad. Dev. 2023. [Google Scholar] [CrossRef]
- Anithakumari, A.; Nataraja, K.N.; Visser, R.G.; van der Linden, C.G. Genetic dissection of drought tolerance and recovery potential by quantitative trait locus mapping of a diploid potato population. Mol. Breed. 2012, 30, 1413–1429. [Google Scholar] [CrossRef] [PubMed]
- Lahlou, O.; Ouattar, S.; Ledent, J.-F. The effect of drought and cultivar on growth parameters, yield and yield components of potato. Agronomie 2003, 23, 257–268. [Google Scholar] [CrossRef]
- Schafleitner, R.; Rosales, R.O.G.; Gaudin, A.; Aliaga, C.A.A.; Martinez, G.N.; Marca, L.R.T.; Bolivar, L.A.; Delgado, F.M.; Simon, R.; Bonierbale, M. Capturing candidate drought tolerance traits in two native Andean potato clones by transcription profiling of field grown plants under water stress. Plant Physiol. Biochem. 2007, 45, 673–690. [Google Scholar] [CrossRef]
- Stark, J.; Love, S.; King, B.; Marshall, J.; Bohl, W.; Salaiz, T. Potato cultivar response to seasonal drought patterns. Am. J. Potato Res. 2013, 90, 207–216. [Google Scholar] [CrossRef]
- Wagg, C.; Hann, S.; Kupriyanovich, Y.; Li, S. Timing of short period water stress determines potato plant growth, yield and tuber quality. Agric. Water Manag. 2021, 247, 106731. [Google Scholar] [CrossRef]
- Xing, Y.; Zhang, T.; Jiang, W.; Li, P.; Shi, P.; Xu, G.; Cheng, S.; Cheng, Y.; Fan, Z.; Wang, X. Effects of irrigation and fertilization on different potato varieties growth, yield and resources use efficiency in the Northwest China. Agric. Water Manag. 2022, 261, 107351. [Google Scholar] [CrossRef]
- Kumar, S.; Asrey, R.; Mandal, G. Effect of Differential Irrigation Regimes on Potato (Solanum tuberosum) Yield and Post-Harvest Post-Harvest Attributes; Indian Council of Agricutural Research: New Delhi, India, 2011. [Google Scholar]
- Schafleitner, R.; Gutierrez, R.; Legay, S.; Evers, D.; Bonierbale, M. Drought stress tolerance traits of potato. In Proceedings of the 15th International Symposium of the International Society for Tropical Root Crops (ISTRC), Lima, Peru, 2–7 November 2009. [Google Scholar]
- Batool, T.; Ali, S.; Seleiman, M.F.; Naveed, N.H.; Ali, A.; Ahmed, K.; Abid, M.; Rizwan, M.; Shahid, M.R.; Alotaibi, M. Plant growth promoting rhizobacteria alleviates drought stress in potato in response to suppressive oxidative stress and antioxidant enzymes activities. Sci. Rep. 2020, 10, 16975. [Google Scholar] [CrossRef] [PubMed]
- Nasir, M.W.; Toth, Z. Effect of Drought Stress on Potato Production: A Review. Agronomy 2022, 12, 635. [Google Scholar] [CrossRef]
- Eid, M.A.; Abdel-Salam, A.A.; Salem, H.M.; Mahrous, S.E.; Seleiman, M.F.; Alsadon, A.A.; Solieman, T.H.; Ibrahim, A.A. Interaction effects of nitrogen source and irrigation regime on tuber quality, yield, and water Use efficiency of Solanum tuberosum L. Plants 2020, 9, 110. [Google Scholar] [CrossRef]
- Aliche, E.B.; Oortwijn, M.; Theeuwen, T.P.; Bachem, C.W.; Visser, R.G.; van der Linden, C.G. Drought response in field grown potatoes and the interactions between canopy growth and yield. Agric. Water Manag. 2018, 206, 20–30. [Google Scholar] [CrossRef]
- Guleria, G.; Thakur, S.; Shandilya, M.; Sharma, S.; Thakur, S.; Kalia, S. Nanotechnology for sustainable agro-food systems: The need and role of nanoparticles in protecting plants and improving crop productivity. Plant Physiol. Biochem. 2023, 194, 533–549. [Google Scholar] [CrossRef]
- Seleiman, M.F.; Almutairi, K.F.; Alotaibi, M.; Shami, A.; Alhammad, B.A.; Battaglia, M.L. Nano-fertilization as an emerging fertilization technique: Why can modern agriculture benefit from its use? Plants 2021, 10, 2. [Google Scholar] [CrossRef]
- Fayez, K.; El-Deeb, B.; Mostafa, N. Toxicity of biosynthetic silver nanoparticles on the growth, cell ultrastructure and physiological activities of barley plant. Acta Physiol. Plant. 2017, 39, 155. [Google Scholar] [CrossRef]
- Badawy, S.A.; Zayed, B.A.; Bassiouni, S.M.A.; Mahdi, A.H.A.; Majrashi, A.; Ali, E.F.; Seleiman, M.F. Influence of Nano Silicon and Nano Selenium on Root Characters, Growth, Ion Selectivity, Yield, and Yield Components of Rice (Oryza sativa L.) under Salinity Conditions. Plants 2021, 10, 1657. [Google Scholar] [CrossRef]
- Singh, M.D. Nano-fertilizers is a new way to increase nutrients use efficiency in crop production. Int. J. Agric. Sci. ISSN 2017, 9, 0975–3710. [Google Scholar]
- Elshayb, O.M.; Nada, A.M.; Sadek, A.H.; Ismail, S.H.; Shami, A.; Alharbi, B.M.; Alhammad, B.A.; Seleiman, M.F. The Integrative Effects of Biochar and ZnO Nanoparticles for Enhancing Rice Productivity and Water Use Efficiency under Irrigation Deficit Conditions. Plants 2022, 11, 1416. [Google Scholar] [CrossRef] [PubMed]
- Abobatta, W.F. Nanotechnology application in agriculture. Acta Sci. Agric. 2018, 2, 99–102. [Google Scholar]
- Elshayb, O.M.; Nada, A.M.; Farroh, K.Y.; AL-Huqail, A.A.; Aljabri, M.; Binothman, N.; Seleiman, M.F. Utilizing Urea–Chitosan Nanohybrid for Minimizing Synthetic Urea Application and Maximizing Oryza sativa L. Productivity and N Uptake. Agriculture 2022, 12, 944. [Google Scholar] [CrossRef]
- Hafez, E.M.; Osman, H.S.; Gowayed, S.M.; Okasha, S.A.; Omara, A.E.-D.; Sami, R.; Abd El-Monem, A.M.; Abd El-Razek, U.A. Minimizing the adversely impacts of water deficit and soil salinity on maize growth and productivity in response to the application of plant growth-promoting rhizobacteria and silica nanoparticles. Agronomy 2021, 11, 676. [Google Scholar] [CrossRef]
- Faizan, M.; Hayat, S.; Pichtel, J. Effects of zinc oxide nanoparticles on crop plants: A perspective analysis. In Sustainable Agriculture Reviews 41; Springer: Berlin/Heidelberg, Germany, 2020; pp. 83–99. [Google Scholar]
- Moghaddasi, S.; Fotovat, A.; Khoshgoftarmanesh, A.H.; Karimzadeh, F.; Khazaei, H.R.; Khorassani, R. Bioavailability of coated and uncoated ZnO nanoparticles to cucumber in soil with or without organic matter. Ecotoxicol. Environ. Saf. 2017, 144, 543–551. [Google Scholar] [CrossRef]
- Monreal, C.; De Rosa, M.; Mallubhotla, S.; Bindraban, P.; Dimkpa, C. Nanotechnologies for increasing the crop use efficiency of fertilizer-micronutrients. Biol. Fertil. Soils 2016, 52, 423–437. [Google Scholar] [CrossRef]
- Pinedo-Guerrero, Z.H.; Cadenas-Pliego, G.; Ortega-Ortiz, H.; González-Morales, S.; Benavides-Mendoza, A.; Valdés-Reyna, J.; Juárez-Maldonado, A. Form of silica improves yield, fruit quality and antioxidant defense system of tomato plants under salt stress. Agriculture 2020, 10, 367. [Google Scholar] [CrossRef]
- Sparks, D.L.; Page, A.L.; Helmke, P.A.; Loeppert, R.H. Methods of Soil Analysis, Part 3: Chemical Methods; John Wiley & Sons: Hoboken, NJ, USA, 2020; Volume 14. [Google Scholar]
- Maynard, D.N.; Hochmuth, G.J. Knott’s Handbook for Vegetable Growers; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Salokhe, V.; Babel, M.; Tantau, H. Water requirement of drip irrigated tomatoes grown in greenhouse in tropical environment. Agric. Water Manag. 2005, 71, 225–242. [Google Scholar]
- Al-Selwey, W.A.; Alsadon, A.A.; Ibrahim, A.A.; Labis, J.P.; Seleiman, M.F. Effects of Zinc Oxide and Silicon Dioxide Nanoparticles on Physiological, Yield, and Water Use Efficiency Traits of Potato Grown under Water Deficit. Plants 2023, 12, 218. [Google Scholar] [CrossRef]
- Steyn, J.; Kagabo, D.; Annandale, J. Potato growth and yield responses to irrigation regimes in contrasting seasons of a subtropical region. In Proceedings of the 8th African Crop Science Society Conference, El-Minia, Egypt, 27–31 October 2007; pp. 1647–1651. [Google Scholar]
- Gautam, I.P.; Sharma, M.D.; Khatri, B.B. Yield, Storability and Processing Quality Of Potato: Yield, Storage and Quality Parameters (Solanum tuberosum L.); LAP LAMBERT Academic Publishing: Saarbruecken, Germany, 2016. [Google Scholar]
- AOAC. Official Methods of Analysis, 20th ed.; AOAC: Washington, DC, USA, 2005. [Google Scholar]
- Pace, B.; Cefola, M. Innovative preservation technology for the fresh fruit and vegetables. Foods 2021, 10, 719. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Methods of Analysis of AOAC International; Horwitz, W., Latimer, G., Eds.; AOAC: Gaithersburg, MD, USA, 2016. [Google Scholar]
- Sit, N.; Misra, S.; Deka, S.C. Physicochemical, functional, textural and colour characteristics of starches isolated from four taro cultivars of North-E ast India. Starch Stärke 2013, 65, 1011–1021. [Google Scholar] [CrossRef]
- Jackson, M. Soil Chemical Analysis; Prentice-Hall of India Pvt. Ltd.: New Delhi, India, 1967; p. 498. [Google Scholar]
- Navarre, D.A.; Goyer, A.; Shakya, R. Nutritional value of potatoes: Vitamin, phytonutrient, and mineral content. In Advances in Potato Chemistry and Technology; Elsevier: Amsterdam, The Netherlands, 2009; pp. 395–424. [Google Scholar]
- Obidiegwu, J.E.; Bryan, G.J.; Jones, H.G.; Prashar, A. Coping with drought: Stress and adaptive responses in potato and perspectives for improvement. Front. Plant Sci. 2015, 6, 542. [Google Scholar] [CrossRef] [Green Version]
- Carli, C.; Yuldashev, F.; Khalikov, D.; Condori, B.; Mares, V.; Monneveux, P. Effect of different irrigation regimes on yield, water use efficiency and quality of potato (Solanum tuberosum L.) in the lowlands of Tashkent, Uzbekistan: A field and modeling perspective. Field Crops Res. 2014, 163, 90–99. [Google Scholar] [CrossRef]
- Elemike, E.E.; Uzoh, I.M.; Onwudiwe, D.C.; Babalola, O.O. The role of nanotechnology in the fortification of plant nutrients and improvement of crop production. Appl. Sci. 2019, 9, 499. [Google Scholar] [CrossRef]
- Sun, L.; Song, F.; Zhu, X.; Liu, S.; Liu, F.; Wang, Y.; Li, X. Nano-ZnO alleviates drought stress via modulating the plant water use and carbohydrate metabolism in maize. Arch. Agron. Soil Sci. 2021, 67, 245–259. [Google Scholar] [CrossRef]
- Tognetti, V.B.; Mühlenbock, P.; Van Breusegem, F. Stress homeostasis–the redox and auxin perspective. Plant Cell Environ. 2012, 35, 321–333. [Google Scholar] [CrossRef]
- Tan, D.X.; Hardeland, R.; Back, K.; Manchester, L.C.; Alatorre-Jimenez, M.A.; Reiter, R.J. On the significance of an alternate pathway of melatonin synthesis via 5-methoxytryptamine: Comparisons across species. J. Pineal Res. 2016, 61, 27–40. [Google Scholar] [CrossRef]
- Haliloglu, K.; Hosseinpour, A.; Cinisli, K.T.; Ozturk, H.I.; Ozkan, G.; Pour-Aboughadareh, A.; Poczai, P. Investigation of the protective roles of zinc oxide nanoparticles and plant growth promoting bacteria on DNA damage and methylation in tomato (Solanum lycopersicum L.) under salinity stress. Hortic. Environ. Biotechnol. 2020, 10, 521. [Google Scholar] [CrossRef]
- Yu, O.Y.; Harper, M.; Hoepfl, M.; Domermuth, D. Characterization of biochar and its effects on the water holding capacity of loamy sand soil: Comparison of hemlock biochar and switchblade grass biochar characteristics. Environ. Prog. Sustain. Energy 2017, 36, 1474–1479. [Google Scholar] [CrossRef]
- Foroutan, L.; Solouki, M.; Abdossi, V.; Fakheri, B.A. The effects of zinc oxide nanoparticles on enzymatic and osmoprotectant alternations in different Moringa peregrina populations under drought stress. Int. J. Basic Sci. Med. 2018, 3, 178–187. [Google Scholar] [CrossRef]
- Zhu, Z.; Wei, G.; Li, J.; Qian, Q.; Yu, J. Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Sci. 2004, 167, 527–533. [Google Scholar] [CrossRef]
- Sangster, A.; Hodson, M.; Tubb, H. Silicon deposition in higher plants. In Studies in Plant Science; Elsevier: Amsterdam, The Netherlands, 2001; Volume 8, pp. 85–113. [Google Scholar]
- Maghsoudi, K.; Emam, Y.; Pessarakli, M. Effect of silicon on photosynthetic gas exchange, photosynthetic pigments, cell membrane stability and relative water content of different wheat cultivars under drought stress conditions. J. Plant Nutr. 2016, 39, 1001–1015. [Google Scholar] [CrossRef]
- Alsaeedi, A.; El-Ramady, H.; Alshaal, T.; El-Garawany, M.; Elhawat, N.; Al-Otaibi, A. Silica nanoparticles boost growth and productivity of cucumber under water deficit and salinity stresses by balancing nutrients uptake. Plant Physiol. Biochem. 2019, 139, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, I.; Akhtar, M.S. Use of nanoparticles in alleviating salt stress. In Salt Stress, Microbes, and Plant Interactions: Causes and Solution; Springer: Berlin/Heidelberg, Germany, 2019; pp. 199–215. [Google Scholar]
- Kanwal, A.; Sharma, I.; Bala, A.; Upadhyay, S.K.; Singh, R. Agricultural Application of Synthesized ZnS Nanoparticles for the Development of Tomato Crop. Lett. Appl. NanoBioSci. 2022, 12, 1–9. [Google Scholar]
- Hassan, A.; Sarkar, A.; Ali, M.; Karim, N. Effect of deficit irrigation at different growth stages on the yield of potato. Pak. J. Biol. Sci. 2002, 5, 128–134. [Google Scholar] [CrossRef]
- Mahmoud, A.W.M.; Samy, M.M.; Sany, H.; Eid, R.R.; Rashad, H.M.; Abdeldaym, E.A. Nanopotassium, nanosilicon, and biochar applications improve potato salt tolerance by modulating photosynthesis, water status, and biochemical constituents. Sustainability 2022, 14, 723. [Google Scholar] [CrossRef]
- Steyn, J.; Du Plessis, H.; Fourie, P.; Hammes, P. Yield response of potato genotypes to different soil water regimes in contrasting seasons of a subtropical climate. Potato Res. 1998, 41, 239–254. [Google Scholar] [CrossRef]
- Elhani, S.; Haddadi, M.; Csákvári, E.; Zantar, S.; Hamim, A.; Villányi, V.; Douaik, A.; Bánfalvi, Z. Effects of partial root-zone drying and deficit irrigation on yield, irrigation water-use efficiency and some potato (Solanum tuberosum L.) quality traits under glasshouse conditions. Agric. Water Manag. 2019, 224, 105745. [Google Scholar] [CrossRef]
- Jensen, C.; Jacobsen, S.-E.; Andersen, M.; Nunez, N.; Andersen, S.; Rasmussen, L.; Mogensen, V. Leaf gas exchange and water relation characteristics of field quinoa (Chenopodium quinoa Willd.) during soil drying. Eur. J. Agron. 2000, 13, 11–25. [Google Scholar] [CrossRef]
- Kumar, D.; Minhas, J.; Singh, B. Abiotic stress and potato production. In The Potato: Production and Utilization in Sub-Tropics; Khurana, S.M.P., Minhas, J.S., Pandey, S.K., Eds.; Mehta Publishers: New Delhi, India, 2003. [Google Scholar]
- Yuan, B.-Z.; Nishiyama, S.; Kang, Y. Effects of different irrigation regimes on the growth and yield of drip-irrigated potato. Agric. Water Manag. 2003, 63, 153–167. [Google Scholar] [CrossRef]
- Abd-Elrahman, S.H.; Taha, N.M. Comparison between organic and mineral sources of potassium and their effects on potassium fractions in clay soil and productivity of potato plants under water stress conditions. Egypt. J. Soil Sci. 2018, 58, 193–206. [Google Scholar] [CrossRef]
- Alenazi, M.; Wahb-Allah, M.A.; Abdel-Razzak, H.S.; Ibrahim, A.A.; Alsadon, A. Water regimes and humic acid application influences potato growth, yield, tuber quality and water use efficiency. Am. J. Potato Res. 2016, 93, 463–473. [Google Scholar] [CrossRef]
- Ayas, S. The effects of different regimes on potato (Solanum tuberosum L. Hermes) yield and quality characteristics under unheated greenhouse conditions. Bulg. J. Agric. Sci. 2013, 19, 87–95. [Google Scholar]
- Al-juthery, H.; Al-taee, R.; Al-Obaidi, Z.; Ali, E.; NAl-Shami, Q. Influence of foliar application of some nano-fertilizers in growth and yield of potato under drip irrigation. J. Phys. Conf. Ser. 2019, 1294, 092024. [Google Scholar] [CrossRef]
- Mahmoud, A.W.M.; Abdeldaym, E.A.; Abdelaziz, S.M.; El-Sawy, M.B.; Mottaleb, S.A. Synergetic effects of zinc, boron, silicon, and zeolite nanoparticles on confer tolerance in potato plants subjected to salinity. Agronomy 2020, 10, 19. [Google Scholar] [CrossRef]
- Prasad, T.; Sudhakar, P.; Sreenivasulu, Y.; Latha, P.; Munaswamy, V.; Reddy, K.R.; Sreeprasad, T.; Sajanlal, P.; Pradeep, T. Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J. Plant Nutr. 2012, 35, 905–927. [Google Scholar] [CrossRef]
- Dimkpa, C.O.; White, J.C.; Elmer, W.H.; Gardea-Torresdey, J. Nanoparticle and ionic Zn promote nutrient loading of sorghum grain under low NPK fertilization. J. Agric. Food Chem. 2017, 65, 8552–8559. [Google Scholar] [CrossRef]
- Lefèvre, I.; Ziebel, J.; Guignard, C.; Hausman, J.F.; Gutiérrez Rosales, R.O.; Bonierbale, M.; Hoffmann, L.; Schafleitner, R.; Evers, D. Drought impacts mineral contents in Andean potato cultivars. J. Agron. Crop Sci. 2012, 198, 196–206. [Google Scholar] [CrossRef]
- Semida, W.M.; Abdelkhalik, A.; Mohamed, G.F.; Abd El-Mageed, T.A.; Abd El-Mageed, S.A.; Rady, M.M.; Ali, E.F. Foliar Application of Zinc Oxide Nanoparticles Promotes Drought Stress Tolerance in Eggplant (Solanum melongena L.). Plants 2021, 10, 421. [Google Scholar] [CrossRef]
- Singh, A.; Tiwari, S.; Pandey, J.; Lata, C.; Singh, I.K. Role of nanoparticles in crop improvement and abiotic stress management. J. Biotechnol. 2021, 337, 57–70. [Google Scholar] [CrossRef] [PubMed]
- Rea, R.S.; Islam, M.R.; Rahman, M.M.; Nath, B.; Mix, K. Growth, Nutrient Accumulation, and Drought Tolerance in Crop Plants with Silicon Application: A Review. Sustainability 2022, 14, 4525. [Google Scholar] [CrossRef]
- Uresti-Porras, J.-G.; Cabrera-De-La Fuente, M.; Benavides-Mendoza, A.; Olivares-Sáenz, E.; Cabrera, R.I.; Juárez-Maldonado, A. Effect of Graft and Nano ZnO on Nutraceutical and Mineral Content in Bell Pepper. Plants 2021, 10, 2793. [Google Scholar] [CrossRef]
- Fatollahpour Grangah, M.; Rashidi, V.; Mirshekari, B.; Khalilvand Behrouzyar, E.; Farahvash, F. Effects of nano-fertilizers on physiological and yield characteristics of pinto bean cultivars under water deficit stress. J. Plant Nutr. 2020, 43, 2898–2910. [Google Scholar] [CrossRef]
- Dimkpa, C.O.; Singh, U.; Bindraban, P.S.; Elmer, W.H.; Gardea-Torresdey, J.L.; White, J.C. Zinc oxide nanoparticles alleviate drought-induced alterations in sorghum performance, nutrient acquisition, and grain fortification. Sci. Total Environ. 2019, 688, 926–934. [Google Scholar] [CrossRef]
- Elfnesh, F.; Tekalign, T.; Solomon, W. Processing quality of improved potato (Solanum tuberosum L.) cultivars as influenced by growing environment and blanching. Afr. J. Food Sci. 2011, 5, 324–332. [Google Scholar]
- Dull, G.G.; Birth, G.S.; Leffler, R.G. Use of near infrared analysis for the nondestructive measurement of dry matter in potatoes. Am. Potato J. 1989, 66, 215–225. [Google Scholar] [CrossRef]
- Djaman, K.; Irmak, S.; Koudahe, K.; Allen, S. Irrigation management in potato (Solanum tuberosum L.) production: A review. Sustainability 2021, 13, 1504. [Google Scholar] [CrossRef]
Properties | Values |
---|---|
Sand (%) | 83.72 |
Silt (%) | 7.83 |
Clay (%) | 8.45 |
Texture | Sandy loam |
CaCO3 (%) | 18.21 |
Saturation water content (%w/w) | 0.298 |
Field capacity (%w/w) | 14.9 |
Electrical conductivity (dS m−1) | 1.98 |
Ca2+ (meq L−1) | 10.50 |
Mg2+ (meq L−1) | 4.50 |
Na+ (meq L−1) | 6.97 |
K+ (meq L−1) | 1.32 |
HCO3 (meq L−1) | 2.30 |
Cl− (meq L−1) | 2.65 |
SO42− (meq L−1) | 18.34 |
Treatments | No. of Tubers Plant−1 | Tuber Fresh Weight (g) | Tubers Yield Plant−1 (kg) | Tubers Yield (kg m−2) | |
---|---|---|---|---|---|
Water Deficit (WD) a | Nanoparticles (NPs) | ||||
WD-1 | Control | 10.67 ± 0.09 g | 129.53 ± 0.12 j | 1.382 ± 0.01 i | 3.454 ± 0.03 i |
ZnO -50 mg L−1 | 12.80 ± 0.06 c | 141.63 ± 0.09 b | 1.813 ± 0.01 c | 4.532 ± 0.02 c | |
ZnO -100 mg L−1 | 13.37 ± 0.09 a | 145.67 ± 0.19 a | 1.947 ± 0.01 a | 4.868 ± 0.03 a | |
SiO2 -25 mg L−1 | 11.30 ± 0.06 e | 134.50 ± 0.12 f | 1.520 ± 0.01 f | 3.800 ± 0.02 f | |
SiO2 -50 mg L−1 | 11.87 ± 0.03 d | 138.83 ± 0.18 d | 1.647 ± 0.00 d | 4.118 ± 0.01 d | |
WD-2 | Control | 9.47 ± 0.03 i | 116.60 ± 0.25 m | 1.104 ± 0.00 l | 2.759 ± 0.01 l |
ZnO -50 mg L−1 | 11.70 ± 0.06 d | 135.47 ± 0.15 e | 1.585 ± 0.01 e | 3.962 ± 0.02 e | |
ZnO -100 mg L−1 | 13.13 ± 0.09 b | 140.57 ± 0.18 c | 1.846 ± 0.01 b | 4.615 ± 0.03 b | |
SiO2 -25 mg L−1 | 10.40 ± 0.06 h | 132.73 ± 0.24 g | 1.381 ± 0.01 i | 3.451 ± 0.02 i | |
SiO2 -50 mg L−1 | 10.87 ± 0.03 f | 133.73 ± 0.12 g | 1.453 ± 0.00 g | 3.633 ± 0.01 g | |
WD-3 | Control | 7.87 ± 0.03 k | 114.50 ± 0.17 n | 0.901 ± 0.01 m | 2.252 ± 0.01 m |
ZnO -50 mg L−1 | 10.27 ± 0.03 h | 130.57 ± 0.19 i | 1.340 ± 0.01 j | 3.351 ± 0.02 j | |
ZnO -100 mg L−1 | 10.60 ± 0.06 g | 134.63 ± 0.09 f | 1.427 ± 0.01 h | 3.568 ± 0.02 h | |
SiO2 -25 mg L−1 | 9.20 ± 0.06 j | 122.40 ± 0.21 l | 1.126 ± 0.01 l | 2.815 ± 0.01 k | |
SiO2 -50 mg L−1 | 9.43 ± 0.03 i | 125.57 ± 0.17 k | 1.185 ± 0.01 k | 2.961 ± 0.01 l | |
Significance b | |||||
WD | *** | *** | *** | *** | |
NPs | *** | *** | *** | *** | |
WD × NPs | *** | *** | *** | *** |
Treatments | Tuber Diameter (cm) | Tuber Dry Weight (%) | Specific Gravity (g cm−3) | |
---|---|---|---|---|
Water Deficit (WD) a | Nanoparticles (NPs) | |||
WD-1 | Control | 6.32 ± 0.01 gh | 17.59 ± 0.04 k | 1.07 ± 0.00 f |
ZnO -50 mg L−1 | 6.74 ± 0.01 b | 19.18 ± 0.01 h | 1.08 ± 0.00 e | |
ZnO -100 mg L−1 | 6.87 ± 0.01 a | 19.51 ± 0.04 gh | 1.08 ± 0.00 e | |
SiO2 -25 mg L−1 | 6.50 ± 0.01 de | 18.22 ± 0.04 j | 1.08 ± 0.00 e | |
SiO2 -50 mg L−1 | 6.66 ± 0.01 c | 18.58 ± 0.10 i | 1.08 ± 0.00 e | |
WD-2 | Control | 6.25 ± 0.01 h | 19.54 ± 0.11 g | 1.08 ± 0.00 e |
ZnO -50 mg L−1 | 6.63 ± 0.01 c | 20.32 ± 0.21 f | 1.09 ± 0.00 c | |
ZnO -100 mg L−1 | 6.80 ± 0.08 b | 20.79 ± 0.12 e | 1.09 ± 0.00 c | |
SiO2 -25 mg L−1 | 6.42 ± 0.01 f | 21.14 ± 0.06 d | 1.09 ± 0.00 c | |
SiO2 -50 mg L−1 | 6.54 ± 0.02 d | 20.62 ± 0.20 ef | 1.09 ± 0.00 c | |
WD-3 | Control | 6.12 ± 0.01 i | 19.75 ± 0.12 g | 1.08 ± 0.00 d |
ZnO -50 mg L−1 | 6.37 ± 0.01 fg | 24.02 ± 0.01 b | 1.10 ± 0.00 b | |
ZnO -100 mg L−1 | 6.44 ± 0.01 ef | 25.10 ± 0.04 a | 1.11 ± 0.00 a | |
SiO2 -25 mg L−1 | 6.18 ± 0.01 i | 21.43 ± 0.09 d | 1.09 ± 0.00 c | |
SiO2 -50 mg L−1 | 6.26 ± 0.01 h | 22.31 ± 0.10 c | 1.10 ± 0.00 b | |
Significance | ||||
WD | ** | *** | *** | |
NPs | ** | *** | *** | |
WD × NPs | ** | *** | *** |
Treatments | AsA (mg 100 g−1) | TSS (%) | Starch (%) | CP (%) | |
---|---|---|---|---|---|
Water Deficit (WD) a | Nanoparticles (NPs) | ||||
WD-1 | Control | 14.79 ± 0.08 n | 3.85 ± 0.01 o | 11.68 ± 0.03 f | 10.07 ± 0.01 i |
ZnO -50 mg L−1 | 16.74 ± 0.05 k | 4.41 ± 0.01 l | 13.10 ± 0.01 e | 11.32 ± 0.01 b | |
ZnO -100 mg L−1 | 17.10 ± 0.05 j | 4.53 ± 0.01 k | 13.39 ± 0.04 e | 12.00 ± 0.02 a | |
SiO2 -25 mg L−1 | 15.39 ± 0.05 m | 4.23 ± 0.01 n | 12.24 ± 0.04 e | 10.65 ± 0.01 f | |
SiO2 -50 mg L−1 | 16.20 ± 0.05 l | 4.34 ± 0.02 m | 12.56 ± 0.09 e | 10.88 ± 0.01 e | |
WD-2 | Control | 17.82 ± 0.05 i | 4.79 ± 0.01 j | 13.42 ± 0.09 e | 9.76 ± 0.01 j |
ZnO -50 mg L−1 | 22.32 ± 0.05 d | 5.76 ± 0.01 d | 14.11 ± 0.19 c | 11.27 ± 0.01 c | |
ZnO -100 mg L−1 | 23.22 ± 0.05 b | 6.56 ± 0.01 b | 14.53 ± 0.10 c | 11.98 ± 0.01 a | |
SiO2 -25 mg L−1 | 18.81 ± 0.05 g | 5.44 ± 0.01 g | 14.84 ± 0.06 c | 10.59 ± 0.01 g | |
SiO2 -50 mg L−1 | 19.44 ± 0.05 f | 5.56 ± 0.01 f | 14.38 ± 0.18 c | 10.87 ±0.01 e | |
WD-3 | Control | 18.18 ± 0.05 h | 4.89 ± 0.01 i | 13.61 ± 0.11 d | 7.93 ± 0.01 k |
ZnO -50 mg L−1 | 22.56 ± 0.11 c | 5.98 ± 0.01 c | 17.41 ± 0.01 b | 10.59 ± 0.01 g | |
ZnO -100 mg L−1 | 23.55 ± 0.06 a | 6.74 ± 0.02 a | 18.37 ± 0.03 a | 10.94 ± 0.01 d | |
SiO2 -25 mg L−1 | 19.62 ± 0.05 f | 5.31 ± 0.01 h | 15.11 ± 0.08 c | 10.06 ± 0.01 i | |
SiO2 -50 mg L−1 | 19.89 ± 0.05 e | 5.65 ± 0.01 e | 15.88 ± 0.09 b | 10.34 ± 0.01 h | |
Significance | |||||
WD | ** | ** | *** | ** | |
NPs | ** | ** | *** | ** | |
WD × NPs | *** | *** | *** | ** |
Treatments | K+ (%) | Ca2+ (%) | P (%) | |
---|---|---|---|---|
Water Deficit (WD) a | Nanoparticles (NPs) | |||
WD-1 | Control | 5.83 ± 0.01 h | 2.56 ± 0.02 h | 0.80 ± 0.06 f |
ZnO -50 mg L−1 | 6.54 ± 0.01 b | 2.80 ± 0.01 ed | 1.20 ± 0.01 abs | |
ZnO -100 mg L−1 | 6.94 ± 0.01 a | 3.14 ± 0.02 a | 1.29 ± 0.01 a | |
SiO2 -25 mg L−1 | 6.16 ± 0.01 de | 2.70 ± 0.02 f | 1.11 ± 0.01 d | |
SiO2 -50 mg L−1 | 6.29 ± 0.01 c | 2.90 ± 0.01 c | 1.16 ± 0.01 cd | |
WD-2 | Control | 5.65 ± 0.01 i | 2.53 ±0.01 h | 0.50 ± 0.06 g |
ZnO -50 mg L−1 | 6.52 ± 0.01 b | 2.82 ± 0.01 d | 1.19 ±0.00 bcd | |
ZnO -100 mg L−1 | 6.93 ± 0.01 a | 3.07 ± 0.01 b | 1.26 ± 0.00 ab | |
SiO2 -25 mg L−1 | 5.89 ± 0.01 g | 2.64 ± 0.01 g | 0.80 ± 0.06 f | |
SiO2 -50 mg L−1 | 6.17 ± 0.06 d | 2.93 ± 0.01 c | 1.15 ± 0.00 cd | |
WD-3 | Control | 4.59 ± 0.01 j | 2.00 ± 0.01 i | 0.31 ± 0.06 h |
ZnO -50 mg L−1 | 6.12 ± 0.01 e | 2.76 ± 0.01 e | 1.13 ± 0.00 cd | |
ZnO -100 mg L−1 | 6.33 ± 0.01c | 2.84 ± 0.02 d | 1.16 ± 0.01 cd | |
SiO2 -25 mg L−1 | 5.81 ± 0.01 h | 2.55 ± 0.01 h | 0.94 ± 0.01 e | |
SiO2 -50 mg L−1 | 5.97 ± 0.01 f | 2.67 ± 0.02 fg | 1.11 ± 0.01 d | |
Significance | ||||
WD | *** | *** | ** | |
NPs | *** | *** | *** | |
WD × NPs | *** | *** | *** |
Treatments | Mg2+ (mg g−1 DW) | Fe2+ (mg g−1 DW) | Zn2+ (mg g−1 DW) | |
---|---|---|---|---|
Water Deficit (WD) a | Nanoparticles (NPs) | |||
WD-1 | Control | 5.26 ± 0.00 c | 0.75 ± 0.01 ef | 0.14 ± 0.01 g |
ZnO -50 mg L−1 | 5.68 ± 0.01 bc | 0.88 ± 0.01 bc | 0.33 ± 0.01 b | |
ZnO -100 mg L−1 | 7.40 ± 1.13 a | 0.99 ± 0.06 a | 0.35 ± 0.01 a | |
SiO2 -25 mg L−1 | 5.55 ± 0.01 bc | 0.82 ± 0.01 cde | 0.19 ± 0.01 e | |
SiO2 -50 mg L−1 | 5.90 ± 0.01 bc | 0.86 ± 0.01 bcd | 0.27 ± 0.01 c | |
WD-2 | Control | 5.10 ± 0.01 c | 0.65 ± 0.01 gh | 0. 08 ± 0.01 i |
ZnO -50 mg L−1 | 5.62 ± 0.01 bc | 0.83 ± 0.01 cde | 0.28 ± 0.01 c | |
ZnO -100 mg L−1 | 6.26 ± 0.01 b | 0.95 ± 0.09 ab | 0.33 ± 0.01 b | |
SiO2 -25 mg L−1 | 5.32 ± 0.01 c | 0.74 ± 0.00 efg | 0.17 ± 0.00 f | |
SiO2 -50 mg L−1 | 5.88 ± 0.01 bc | 0.78 ±0.00 de | 0.23 ± 0.01 d | |
WD-3 | Control | 4.140 ± 0.01 d | 0.46 ± 0.01 i | 0.05 ± 0.01 j |
ZnO -50 mg L−1 | 5.39 ± 0.01 bc | 0.68 ± 0.02 fgh | 0.20 ± 0.01 e | |
ZnO -100 mg L−1 | 5.71 ± 0.01 bc | 0.82 ± 0.08 cde | 0.25 ± 0.01 d | |
SiO2 -25 mg L−1 | 5.25 ± 0.00 c | 0.58 ± 0.01 h | 0.12 ± 0.01 h | |
SiO2 -50 mg L−1 | 5.52 ± 0.01 bc | 0.68 ± 0.01 fg | 0.14 ± 0.01 gh | |
Significance b | ||||
WD | * | ** | *** | |
NPs | *** | *** | *** | |
WD × NPs | n | n | *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seleiman, M.F.; Al-Selwey, W.A.; Ibrahim, A.A.; Shady, M.; Alsadon, A.A. Foliar Applications of ZnO and SiO2 Nanoparticles Mitigate Water Deficit and Enhance Potato Yield and Quality Traits. Agronomy 2023, 13, 466. https://doi.org/10.3390/agronomy13020466
Seleiman MF, Al-Selwey WA, Ibrahim AA, Shady M, Alsadon AA. Foliar Applications of ZnO and SiO2 Nanoparticles Mitigate Water Deficit and Enhance Potato Yield and Quality Traits. Agronomy. 2023; 13(2):466. https://doi.org/10.3390/agronomy13020466
Chicago/Turabian StyleSeleiman, Mahmoud F., Wadei A. Al-Selwey, Abdullah A. Ibrahim, Mohamed Shady, and Abdullah A. Alsadon. 2023. "Foliar Applications of ZnO and SiO2 Nanoparticles Mitigate Water Deficit and Enhance Potato Yield and Quality Traits" Agronomy 13, no. 2: 466. https://doi.org/10.3390/agronomy13020466
APA StyleSeleiman, M. F., Al-Selwey, W. A., Ibrahim, A. A., Shady, M., & Alsadon, A. A. (2023). Foliar Applications of ZnO and SiO2 Nanoparticles Mitigate Water Deficit and Enhance Potato Yield and Quality Traits. Agronomy, 13(2), 466. https://doi.org/10.3390/agronomy13020466