The Efficacy of Micronutrient Fertilizers on the Yield Formulation and Quality of Wheat Grains
Abstract
:1. Introduction
2. The Significance of Micronutrient Fertilizers, Their Interactions, and Application Techniques in Wheat Cultivation
3. The Effect of Micronutrient Fertilizers on Growth and Yield Attributes in Wheat Production
3.1. Zinc (Zn)
3.2. Iron (Fe)
3.3. Boron (B)
3.4. Copper (Cu)
3.5. Molybdenum (Mo)
3.6. Manganese (Mn)
4. Future Challenges and Research Directions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Erenstein, O.; Jaleta, M.; Mottaleb, K.A.; Sonder, K.; Donovan, J.; Braun, H.J. Global trends in wheat production, consumption and trade. In Wheat Improvement; Reynolds, M.P., Braun, H.J., Eds.; Springer: Cham, Switzerland, 2022. [Google Scholar]
- Tulchinsky, T.H. Micronutrient Deficiency Conditions: Global Health Issues. Public Health Rev. 2010, 32, 243–255. [Google Scholar] [CrossRef] [Green Version]
- Miner, G.L.; Delgado, J.A.; Ippolito, J.A.; Johnson, J.J.; Kluth, D.L.; Stewart, C.E. Wheat grain micronutrients and relationships with yield and protein in the U.S. Central Great Plains. Field Crops Res. 2022, 279, 108453. [Google Scholar] [CrossRef]
- Cakmak, I.; Kutman, U.B. Agronomic biofortification of cereals with zinc: A review. Eur. J. Soil Sci. 2018, 69, 172–180. [Google Scholar] [CrossRef] [Green Version]
- Fakharzadeh, S.; Hafizi, M.; Baghaei, M.A.; Etesami, M.; Khayamzadeh, M.; Kalanaky, S.; Akbari, M.E.; Nazaran, M.H. Using Nanochelating Technology for Biofortification and Yield Increase in Rice. Sci. Rep. 2020, 10, 4351. [Google Scholar] [CrossRef] [Green Version]
- Gureev, I. The use of micronutrient fertilizers in the cultivation of winter wheat. In BIO Web of Conferences; EDP Sciences: Les Ulis, France, 2021; Volume 32. [Google Scholar]
- Müller, O.; Krawinkel, M. Malnutrition and health in developing countries. CMAJ Can. Med. Assoc. J. J. De L’association Med. Can. 2005, 173, 279–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venkatesh, U.; Sharma, A.; Ananthan, V.A.; Subbiah, P.; Durga, R. CSIR Summer Research training team. Micronutrient’s deficiency in India: A systematic review and meta-analysis. J. Nutr. Sci. 2021, 10, e110. [Google Scholar] [CrossRef] [PubMed]
- Diakite, S.; Pakina, E.; Zargar, M.; Aldaibe, A.A.D.; Denis, P.; Gregory, L.; Behzad, A. Yield losses of cereal crops by Fusarium Link: A review on the perspective of biological control practices. Res. Crop 2022, 23, 418–436. [Google Scholar]
- Li, S.; Li, J.; Zhang, B.; Li, D.; Li, G.; Li, Y. Effect of different organic fertilizers application on growth and environmental risk of nitrate under a vegetable field. Sci. Rep. 2017, 7, 17020. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Zhang, R.; Xia, S.; Wang, L.; Liu, C.; Zhang, R.; Fan, Z.; Chen, F.; Liu, Y. Interactions between N, P and K fertilizers affect the environment and the yield and quality of satsumas. Global Ecol. Conserv. 2019, 19, e00663. [Google Scholar] [CrossRef]
- Shao, H.B.; Chu, L.Y.; Wu, G.; Zhang, J.H.; Lu, Z.H.; Hu, Y.C. Changes of some anti-oxidative physiological indices under soil water deficits among 10 wheat (Triticum aestivum L.) genotypes at tillering stage. Colloids Surf. B Biointerfaces 2007, 54, 143–149. [Google Scholar] [CrossRef]
- Niyigaba, E.; Twizerimana, A.; Mugenzi, I.; Ngnadong, W.A.; Ye, Y.P.; Wu, B.M.; Hai, J.B. Winter Wheat Grain Quality, Zinc and Iron Concentration Affected by a Combined Foliar Spray of Zinc and Iron Fertilizers. Agronomy 2019, 9, 250. [Google Scholar] [CrossRef] [Green Version]
- Assunção, A.G.L.; Cakmak, I.; Clemens, S.; González-Guerrero, M.; Nawrocki, A.; Thomine, S. Micronutrient homeostasis in plants for more sustainable agriculture and healthier human nutrition. J. Exp. Bot. 2022, 73, 1789–1799. [Google Scholar] [CrossRef] [PubMed]
- Marschner, H.; Marschner, P. Mineral Nutrition of Higher Plants, 3rd ed.; Elsevier/Academic Press: London, UK, 2012. [Google Scholar]
- Nadeem, F.; Farooq, M. Application of Micronutrients in Rice-Wheat Cropping System of South Asia. Rice Sci. 2019, 26, 356–371. [Google Scholar] [CrossRef]
- Suttle, N.F. Mineral Nutrition of Livestock, 4th ed.; Suttle, N., Ed.; CABI: Wallingford, UK, 2010; ISBN 9781845934729. [Google Scholar]
- Welch, R.M.; Graham, R.D.; Cakmak, I. Linking Agricultural Production Practices to Improving Human Nutrition and Health; Food and Agriculture Organization of the United Nations: Rome, Italy, 2014; pp. 19–21. [Google Scholar]
- Zeidan, M.S.; Manal, F.; Hamouda, H.A. Effect of foliar fertilization of Fe, Mn and Zn on wheat yield and quality in low sandy soils fertility. World J. Agric. Sci. 2010, 6, 696–699. [Google Scholar]
- Hafeez, M.B.; Ramzan, Y.; Khan, S.; Ibrar, D.; Bashir, S.; Zahra, N.; Rashid, N.; Nadeem, M.; ur Rahman, S.; Shair, H.; et al. Application of zinc and iron-based fertilizers improves the growth attributes, productivity, and grain quality of two wheat (Triticum aestivum) cultivars. Front. Nutr. 2021, 1036. [Google Scholar] [CrossRef] [PubMed]
- Nataraja, T.H.; Halepyati, A.S.; Pujari, B.T.; Desai, B.K. Influence of phosphorus levels and micronutrients on the physiological parameters of wheat. Karnataka. J. Agric. Sci. 2006, 19, 685–687. [Google Scholar]
- Chaudry, E.H.; Timmer, V.; Javed, A.S.; Siddique, M.T. Wheat response to micronutrients in rainfed areas of Punjab. Soil Environ. 2007, 26, 97–101. [Google Scholar]
- Mandal, A.; Patra, A.K.; Singh, D.; Swarup, A.; Masto, R.E. Effect of long-term application of manure and fertilizer on biological and biochemical activities in soil during crop development stages. Bioresour. Technol. 2007, 98, 3585–3592. [Google Scholar] [CrossRef]
- Nadim, M.A.; Awan, I.U.; Baloch, M.S.; Khan, E.A.; Naveed, K.; Khan, M.A.; Zubair, M.; Hussain, N. Effect of micronutrients on growth and yield of wheat. Pak. J. Agric. Sci. 2011, 48, 191–196. [Google Scholar]
- Rehm, G.; Albert, S. Micronutrients and Production of Hard Red Spring Wheat. Minnesota Crope News 2006, 7, 1–3. [Google Scholar]
- Singh, P.; Dwivedi, P. Micronutrients zinc and boron enhance stevioside content in Stevia rebaudiana plants while maintaining genetic fidelity. Ind. Crops Prod. 2019, 140, 111646. [Google Scholar] [CrossRef]
- Ziaeian, A.H.; Malakouti, M.J. Effects of Fe, Mn, Zn and Cu fertilization on the yield and grain quality of wheat in the calcareous soils of Iran. Food Secur. Sustain. Agro-Ecosyst. 2001, 92, 840–841. [Google Scholar]
- Ali, E.A. Effect of Iron Nutrient Care Sprayed on Foliage at Different Physiological Growth Stages on Yield and Quality of Some Durum Wheat (Triticum durum L.) varieties in Sandy Soil. Asian J. Crop Sci. 2012, 4, 139–149.4. [Google Scholar] [CrossRef] [Green Version]
- John, K.N.; Valentin, V.; Abdullah, B.; Bayat, M.; Kargar, M.H.; Zargar, M. Weed mapping technologies in discerning and managing weed infestation levels of farming systems. Res. Crops 2020, 21, 93–98. [Google Scholar]
- Rawashdeh, H.; Sala, F. The effect of iron and boron foliar fertilization on yield and yield components of wheat. Rom. Agric. Res. 2016, 33, 1–9. [Google Scholar]
- Shoormij, F.; Mirlohi, A.; Saeidi, G.; Shirvani, M. Combined foliar application of Zn and Fe increases grain micronutrient concentrations and alleviates water stress across diverse wheat species and ploidal levels. Sci. Rep. 2022, 12, 20328. [Google Scholar] [CrossRef]
- Dimkpa, C.O.; Singh, U.; Adisa, I.O.; Bindraban, P.S.; Elmer, W.H.; Gardea-Torresdey, J.L.; White, J.C. Effects of Manganese Nanoparticle Exposure on Nutrient Acquisition in Wheat (Triticum aestivum L.). Agronomy 2018, 8, 158. [Google Scholar] [CrossRef] [Green Version]
- Ullah, A.; Farooq, M.; Rehman, A.; Arshad, M.; Shoukat, H.; Nadeem, A.; Nawaz, A.; Wakeel, A.; Nadeem, F. Manganese nutrition improves the productivity and grain biofortification of bread wheat in alkaline calcareous soil. Exp. Agric. 2018, 54, 744–754. [Google Scholar] [CrossRef]
- Stepien, A.; Wojtkowiak, K. Effect of foliar application of Cu, Zn, and Mn on yield and quality indicators of winter wheat grain. Chil. J. Agric. Res. 2016, 76, 220–227. [Google Scholar] [CrossRef] [Green Version]
- Ghadamkheir, M.; Vladimirovich, K.P.; Orujov, E.; Bayat, M.; Madumarov, M.M.; Avdotyin, V.; Zargar, M. Influence of sulfur fertilization on infection of wheat Take-all disease caused by the fungus Gaeumannomyces graminis var. tritici. Res. Crops 2020, 21, 627–633. [Google Scholar]
- Moussa, M.G.; Hu, C.; Elyamine, A.M.; Ismael, M.A.; Rana, M.S.; Imran, M.; Syaifudin, M.; Tan, Q.; Marty, C.; Sun, X. Molybdenum-induced effects on nitrogen uptake efficiency and recovery in wheat (Triticum aestivum L.) using 15N-labeled nitrogen with different N forms and rates. J. Plant Nutr. Soil Sci. 2021, 184, 613–621. [Google Scholar] [CrossRef]
- Bazzo, J.H.B.; da Costa, D.S.; Barbizan, T.; Barbosa, A.P.; de Oliveira, E.C.; Zucareli, C. Molybdenum application associated with nitrogen fertilization on yield and physiological potential of wheat seeds. Semin. Ciências Agrárias 2018, 39, 67–75. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Hu, C.; Tan, Q.; Sun, X.; Wu, S.; Zhao, X. Co-application of molybdenum and zinc increases grain yield and photosynthetic efficiency of wheat leaves. Plant Soil Environ. 2019, 65, 508–515. [Google Scholar] [CrossRef] [Green Version]
- Dawar, K.; Ali, W.; Bibi, H.; Mian, I.A.; Ahmad, M.A.; Hussain, M.B.; Ali, M.; Ali, S.; Fahad, S.; Rehman, S.u.; et al. Effect of Different Levels of Zinc and Compost on Yield and Yield Components of Wheat. Agronomy 2022, 12, 1562. [Google Scholar] [CrossRef]
- Sher, A.; Sarwar, B.; Sattar, A.; Ijaz, M.; Ul-Allah, S.; Hayat, M.T.; Manaf, A.; Qayyum, A.; Zaheer, A.; Iqbal, J.; et al. Exogenous Application of Zinc Sulphate at Heading Stage of Wheat Improves the Yield and Grain Zinc Biofortification. Agronomy 2022, 12, 734. [Google Scholar] [CrossRef]
- Lončarić, Z.; Ivezić, V.; Kerovec, D.; Rebekić, A. Foliar Zinc-Selenium and Nitrogen Fertilization Affects Content of Zn, Fe, Se, P, and Cd in Wheat Grain. Plants 2021, 10, 1549. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Motagally, F.M.F.; El-Zohri, M. Improvement of wheat yield grown under drought stress by boron foliar application at different growth stages. J. Saudi Soc. Agric. Sci. 2018, 17, 178–185. [Google Scholar] [CrossRef] [Green Version]
- Shivay, Y.S.; Prasad, R.; Pooniya, V.; Pal, M.; Bansal, R. Response of spring wheat to boron-coated urea and its effect on nitrogen use efficiency. J. Plant Nutr. 2017, 40, 1920–1927. [Google Scholar] [CrossRef]
- Akhtar, N.; Ilyas, N.; Arshad, M.; Meraj, T.A.; Hefft, D.I.; Jan, B.L.; Ahmad, P. The Impact of Calcium, Potassium, and Boron Application on the Growth and Yield Characteristics of Durum Wheat under Drought Conditions. Agronomy 2022, 12, 1917. [Google Scholar] [CrossRef]
- Briat, J.F.; Rouached, H.; Tissot, N.; Gaymard, F.; Dubos, C. Integration of P, S, Fe, and Zn nutrition signals in Arabidopsis thaliana: Potential involvement of phosphate starvation response 1 (PHR1). Front. Plant Sci. 2015, 6, 290. [Google Scholar] [CrossRef] [Green Version]
- Dong, J.; Piñeros, M.A.; Li, X.; Yang, H.; Liu, Y.; Murphy, A.S.; Kochian, L.V.; Liu, D. An Arabidopsis ABC transporter mediates phosphate deficiency-induced remodeling of root architecture by modulating iron homeostasis in roots. Mol. Plant 2017, 10, 244–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanikenne, M.; Esteves, S.M.; Fanara, S.; Rouached, H. Coordinated homeostasis of essential mineral nutrients: A focus on iron. J. Exp. Bot. 2021, 72, 2136–2153. [Google Scholar] [CrossRef] [PubMed]
- Watts-Williams, S.J.; Smith, F.A.; McLaughlin, M.J.; Patti, A.F.; Cavagnaro, T.R. How important is the mycorrhizal pathway for plant Zn uptake? Plant Soil 2015, 390, 157–166. [Google Scholar] [CrossRef] [Green Version]
- Ova, E.A.; Kutman, U.B.; Ozturk, L.; Cakmak, I. High phosphorus supply reduced zinc concentration of wheat in native soil but not in autoclaved soil or nutrient solution. Plant Soil 2015, 393, 147–162. [Google Scholar] [CrossRef]
- Kisko, M.; Bouain, N.; Safi, A.; Medici, A.; Akkers, R.C.; Secco, D.; Fouret, G.; Krouk, G.; Aarts, M.G.; Busch, W.; et al. LPCAT1 controls phosphate homeostasis in a zinc-dependent manner. eLife 2018, 7, e32077. [Google Scholar] [CrossRef]
- Kutman, U.B.; Yildiz, B.; Cakmak, I. Effect of nitrogen on uptake, remobilization and partitioning of zinc and iron throughout the development of durum wheat. Plant Soil 2011, 342, 149–164. [Google Scholar] [CrossRef]
- Cakmak, I.; Pfeiffer, W.H.; McClafferty, B. Biofortification of durum wheat with zinc and iron. Cereal Chem. J. 2010, 87, 10–20. [Google Scholar] [CrossRef] [Green Version]
- Shinmachi, F.; Buchner, P.; Stroud, J.L.; Parmar, S.; Zhao, F.J.; McGrath, S.P.; Hawkesford, M.J. Influence of sulfur deficiency on the expression of specific sulfate transporters and the distribution of sulfur, selenium, and molybdenum in wheat. Plant Physiol. 2010, 153, 327–336. [Google Scholar] [CrossRef] [Green Version]
- Maillard, A.; Etienne, P.; Diquélou, S.; Trouverie, J.; Billard, V.; Yvin, J.C.; Ourry, A. Nutrient deficiencies modify the ionomic composition of plant tissues: A focus on cross-talk between molybdenum and other nutrients in Brassica napus. J. Exp. Bot. 2016, 67, 5631–5641. [Google Scholar] [CrossRef] [Green Version]
- Esfandiari, E.; Abdoli, M.; Mousavi, S.B.; Sadeghzadeh, B. Impact of foliar zinc application on agronomic traits and grain quality parameters of wheat grown in zinc deficient soil. Indian J. Plant Physiol. 2016, 21, 263–270. [Google Scholar] [CrossRef]
- Ronen, E. Micro-elements in agriculture. Pract. Hydroponics Greenh. 2007, 164, 39–48. [Google Scholar]
- Hänsch, R.; Mendel, R.R. Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr. Opin. Plant Biol. 2009, 12, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Arif, M.; Chohan, A.M.; Ali, S.; Gul, R.; Khan, S. Response of wheat to foliar application of nutrients. J. Agric. Biol. Sci. 2006, 1, 30–34. [Google Scholar]
- Bameri, M.; Abdolshahi, R.; Mohammadi-Nejad, G.; Yousefi, K.; Tabatabaie, S.M. Effect of Different Microelement Treatment on Wheat (Triticum aestivum) Growth and Yield. Int. Res. J. Basic Appl. Sci. 2012, 3, 219–223. [Google Scholar]
- Boorboori, M.R.; Eradatmand, A.D.; Tehrani, M. The Effect of Dose and Different Methods of Iron, Zinc, Manganese and Copper Application on Yield Components, Morphological Traits and Grain Protein Percentage of Barley Plant (Hordeum vulgare L.) in Greenhouse Conditions. J. Adv. Environ. Biol. 2012, 6, 740–746. [Google Scholar]
- Nadim, M.A.; Awan, I.U.; Baloch, M.S.; Khan, E.A.; Naveed, K.; Khan, M.A. Response of wheat (Triticum aestivum L.) to different micronutrients and their application methods. J. Anim. Plant Sci. 2012, 22, 113–119. [Google Scholar]
- Saeed, B.; Gul, H.; Khan, A.Z.; Parveen, L.; Badshah, N.L.; Khan, A. Physiological and quality assessment of wheat (Triticum aestivum L.) cultivars in response to soil and foliar fertilization of nitrogen and sulphur. ARPN J. Agric. Biol. Sci. 2012, 7, 121–129. [Google Scholar]
- Nadim, M.A.; Awan, I.U.; Baloch, M.S.; Khan, N.; Naveed, K. Micronutrient use efficiency in wheat as affected by different application methods. Pak. J. Bot. 2013, 45, 887–892. [Google Scholar]
- Borowski, E.; Michalek, S. The effect of foliar fertilization of French bean with iron salts and urea on some physiological processes in plants relative to iron uptake and translocation in leaves. Acta Sci. Pol. Hortorum Cultus 2021, 10, 183–193. [Google Scholar]
- Fernandez, V.; Sotiropoulos, T.; Brown, P. Foliar Fertilization: Principles and Practices; International Fertilizer Industry Association (IFA): Paris, France, 2013; p. 112. Available online: http://www.fertilizer.org/ (accessed on 5 December 2022).
- Nasiri, Y.; Zehtabe-Salmasi, S.; Nasrollahzade, S.; Najafi, N.; Ghassemi-Golezani, K. Effect of foliar application of micronutrient (Fe and Zn) on flower yield and essential oil of chamomile (Matricaria chamomila L.). J. Med. Plants Res. 2010, 4, 1733–1737. [Google Scholar]
- Dewal, G.S.; Pareek, R.G. Effect of Phosphorus, Sulphur and Zinc on Growth, Yield and Nutrient Uptake of wheat (Triticum aestivum L.). Indian J. Agron. 2004, 49, 160–162. [Google Scholar]
- WHO. World Health Report 2002: Reducing Risks, Promoting Healthy Life; World Health Organization: Geneva, Switzerland, 2002. [Google Scholar]
- Torun, A.; Ltekin, I.G.Ã.; Kalayci, M.; Yilmaz, A.; Eker, S.; Cakmak, I. Effects of Zinc Fertilization on Grain Yield and Shoot Concentrations of Zinc, Boron and Phosphorus of 25 Wheat Cultivars Grown on a Zinc-Deficient and Boron-Toxic Soil. J. Plant Nutr. 2001, 24, 1817–1829. [Google Scholar] [CrossRef]
- Gurmani, A.H.; Shahani, B.H.; Khan, S.; Khan, M.A. Effect of Various Micronutrients (Zn, Cu, Fe, Mn) on the Yield of Paddy. Sarhad J. Agric. 1988, 4, 515–520. [Google Scholar]
- Potarzycki, J.; Grzebisz, W. Effect of Zinc Foliar Application on Grain Yield of Maize and Its Yielding Components. Plant Soil Environ. 2009, 55, 519–527. [Google Scholar] [CrossRef] [Green Version]
- Pandey, M.; Shrestha, J.; Subedi, S.; Shah, K.K. Role of nutrients in wheat: A review. Trop. Agrobiodiversity 2020, 1, 18–23. [Google Scholar] [CrossRef]
- Mengel, K.; Kirkby, A.; Kosegarten, H.; Appel, T. Principles of Plant Nutrition, 5th ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001. [Google Scholar]
- Ul Hassan, Z.; Ali, S.; Rizwan, M.; Hussain, A.; Akbar, Z.; Rasool, N.; Abbas, F. Role of zinc in alleviating heavy metal stress. In Essential Plant Nutrients: Uptake, Use Efficiency, and Management; Springer: Cham, Switzerland, 2017; pp. 351–366. [Google Scholar]
- Cakmak, I. Plant nutrition research: Priorities to meet human needs for food in sustainable ways. Plant Soil 2002, 247, 3–24. [Google Scholar] [CrossRef]
- Snowball, K.; Robson, A.D. Nutrient Deficiencies and Toxicities in Wheat: A Guide for Field Identification; CIMMYT: México-Veracruz, Mexico, 1991. [Google Scholar]
- Ahsin, M.; Hussain, S.; Rengel, Z.; Amir, M. Zinc status and its requirement by rural adults consuming wheat from control or zinc-treated fields. Environ. Geochem. Health 2020, 42, 1877–1892. [Google Scholar] [CrossRef]
- Hotz, C.; Brown, K.H. Contents international zinc nutrition consultative group (IZiNCG) technical document. Food Nutr. Bull. 2004, 25, S94–S200. [Google Scholar]
- Moreno-Lora, A.; Delgado, A. Factors determining Zn availability and uptake by plants in soils developed under Mediterranean climate. Geoderma 2020, 376, 114509. [Google Scholar] [CrossRef]
- Epstein, E.; Bloom, A.J. Mineral Nutrition of Plants: Principles and Perspectives, 5th ed.; Sinauer Associates, Inc.: Sunderland, MA, USA, 2005. [Google Scholar]
- Sharma, J.C.; Chaudhary, S.K. Vertical distribution of micronutrient ions about soil characteristics in lower Shivalik of Solan district in north-west Himalayas. J. Ind. Soc. Soil Sci. 2007, 55, 40–44. [Google Scholar]
- Firdous, S.; Agarwal, B.K.; Shahi, D.K. Impact of boron application on wheat yield. J. Pharmacogn. Phytochem. 2018, 7, 206–208. [Google Scholar]
- Arafat, Y.; Shafi, M.; Khan, M.A.; Adnan, M.; Basir, A.; Arshad, M.; Shah, J.A. Yield response of wheat cultivars to zinc application rates and methods. Pure Appl. Biol. (PAB) 2021, 5, 1260–1270. [Google Scholar] [CrossRef]
- Malakouti, M.J. The effect of micronutrients in ensuring efficient use of macro-nutrients. Turk. J. Agric. For. 2008, 32, 215–220. [Google Scholar]
- Tao, Z.Q.; Wang, D.M.; Chang, X.H.; Wang, Y.J.; Yang, Y.S.; Zhao, G.C. Effects of zinc fertilizer and short-term high temperature stress on wheat grain production and wheat flour proteins. J. Integr. Agric. 2018, 17, 1979–1990. [Google Scholar] [CrossRef] [Green Version]
- Habib, M. Effect of foliar application of Zn and Fe on wheat yield and quality. Afr. J. Biotechnol. 2009, 8, 6795–6798. [Google Scholar]
- Abdoli, M. Effects of Micronutrient Fertilization on the Overall Quality of Crops. In Plant Micronutrients; Springer: Cham, Switzerland, 2020; pp. 31–71. [Google Scholar]
- Hassan, M.U.; Chattha, M.U.; Ullah, A.; Khan, I.; Qadeer, A.; Aamer, M.; Khan, A.U.; Nadeem, F.; Khan, T.A. Agronomic biofortification to improve productivity and grain Zn concentration of bread wheat. Int. J. Agric. Biol. 2019, 21, 615–620. [Google Scholar]
- Velu, G.; Ortiz-Monasterio, I.; Cakmak, I.; Hao, Y.; Singh, R.Á. Biofortification strategies to increase grain zinc and iron concentrations in wheat. J. Cereal Sci. 2014, 59, 365–372. [Google Scholar] [CrossRef]
- Khan, M.K.; Pandey, A.; Hamurcu, M.; Gezgin, S.; Athar, T.; Rajput, V.D.; Gupta, O.P.; Minkina, T. Insight into the Prospects for Nanotechnology in Wheat Biofortification. Biology 2021, 10, 1123. [Google Scholar] [CrossRef]
- Shahrokhi, N.; Khourgami, A.; Nasrollahi, H.; Shirani-Rad, A.H. The effect of iron sulfate spraying on yield and some qualitative characteristics in three wheat cultivars. Ann. Biol. Res. 2012, 3, 5205–5210. [Google Scholar]
- Soetan, K.O.; Olaiya, C.O.; Oyewole, O.E. A review of the importance of mineral elements for humans, domestic animals, and plants. Afr. J. Food Sci. 2010, 4, 200–222. [Google Scholar]
- Makawita, G.I.P.S.; Wickramasinghe, I.; Wijesekara, I. Using brown seaweed as a biofertilizer in the crop management industry and assessing the nutrient upliftment of crops. Asian J. Agric. Biol. 2021, 29, 1–10. [Google Scholar]
- Malakouti, M.J. An Approach toward Self-Sufficiency and Enhancement of National Health—A Compilation of Papers; Ministry of Agriculture: Karaj, Iran, 2000.
- Attwell, B.; Kriedemann, P.; Turnbull, C. Plants in Action Australian Society of Plant Scientists; Macmillan Education: Melbourne, Australia, 1999. [Google Scholar]
- Langridge, P. Micronutrient Toxicity and Deficiency. In Wheat Improvement; Reynolds, M.P., Braun, H.J., Eds.; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Abbas, G.; Khan, M.Q.; Khan, M.J.; Hussain, F.; Hussain, I. Effect of iron on wheat growth and yield contributing parameters (Triticum aestivum L.). J. Anim. Plant Sci. 2009, 19, 135–139. [Google Scholar]
- Nair, M.K.; Augustine, L.F.; Konapur, A. Food-Based Interventions to Modify Diet Quality and Diversity to Address Multiple Micronutrient Deficiency. Front. Public Health 2016, 3, 277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdisa, J.D.; Gobena, R.A.; Hunduma, D.A.; Asefa, B.F.; Woticha, A.T. Effect of Blended NPSB and Nitrogen Application rates on Growth, Yield, and Yield Components of Bread Wheat (Triticum aestivum L.) at Gitilo Dale Research Site of Wallaga University, Western Ethiopia. Adv. Agric. 2022, 2022, 9. [Google Scholar] [CrossRef]
- Wimmer, M.A.; Abreu, I.; Bell, R.W.; Bienert, M.D.; Brown, P.H.; Dell, B.; Fujiwara, T.; Goldbach, H.E.; Lehto, T.; Mock, H.P.; et al. Boron: An essential element for vascular plants. A comment on Lewis ‘Boron: The essential element for vascular plants that never was’. New Phytol. 2019, 226, 1232–1237. [Google Scholar] [CrossRef] [PubMed]
- Mehboob, N.; Yasir, T.A.; Ul-Allah, S.; Nawaz, A.; Ahmad, N.; Hussain, M. Interactive Effect of Boron Application Methods and Boron-Tolerant Bacteria (Bacillus sp. MN54) Improves Nodulation, Grain Yield, Profitability and Biofortification of kabuli Chickpea Grown Under Irrigated and Rainfed Conditions. J. Soil Sci. Plant Nutr. 2022, 22, 4427. [Google Scholar] [CrossRef]
- Kashin, V.K. Boron in soils and plants of the West Transbaikal region. Eurasian Soil Sci. 2012, 45, 368–375. [Google Scholar] [CrossRef]
- Rehman, H.-U.; Aziz, T.; Farooq, M.; Wakeel, A.; Rengel, Z. Zinc nutrition in rice production systems: A review. Plant Soil 2012, 361, 203–226. [Google Scholar] [CrossRef]
- Hussain, M.; Khan, M.A.; Khan, M.B.; Farooq, M.; Farooq, S. Boron application improves growth, yield and net economic return of rice. Rice Sci. 2012, 19, 259–262. [Google Scholar] [CrossRef]
- Rehman, A.U.; Farooq, M.; Rashid, A.; Nadeem, F.; Stuerz, S.; Asch, F.; Bell, R.W.; Siddique, K.H. Boron nutrition of rice in different production systems. A review. Agron. Sustain. Dev. 2018, 38, 25. [Google Scholar] [CrossRef] [Green Version]
- Brdar-Jokanović, M. Boron Toxicity and Deficiency in Agricultural Plants. Int. J. Mol. Sci. 2020, 21, 1424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tefera, A.; Quintin, G. Ethiopia: Grain and Feed Annual Report. Global Agricultural Information Network. USDA Foreign Agriculture Service, Report Number ET. 2012;1201:2012. Available online: https://apps.fas.usda.gov/newgainapi/api/report/downloadreportbyfilename?filename=Grain%20and%20Feed%20Annual_Addis%20Ababa_Ethiopia_4-17-2012.pdf (accessed on 3 January 2023).
- Rawashdeh, H.; Sala, F. Effect of some micronutrients on growth and yield of wheat and its leaves and grain content of iron and boron. Bull. USAMV Ser. Agric. 2015, 72, 504–508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desta, B.T. The Synergy of Macro and Micro-Nutrients for Improving Durum Wheat Productivity in Ethiopia: A Review. Adv. Biosci. Bioeng. 2022, 10, 33–43. [Google Scholar]
- Moreiraa, A.; Moraesa, L.A.; de Melob, T.R.; Heinrichsc, R.; Morettid, L.G. Management of copper for crop production. Adv. Agron. 2022, 173, 257–298. [Google Scholar]
- Uchida, R. Essential nutrients for plant growth: Nutrient functions and deficiency symptoms. Plant Nutr. Manag. Hawaii’s Soils 2000, 4, 31–55. [Google Scholar]
- Bayat, M.; Zargar, M.; Astarkhanova, T.; Pakina, E.; Ladan, S.; Lyashko, M.; Shkurkin, S.I. Facile Biogenic Synthesis and Characterization of Seven Metal-Based Nanoparticles Conjugated with Phytochemical Bioactives Using Fragaria ananassa Leaf Extract. Molecules 2021, 26, 3025. [Google Scholar] [CrossRef]
- Wang, Z.; Hassan, M.U.; Nadeem, F.; Wu, L.; Zhang, F.; Li, X. Magnesium Fertilization Improves Crop Yield in Most Production Systems: A Meta-Analysis. Front. Plant Sci. 2020, 10, 1727. [Google Scholar] [CrossRef] [Green Version]
- Hofmann, T.; Lowry, G.V.; Ghoshal, S.; Tufenkji, N.; Brambilla, D.; Dutcher, J.R.; Gilbertson, L.M.; Giraldo, J.P.; Kinsella, J.M.; Landry, M.P.; et al. Technology readiness and overcoming barriers to sustainably implement nanotechnology-enabled plant agriculture. Nat. Food 2020, 1, 416–425. [Google Scholar] [CrossRef]
- Bayat, M.; Zargar, M.; Chudinova, E.; Astarkhanova, T.; Pakina, E. In Vitro Evaluation of Antibacterial and Antifungal Activity of Biogenic Silver and Copper Nanoparticles: The First Report of Applying Biogenic Nanoparticles against Pilidium concavum and Pestalotia sp. Fungi. Molecules 2021, 26, 5402. [Google Scholar] [CrossRef] [PubMed]
- Karamanos, R.E.; Walley, F.L.; Flaten, P.L. Effectiveness of seedrow placement of granular copper products for wheat. Can. J. Soil Sci. 2005, 85, 295–306. [Google Scholar] [CrossRef]
- Karamanos, R.E.; Goh, T.B. Effect of rate of copper application on the yield of hard red spring wheat. Commun. Soil Sci. Plant Anal. 2004, 35, 2037–2047. [Google Scholar] [CrossRef]
- Miloudi, B.; Masmoudi, A. Effect of Foliar Application of Micronutrients on Durum Wheat in Salted and Calcareous Soil. In Sustainable Energy-Water-Environment Nexus in Deserts; Heggy, E., Bermudez, V., Vermeersch, M., Eds.; Springer: Cham, Switzerland, 2022; pp. 629–634. [Google Scholar]
- Mekkei, M.E.R.; El-Haggan Eman, A.M.A. Effect of Cu, Fe, Mn, Zn foliar application on productivity and quality of some wheat cultivars (Triticum aestivum L.). J. Agri-Food Appl. Sci. 2014, 2, 283–291. [Google Scholar]
- Khan, M.B.; Farooq, M.; Shahnawaz, M.H.; Shabir, G. Foliarapplication of micronutrients improves the wheat yield and net economic return. Int. J. Agric. Biol. 2010, 12, 953–956. [Google Scholar]
- Yassen, A.A.; Abou Seeda, M.A.; Abou El-Nour, E.A.A.; El-Sayed, A.A. Effectiveness of foliar application of different cu-chelated forms on growth, yield and nutritional status of wheat plants. Plant Arch. 2020, 20, 3710–3716. [Google Scholar]
- Kumar, R.; Mehrotra, N.K.; Nautiyal, B.D.; Kumar, P.; Singh, P.K. Effect of copper on growth, yield and concentration of Fe, Mn, Zn and Cu in wheat plants (Triticum aestivum L.). J. Environ. Biol. 2009, 30, 485–488. [Google Scholar]
- Azhar, U.A.; Ghulam, S.; Muhammad, A.; Sher, M. Effect of soil and foliar applied copper on growth and yield of wheat (Triticum aestivum L.) Pakistan. J. Agric. Res. 2016, 29, 1. [Google Scholar]
- Zain, M.; Khan, I.; Khan Qadri, R.; Ashraf, U.; Hussain, S.; Minhas, S.; Siddiquei, A.; Jahangir, M.; Bashir, M. Foliar Application of Micronutrients Enhances Wheat Growth, Yield and Related Attributes. Am. J. Plant Sci. 2015, 6, 864–869. [Google Scholar] [CrossRef] [Green Version]
- Mendel, R.R. The molybdenum cofactor. J. Biol. Chem. 2013, 288, 13165–13172. [Google Scholar] [CrossRef] [Green Version]
- Bittner, F. Molybdenum metabolism in plants and crosstalk to iron. Front. Plant Sci. 2014, 5, 28. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, B.N.; Gridley, K.L.; Brady, J.N.; Phillips, T.; Tyerman, S.D. The role of molybdenum in agricultural plant production. Ann. Bot. 2005, 96, 745–754. [Google Scholar] [CrossRef]
- Moussa, M.G.; Sun, X.; Ismael, M.A.; Elyamine, A.M.; Rana, M.S.; Syaifudin, M.; Hu, C. Molybdenum-Induced Effects on Grain Yield, Macro–micro-nutrient Uptake, and Allocation in Mo-Inefficient Winter Wheat. J. Plant Growth Regul. 2022, 41, 1516–1531. [Google Scholar] [CrossRef]
- Zhang, M.; Hu, C.; Zhao, X.; Tan, Q.; Sun, X.; Cao, A.; Cui, M.; Zhang, Y. Molybdenum improves antioxidant and osmotic-adjustment ability against salt stress in Chinese cabbage (Brassica campestris L. ssp. Pekinensis). Plant Soil 2012, 355, 375–383. [Google Scholar] [CrossRef]
- Wu, S.; Hu, C.; Tan, Q.; Zhao, X.; Xu, S.; Xia, Y.; Sun, X. Nitric oxide acts downstream of abscisic acid in molybdenum-induced oxidative tolerance in wheat. Plant Cell Rep. 2018, 37, 599–610. [Google Scholar] [CrossRef] [PubMed]
- Rana, M.S.; Bhantana, P.; Imran, M.; Saleem, M.H.; Moussa, M.G.; Khan, Z.; Khan, I.; Alam, M.; Abbas, M.; Binyamin, R.; et al. Molybdenum potential vital role in plants metabolism for optimizing the growth and development. Ann. Environ. Sci. Toxicol. 2020, 4, 032–044. [Google Scholar]
- Wen, X.; Hu, C.; Sun, X.; Zhao, X.; Tan, Q. Research on the nitrogen transformation in rhizosphere of winter wheat (Triticum aestivum) under molybdenum addition. Environ. Sci. Pollut. Res. Int. 2019, 26, 2363–2374. [Google Scholar] [CrossRef] [PubMed]
- Rana, M.S.; Sun, X.; Imran, M.; Ali, S.; Shaaban, M.; Moussa, M.G.; Khan, Z.; Afzal, J.; Binyamin, R.; Bhantana, P.; et al. Molybdenum-induced effects on leaf ultra-structure and rhizosphere phosphorus transformation in Triticum aestivum L. Plant Physiol. Biochem. 2020, 153, 20–29. [Google Scholar] [CrossRef]
- Rana, M.S.; Sun, X.; Imran, M.; Khan, Z.; Moussa, M.G.; Abbas, M.; Bhantana, P.; Syaifudin, M.; Din, I.U.; Younas, M.; et al. Mo-Inefficient wheat response toward molybdenum supply in terms of soil phosphorus availability. J. Soil Sci. Plant Nutr. 2020, 20, 1560–1573. [Google Scholar] [CrossRef]
- Johansen, C.; Musa, A.M.; Kumar Rao, J.V.D.K.; Harris, D.; Shahidullah, A.K.M.; Lauren, G.J. Seed priming with molybdenum alleviates molybdenum deficiency and poor nitrogen fixation of chickpea in acid soils of Bangladesh and India. In Proceedings of the 18th World Congress of Soil Science, Philadelphia, PA, USA, 9–15 July 2006; Available online: https://bit.ly/3hyJgN9 (accessed on 28 November 2022).
- Malla, R.M.; Padmaja, B.; Malathi, S.; Jalapathi, R.L. Effects of micronutrients on growth and yield of pigeonpea. J. Semi-Arid Trop. Agric. Res. 2007, 5, 1–3. [Google Scholar]
- Lv, X.; Zhang, Y.; Hu, L.; Zhang, Y.; Zhang, B.; Xia, H.; Du, W.; Fan, S.; Kong, L. Low-nitrogen stress stimulates lateral root initiation and nitrogen assimilation in wheat: Roles of phytohormone signaling. J. Plant Growth Regul. 2021, 40, 436–450. [Google Scholar] [CrossRef]
- Bhantana, P.; Rana, M.S.; Sun, X.C.; Moussa, M.G.; Saleem, M.H.; Syaifudin, M.; Shah, A.; Poudel, A.; Pun, A.B.; Bhat, M.A.; et al. Arbuscular mycorrhizal fungi and its major role in plant growth, zinc nutrition, phosphorous regulation and phytoremediation. Symbiosis 2021, 4, 19–37. [Google Scholar] [CrossRef]
- Imran, M.; Hussain, S.; Rana, M.S.; Saleem, M.H.; Rasul, F.; Ali, K.H.; Potcho, M.P.; Pan, S.; Duan, M.; Tang, X. Molybdenum improves 2-acetyl-1-pyrroline, grain quality traits and yield attributes in fragrant rice through efficient nitrogen assimilation under cadmium toxicity. Ecotoxicol. Environ. Saf. 2021, 211, 111911. [Google Scholar] [CrossRef] [PubMed]
- Baker, A.V.; Philbeam, D.J. Handbook of Plant Nutrition; Taylor and Francis Group: New York, NY, USA, 2007; pp. 375–394. [Google Scholar]
- Johnson, L.E. Selenium Deficiency. MSD MANUAL Professional Version. 2022. Available online: https://www.msdmanuals.com/professional/nutritional-disorders/ (accessed on 3 September 2022).
- Schwarz, G.; Mendel, R.R.; Ribbe, M.W. Molybdenum cofactors, enzymes and pathways. Nature 2009, 460, 839–847. [Google Scholar] [CrossRef] [PubMed]
- Faria, J.M.; Teixeira, D.M.; Pinto, A.P.; Brito, I.; Barrulas, P.; Alho, L.; Carvalho, M. Toxic levels of manganese in an acidic Cambisol alters antioxidant enzymes activity, element uptake and subcellular distribution in Triticum aestivum. Ecotoxicol. Environ. Saf. 2020, 193, 110355. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xu, Y.; Liang, X.; Wang, L.; Sun, Y.; Huang, Q.; Qin, X.; Zhao, L. Soil application of manganese sulfate could reduce wheat Cd accumulation in Cd contaminated soil by the modulation of the key tissues and ionomic of wheat. Sci. Total Environ. 2021, 770, 145328. [Google Scholar] [CrossRef] [PubMed]
- Shaltout, K.; Motawee, M.; Ahmed, D.; EL-Etreby, M. Effect of Foliar Spray with K and Mn on the Growth of Swietenia mahagoni (L.) Jacq. under Different Drought Levels. J. Basic Environ. Sci. 2022, 9, 1–11. [Google Scholar]
- Izmailov, S.F. Agrochemistry by B.A. Yagodin, Yu.P. Zhukov, and V.I. Kobzarenko, Moscow: Kolos, 2002. Biol. Bulletin 2003, 30, 533. [Google Scholar] [CrossRef]
- Denton-Thompson, S.M.; Sayer, E.J. Micronutrients in food production: What can we learn from natural ecosystems? Soil Syst. 2022, 6, 8. [Google Scholar] [CrossRef]
- Alejandro, S.; Höller, S.; Meier, B.; Peiter, E. Manganese in Plants: From Acquisition to Subcellular Allocation. Front. Plant Sci. 2020, 11, 300. [Google Scholar] [CrossRef] [Green Version]
- Heine, G.; Max, J.F.J.; Führs, H.; Moran-Puente, D.W.; Heintz, D.; Horst, W.J. Effect of manganese on the resistance of tomato to Pseudocercospora fuligena. J. Plant Nutr. Soil Sci. 2011, 174, 827–836. [Google Scholar] [CrossRef]
- Rai, S.; Singh, P.K.; Mankotia, S.; Swain, J.; Satbhai, S.B. Iron homeostasis in plants and its crosstalk with copper, zinc, and manganese. Plant Stress 2021, 1, 100008. [Google Scholar] [CrossRef]
- Barman, A.; Pandey, R.N.; Singh, B.; Das, B. Manganese deficiency in wheat genotypes: Physiological responses and manganese deficiency tolerance index. J. Plant Nutr. 2017, 40, 2691–2708. [Google Scholar] [CrossRef]
- Mudarisov, F.A.; Isaev, Y.M.; Semashkin, N.M.; Semashkina, A.I. The analysis of grain quality using trace elements in the winter wheat cultivation technology. In AIP Conference Proceedings; AIP Publishing LLC: Woodbury, NY, USA, 2022; Volume 2503, p. 030021. [Google Scholar]
- Ali, A.U.; Sarwar, G.; Tahir, M.A.; Noorka, I.R. Improving human health through biofortification of manganese in wheat (Triticum aestivum L.) crops. Int. J. Med. Appl. Health 2015, 3, 1–6. [Google Scholar]
- Shahrajabian, M.H.; Khoshkharam, M.; Sun, W.; Cheng, Q. The impact of manganese sulfate on increasing grain yield, protein and manganese content of wheat cultivars in semi arid region. J. Stress Physiol. Biochem. 2020, 16, 76–79. [Google Scholar]
- Liu, P.; Yang, Y. Research on development of molybdenum in soil and its effects on vegetation. Agri-Environ. Prot. 2001, 20, 280–282. [Google Scholar]
- Abbas, G.; Khan, M.Q.; Khan, M.J.; Tahir, M.; Ishaque, M.; Hussain, F. Nutrient uptake, growth, and yield of wheat (Triticum aestivum L.) as affected by manganese application. Pak. J. Bot. 2011, 43, 607–616. [Google Scholar]
- Zulfiqar, U.; Hussain, S.; Ishfaq, M.; Ali, N.; Ahmad, M.; Ihsan, F.; Sheteiwy, M.S.; Rauf, A.; Hano, C.; El-Esawi, M.A. Manganese supply improves bread wheat productivity, economic returns, and grain biofortification under conventional and no-tillage systems. Agriculture 2021, 11, 142. [Google Scholar] [CrossRef]
- WHO. Healthy Diet; WHO World Health Organization: Geneva, Switzerland, 2020; Available online: https://www.who.int/news-room/fact-sheets/detail/healthy-diet (accessed on 29 April 2020).
- Michaud, A.M.; Chappellaz, C.; Hinsinger, P. Copper phytotoxicity affects root elongation and iron nutrition in durum wheat (Triticum turgidum durum L.). Plant Soil 2008, 310, 151–165. [Google Scholar] [CrossRef]
Micronutrient | Form/Concentration | Application Method | Yield Quantity and Quality | References | |
---|---|---|---|---|---|
Mn | salt (MnCl2·4H2O) | soil application | 9% yield increase | [32] | |
bulk (MnCl2·4H2O) | 13% yield increase | ||||
nano (Mn2O3) | 16% yield increase | ||||
nano (Mn2O3) | foliar application | 22% yield increase | |||
Mn | Mn (MnSO4): 0.1 and 0.01 M | seed treatment | 3.87 increase in Mg ha−1 | increase in the Mn concentration of the grains | [33] |
Mn (MnSO4): 250 and 500 mg Mn kg −1 | 3.57 increase in Mg ha−1 | ||||
a 0.75 M solution of Mn (MnSO4) | foliar application | 3.74 increase in Mg ha−1 | |||
Cu | NPK + Cu | foliar application | increased content of Cu and glutenins in the grain | [34] | |
Zn | Zn + NPK | ||||
Cu + Zn + Mn | NPK + (Cu + Zn + Mn) | increase in the contents of Cu, Zn, gliadins, and glutenins in the grain | |||
Mn | Mn + NPK | increase in the Fe content in gliadin fractions, as well as glutenins | |||
Mn | Mn at 1.5 kg ha−1 | foliar application | increase in the Zn and Fe contents in the grain | [35] | |
Zn + Fe | nutrient mixture (Zn+ Fe) | improved spike length, number of spikelets /spike, number of spike/m2, number of tillers/m2, number of grains/spike, 1000-grain weight | |||
Mo | Mo [(NH)6Mo7O24∙4H2O] + NH4+, NO3− and NH4NO3 | soil application | Mo increased N uptake efficiency in wheat | [36] | |
Mo | Mo 40 g ha −1 | seed treatment | wheat seed yield increased with increasing N levels in the top dressing | [37] | |
foliar application | |||||
each at 20 g ha −1 | seed + foliar application | ||||
Mo | Mo [(NH4)2MoO4] | soil application | increased the grain yield of winter wheat, the number of ears, and the weight per thousand grains | [38] | |
Zn | Zn (ZnSO4) | ||||
Mo + Zn | Mo [(NH4)2MoO4] + Zn (ZnSO4) | ||||
Zn | compost 10 t ha−1 + 10.0 kg Zn ha−1 | soil application | improved the plant height (8.08%), tillers/m2 (21.61%), spikes/m2 (22.33%), and spike length (40.50%), as well as an increased yield (18.37%) compared to control | [39] | |
(ZnSO4) (4%, 6%) | foliar application | 6% zinc application for improved plant growth, yield-related traits, and nutritional quality | [40] | ||
Zn-Se | 1.5 kg Zn ha−1 (ZnSO4) + 10 g Se ha−1 (Na2SeO4) + N (0, 105, 140, 180 kg N ha−1) | foliar application | foliar Zn-Se application had a substantial positive effect on the Zn and Se grain concentrations, while the grain Fe, P, and Cd concentrations decreased under foliar Zn-Se application | [41] | |
Zn + Fe, | Zn + Fe, Zn, Fe (Zn-EDTA and Fe-EDTA) | foliar application | combined foliar application of Zn and Fe increased the grain Zn and Fe, thus alleviating the adverse effects of water stress on all wheat ploidy levels, making biofortification cost-effective | [31] | |
B | B (50 ppm) in booting growth stage or in anthesis stage | foliar application | the mean values obtained for the boron application time were a potential contributor to the total grain mass by improving the plant height, spike length, number of spikelets, grain yield plant−1, 1000-grain weight, and grain yield ha−1. Foliar boron application in the booting stage (B1) under normal irrigation levels (I3 = 100% wheat water requirement) produced the highest recorded values for all the studied trades | [42] | |
B | B-coated urea and B coating + fertilizer urea nitrogen | seed treatment | the boron-coated urea (0.5% B) increased the leaf area index (30.2%), spike length (12.5%), number of spikes (10.9%), filled grains (15.7%), and grain weight (16.3%) per spike. Furthermore, the grain and straw yields of spring wheat increased by 11% and 10.6%, respectively, as compared to uncoated prilled urea. It also increased the N concentration and N uptake in both wheat grain and straw. The net returns (USD915.1 ha−1) and benefit:cost ratio (1.40) were also the highest with 0.5% boron-coated urea, being significantly higher than uncoated prilled urea | [43] | |
B | calcium sulfate (4 mM and 8 mM), potassium sulfate (2% and 4%), and borax (10 mg and 20 mg) | foliar application | the foliar spray of calcium, potassium, and boron enhanced the plant height, plant biomass, and the amount of chlorophyll synthesis, as well as thew yield, thus reducing the negative effects of drought | [44] | |
Zn + Fe | Zn (ZnSO4H 2O) and Fe (FeSO47H2O): 100% Zn, 80% Zn + 20% Fe, 60% Zn + 40% Fe, 40% Zn + 60% Fe, 20% Zn + 80% Fe, and 100% Fe. | foliar application | grain crude fat content remained unaffected. Crude fiber was enhanced up to three-fold by 60% Zn + 40% Fe5.5 (5.5 kg ha−1 of 60% Zn + 40% Fe). Moreover, 80% Zn + 20% Fe5.5 (5.5 kg ha−1 of 80% Zn + 20% Fe) was the best combination for increasing the crude protein. Zinc applied alone enhanced the Zn concentration in grain | [13] |
Micronutrient | Pathway | Enzymes | Symptom | Source | Deficiency |
---|---|---|---|---|---|
Copper (Cu) | Electron transport | Ascorbic acid oxidase, tyrosinase, monoamine oxidase, uricase, cytochrome oxidase, phenolate, laccase, and plastocyanin | Copper is immobile, which means that deficiency symptoms occur in the new leaves. Note that these manifest differently depending on the crop. Typically, symptoms start with a bulging and slight chlorosis of the leaf or appear between the veins of the new leaves. | Cu2+ |
|
Chlorine (Cl) | Photosynthetic reactions | Poor germination, chlorosis, and necrotic lesions. | Cl− |
| |
Manganese (Mn) | Respiration | Some dehydrogenases, decarboxylases, kinases, oxidases, and peroxidases | Reduced sugar and cellulose contents, increased drought sensitivity, reduced fertility. | Mn2+ |
|
Nickel (NI) | Catalyst in enzymes used to help legumes, fixes nitrogen. | Urease and hydrogenases | Impeded use of nitrogenous fertilizers. Nickel deficiency causes urea toxicity. | Ni2+ |
|
Molybdenum (Mo) | Nitrogen use | Nitrogenase, nitrogen reductase | The symptoms of molybdenum deficiency are similar to those of nitrogen (chlorosis) or sulfur deficiency. The main symptoms are reduced growth and pale green foliage. | HMoO4− MoO42− |
|
Boron (B) | Cell division, growth, and membrane function | Synthesis of uracil, cell wall structure | Problems related to cell wall formation, including reduced shoot and root growth, infertility. | BO3− or B4O72− |
|
Zinc (Zn) | Electron transport and auxin biosynthesis | Alcohol dehydrogenase, glutamic dehydrogenase, and carbonic anhydrase | Like most micronutrients, zinc is immobile, which means that its deficiency symptoms (interveinal chlorosis and necrosis,) occur in new leaves. | Zn2+ |
|
Iron (Fe) | Plants absorb iron from the soil through ferric ions (Fe +++). It plays a vital role in cell division, respiration, and different steps involved in the electron transport system. It is an essential constituent of cytochrome and ferredoxin and acts as an activator of aconitase, catalase, peroxidase, and some Krebs cycle enzymes. It aids in chlorophyll synthesis but is not part of chlorophyll molecules. It is found as a fixed protein (phytoferritin) in leaves and the chromatin network of the nucleus. In metabolic reactions, it participates as Fe ++(Ferrous). | Young leaves show extensive chlorosis and may become white or yellow-white. The derailment of the reactions of photosynthesis, respiration, and protein synthesis occurs. Cell division activity is inhibited. Plant growth becomes slow. | Fe3+ (mostly) Fe2+ (mostly acidic soils) |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saquee, F.S.; Diakite, S.; Kavhiza, N.J.; Pakina, E.; Zargar, M. The Efficacy of Micronutrient Fertilizers on the Yield Formulation and Quality of Wheat Grains. Agronomy 2023, 13, 566. https://doi.org/10.3390/agronomy13020566
Saquee FS, Diakite S, Kavhiza NJ, Pakina E, Zargar M. The Efficacy of Micronutrient Fertilizers on the Yield Formulation and Quality of Wheat Grains. Agronomy. 2023; 13(2):566. https://doi.org/10.3390/agronomy13020566
Chicago/Turabian StyleSaquee, Francess Sia, Simbo Diakite, Nyasha John Kavhiza, Elena Pakina, and Meisam Zargar. 2023. "The Efficacy of Micronutrient Fertilizers on the Yield Formulation and Quality of Wheat Grains" Agronomy 13, no. 2: 566. https://doi.org/10.3390/agronomy13020566
APA StyleSaquee, F. S., Diakite, S., Kavhiza, N. J., Pakina, E., & Zargar, M. (2023). The Efficacy of Micronutrient Fertilizers on the Yield Formulation and Quality of Wheat Grains. Agronomy, 13(2), 566. https://doi.org/10.3390/agronomy13020566