Analysis of Seed Amino Acids in Vegetable Soybeans Dried by Freeze and Thermal Drying
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Field Experiments
2.2. Edamame Sampling and Drying
2.3. Seed Amino Acid Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. ANOVA and Comparison of Sample Types
3.2. Comparison of Edamame Drying Methods
3.3. Performance of Twenty Genotypes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fehr, W.R.; Caviness, C.E.; Burmood, D.T.; Pennington, J.S. Stage of development descriptions for soybeans, Glycine max (L.). Merrill. Crop Sci. 1971, 11, 929–931. [Google Scholar] [CrossRef]
- Shanmugasundaram, S.; Yan, M.R. Global expansion of high value vegetable soybean. In Proceedings of the 7th World Soybean Research Conference, Foz do Iguassur, Brazil, 29 February–5 March 2004; pp. 915–920. [Google Scholar]
- Shurtleff, W.; Aoyagi, A. History of Edamame, Green Vegetable Soybeans, and Vegetable-Type Soybeans (1275–2009): Extensively Annotated Bibliography and Sourcebook; SoyInfo Center: Lafayette, CA, USA, 2009; Available online: www.soyinfocenter.com (accessed on 21 November 2022).
- Messina, M.J. Legumes and soybeans: Overview of their nutritional profiles and health effects. Am. J. Clin. Nutr. 1999, 70, 439–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Binder, K. Edible Soybean Rises in Popularity with U.S. Consumers and Producers. Farm World Newspaper, 28 July 2010; MidCountry Media, Knightstown, IN, USA. 2010. Available online: https://www.farmworldonline.com/news/NewsArticle.asp?newsid=10620 (accessed on 10 December 2022).
- Zhang, Q.; Li, Y.; Chin, K.L.; Qi, Y. Vegetable soybean: Seed composition and production research. Ital. J. Agron. 2017, 12, 872. [Google Scholar] [CrossRef] [Green Version]
- Djanta, M.K.A.; Agoyi, E.E.; Agbahougba, S.; Quenum, F.J.-B.; Chadare, F.J.; Assogbadjo, A.E.; Agbangla, C.; Sinsin, B. Vegetable soybean, edamame: Research, production, utilization and analysis of its adoption in Sub-Saharan Africa. J. Hortic. For. 2020, 12, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Jiang, G.-L.; Rutto, L.K.; Ren, S. Evaluation of soybean lines for edamame yield traits and trait genetic correlation. HortScience 2018, 53, 1732–1736. [Google Scholar] [CrossRef] [Green Version]
- Young, D.; Mebrathu, T.; Johnson, J. Acceptability of green soybeans as a vegetable entity. Plant Foods Hum. Nutr. 2000, 55, 323–333. [Google Scholar] [CrossRef]
- Seid, S. Celebrity Beans Star as New Crop for Emerging Farmers. Sunday Times. 27 April 2014. Available online: https://www.timeslive.co.za/sunday-times/lifestyle/2014-04-27-celebrity-beans-star-as-new-crop-for-emerging-farmers/ (accessed on 20 October 2022).
- Mebrahtu, T.; Devine, T.E. Diallel analysis of sugar composition of 10 vegetable soybean lines. Plant Breed. 2009, 128, 249–252. [Google Scholar] [CrossRef]
- Ogles, C.Z.; Guertal, E.A.; Weaver, D.B. Edamame cultivar evaluation in Central Alabama. Agron. J. 2016, 108, 2371–2378. [Google Scholar] [CrossRef]
- Rao, M.S.S.; Bhagsari, A.S.; Mohamed, A.I. Fresh green seed yield and seed nutritional traits of vegetable soybean genotypes. Crop Sci. 2002, 42, 1950–1958. [Google Scholar] [CrossRef]
- Song, J.; Liu, C.; Li, D.; Gu, Z. Evaluation of sugar, free amino acid, and organic acid compositions of different varieties of vegetable soybean (Glycine max [L.] Merr). Ind. Crops Prod. 2013, 50, 743–749. [Google Scholar] [CrossRef]
- Williams, M.M., II. Phenomorphological characterization of vegetable soybean germplasm lines for commercial production. Crop Sci. 2015, 55, 1274–1279. [Google Scholar] [CrossRef]
- Gai, J.; Wang, M.; Chen, C. History and development of vegetable soybean production in China. Soybean Sci. 2002, 21, 7–13. [Google Scholar]
- Bai, Q.; Yang, E.; Feng, G.; Zhang, L.; Xu, S.; Gao, Y.; Zhong, L. Research Advances of China Vegetable Soybean. Chin. Agri. Sci. Bull. 2006, 22, 377. [Google Scholar]
- Lumpkin, T.A.; Konovsky, J.C. A critical analysis of vegetable soybean production, demand, and research in Japan. In Vegetable Soybean: Research Needs for Production and Quality Improvement; Shanmugasundaram, S., Ed.; Asian Vegetable Research and Development Center: Tainan, Taiwan, 1991; pp. 45–51. [Google Scholar]
- Masuda, R. Quality requirement and improvement of vegetable soybean. In Vegetable Soybean: Research Needs for Production and Quality Improvement; Shanmugasundram, S., Ed.; Asian Vegetable Research and Development Center: Tainan, Taiwan, 1991; pp. 92–102. [Google Scholar]
- Akazawa, T.; Yanagisawa, Y.; Sasahara, T. Concentrations of water-soluble nitrogen and amino acids as criteria for discriminating vegetable-type and grain-type soybean cultivars. Breed. Sci. 1997, 47, 39–44. [Google Scholar] [CrossRef]
- Yanagisawa, Y.; Akazawa, T.; Abe, T.; Sasahara, T. Changes in free amino acid and Kjeldahl N concentrations in seeds from vegetable-type and grain-type soybean cultivars during the cropping season. J. Agric. Food Chem. 1997, 45, 1720–1724. [Google Scholar] [CrossRef]
- Masuda, R.; Harada, K.; Saito, M. Enhancement of sweet components in vegetable soybean seeds: Starch degradation during cooking enhance flavor of immature seeds. In Proceedings of the 2nd International Vegetable Soybean Conference, Tacoma, WA, USA, 10–12 August 2001; Lumpkim, T.A., Shanmugasundara, S., Eds.; Washington State University: Pullman, VA, USA, 2001; pp. 105–108. [Google Scholar]
- Sugimoto, M.; Goto, H.; Otomo KIto, M.; Onuma, H.; Suzuki, A.; Sugawara, M.; Abe, S.; Tomita, M.; Soga, T. Metabolomic profile and sensory attributes of edamame under various storage duration and temperature conditions. J. Agric. Food Chem. 2010, 58, 8418–8425. [Google Scholar] [CrossRef] [PubMed]
- Hajika, M. An overview of legume cultivation in Japan. JIRCAS International Symposium Proceedings. 2016. Available online: https://www.jircas.go.jp/ja/publication/proceedings/2016/47 (accessed on 10 February 2023).
- Mimura, M.; Coyne, C.J.; Bambuck, M.W.; Lumpkin, T.A. SSR diversity of vegetable soybean [Glycine max (L.) Merr.]. Genet. Resour. Crop Evol. 2007, 54, 441–453. [Google Scholar] [CrossRef]
- Lv, X. Approval for Release of Two New Cultivars of Vegetable Soybean. China Science Daily. 21 May 2019. Available online: https://www.cas.cn/cm/201905/t20190521_4692648.shtml (accessed on 8 February 2023).
- Chen, H.; Zhang, H.; Yuan, X.; Liu, X.; Cui, X.; Gu, H.; Chen, X. Breeding and cultivation techniques of summer sowing type edamame variety ‘Sudou No.18’ of SMV resistance and early maturity. J. Agric. 2019, 9, 1–4. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, Z.; Han, M.; Zhao, G.; Li, Y. Introduction to new vegetable soybean cultivar “Taihu Chunzao”. China Veg. 2013, 9, 34–35. [Google Scholar]
- Han, L.; Gai, J.; Qiu, J. Study on evaluation method of quality traits of vegetable soybean. Soybean Sci. 2002, 21, 274–277. [Google Scholar]
- Li, Y.-S.; Du, M.; Zhang, Q.-Y.; Wang, G.-H.; Hashemi, M.; Liu, X.-B. Greater differences exist in seed protein, oil, total soluble sugar and sucrose content of vegetable soybean genotypes [Glycine max (L.) Merrill] in Northeast China. Aust. J. Crop Sci. 2012, 6, 1681–1686. [Google Scholar]
- Zhang, Y.M.; Zhao, J.M.; Wang, M.J.; Xing, H.; Gai, J.Y. Genetic variance of nutritional quality of vegetable soybean germplasm in southern China. Soybean Sci. 2006, 3, 239–243. [Google Scholar]
- Bu, Y.; Zhang, X.; Wang, C.; Guo, J.; Zhang, X.; Li, X.; Yan, Q.; Zhao, J.; Xing, H. Conditional and unconditional QTL analyses of seed hardness in vegetable soybean (Glycine max L. Merr.). Euphytica 2018, 214, 237. [Google Scholar] [CrossRef]
- Zandonadi, R.; Stombaugh, T.; Coolong, T.; Pfeiffer, T. Mechanical Harvesting of Edamame. 2010. Available online: https://www.uky.edu/ccd/sites/www.uky.edu.ccd/files/edamame_mechanical_harvest.pdf (accessed on 10 December 2022).
- American Association of Cereal Chemists (AACC). Approved Methods of the AACC, Methods 46–30; American Association of Cereal Chemists: St. Paul, MN, USA, 2000. [Google Scholar]
- AOAC. Official Methods of Analysis; Association of Official Analytical Chemists: Arlington, VA, USA, 1990. [Google Scholar]
- Karn, A.; Heim, C.; Flint-Garcia, S.; Bilyeu, K. Development of rigorous fatty acid near-infrared spectroscopy quantitation methods in support of soybean oil improvement. J. Am. Oil Chem. Soc. 2017, 94, 69–76. [Google Scholar] [CrossRef]
- Singh, S.; Patel, S.; Litoria, N.; Gandhi, K.; Faldu, P.; Patel, K.G. Comparative efficiency of conventional and NIR based technique for proximate composition of pigeon pea, soybean and rice cultivars. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 773–782. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Chen, S.; Wu, X.; Xing, C.; Yuan, J. Determination of soybean routine quality parameters using near-infrared spectroscopy. Food Sci. Nutr. 2018, 6, 1109–1118. [Google Scholar] [CrossRef] [Green Version]
- Kovalenko, I.V.; Rippe, G.R.; Hyrburgh, C.R. Determination of amino acid composition of soybeans (Glycine max) by near-infrared spectroscopy. J. Agric. Food Chem. 2006, 54, 3485–3491. [Google Scholar] [CrossRef] [Green Version]
- Pazdernik, D.; Killam, A.S.; Orf, J.H. Analysis of amino and fatty acid composition in soybean seed, using near infrared reflectance spectroscopy. Agron. J. 1997, 89, 679–685. [Google Scholar] [CrossRef]
- Patil, A.G.; Oak, M.D.; Taware, S.P.; Tamhankar, S.A.; Rao, V.S. Nondestructive estimation of fatty acid composition in soybean [Glycine max (L.) Merrill] seeds using near-infrared transmittance spectroscopy. Food Chem. 2010, 120, 1210–1217. [Google Scholar] [CrossRef]
- Cen, H.; He, Y. Theory and application of near infrared reflectance spectroscopy in determination of food quality. Trends Food Sci. Technol. 2007, 18, 72–83. [Google Scholar] [CrossRef]
- Lee, H.; Cho, B.-K.; Kim, M.S.; Lee, W.-H.; Tewari, J.; Bae, H.; Sohn, S.-I.; Chi, H.-Y. Prediction of crude protein and oil content of soybeans using Raman spectroscopy. Sens. Actuators B Chem. 2013, 185, 694–700. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos, L.R.; de Zangirolami, M.S.; Silva, N.O.; Valderrama, P.; Marco, P.H. Rapid non-invasive assessment of quality parameters in ground soybean using near-infrared spectroscopy. Pesq. Agropec. Bras. 2018, 53, 97–104. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Jiang, G.-L.; Green, M.; Scott, R.A.; Song, Q.; Hyten, D.L.; Cregan, P.B. Identification and validation of quantitative trait loci for seed yield, oil and protein contents in two recombinant inbred populations of soybean. Mol. Genet. Genom. 2014, 289, 935–949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Wang, X.; Lu, Y.; Bhusal, S.; Song, Q.; Cregan, P.B.; Yen, Y.; Brown, M.; Jiang, G.-L. Genome-wide scan for seed composition provides insights into soybean quality improvement and the impacts of domestication and breeding. Mol. Plant 2018, 11, 460–472. [Google Scholar] [CrossRef] [Green Version]
- Jiang, G.-L.; Townsend, W.; Sismour, E.; Xu, Y. A study of application and comparison of thermal drying and freeze drying of fresh edamame seeds in the analysis of seed composition. Agronomy 2022, 12, 1993. [Google Scholar] [CrossRef]
- Salmani, Z.; Vijayalakshmi, D.; Sajjan, J.T. Screening of selected vegetable soybean genotypes for nutrient and antinutrient factors. J. Dairy. Foods Home Sci. 2012, 31, 142–145. [Google Scholar]
- Wang, Z.Q.; Senga, E.F.B.; Wang, D.Y. Vegetable soybean (Glycine max (L.) Merrill) from production to processing. Outlook Agric. 2005, 34, 167–172. [Google Scholar] [CrossRef]
- Jiang, G.-L.; Katuuramu, D.N. Comparison of seed fatty and amino acids in edamame dried using two oven-drying methods and mature soybeans. J. Sci. Food Agric. 2021, 101, 1515–1522. [Google Scholar] [CrossRef]
- Jiang, G.-L.; Katuuramu, D.N.; Xu, Y.; Ren, S.; Rutto, L.K. Analysis and comparison of seed protein, oil, and sugars in edamame dried using two oven-drying methods and mature soybeans. J. Sci. Food Agric. 2020, 100, 3987–3994. [Google Scholar] [CrossRef]
- Agrahar-Murugkar, D.; Jha, K. Effect of drying on nutritional and functional quality and electrophoretic pattern of soyflour from sprouted soybean (Glycine max). J. Food Sci. Technol. 2010, 47, 482–487. [Google Scholar] [CrossRef] [Green Version]
- Dobermann, D.; Field, L.M.; Michaelson, L.V. Impact of heat processing on the nutritional content of Gryllus bimaculatus (black cricket). Nutr. Bull. 2019, 44, 116–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mni, L. Effects of processing on soybean nutrients and potential impact on consumer health: An overview. Afr. J. Food Agric. Nutr. Dev. 2011, 11, 4. [Google Scholar] [CrossRef]
- Navicha, W.B.; Hua, Y.; Masamba, K.; Zhang, C. Effect of roasting temperatures and times on test parameters used in determination of adequacy of soybean processing. Adv. J. Food Sci. Technol. 2017, 13, 22–28. [Google Scholar] [CrossRef]
- Taira, H. Heat destruction of amino acids in soybean products. JARQ 1973, 7, 267–273. [Google Scholar]
- Hu, Q.-G.; Zhang, M.; Mujumdar, A.S.; Du, W.-H.; Sun, J.-C. Effects of different drying methods on the quality changes of granular edamame. Dry. Technol. 2006, 24, 1025–1032. [Google Scholar]
- Lara, L.M.; Wilson, S.A.; Chen, P.; Atungulu, G.G. The effects of infrared treatment on physicochemical characteristics of vegetable soybean. Heliyon 2019, 5, e01148. [Google Scholar] [CrossRef] [Green Version]
- Ozkan-Karabacak, A.; Ozean-Sinir, G.; Copur, O.U. Effects of drying methods on the composition of volatile compounds in fruits and vegetables. In Flavour Science: Proceedings of the XV Weurman Flavour Research Symposium; Siegmund, B., Leitner, E., Eds.; Verlag der Technischen Universitat Graz: Graz, Austria, 2018; pp. 95–98. [Google Scholar] [CrossRef]
- Sagar, V.R.; Kumar, P.S. Recent advances in drying and dehydration of fruits and vegetables: A review. J. Food Sci. Technol. 2010, 47, 15–26. [Google Scholar] [CrossRef] [Green Version]
- Bhatta, S.; Janezic, T.S.; Ratti, C. Freeze-drying of plant-based foods. Foods 2009, 9, 87. [Google Scholar] [CrossRef] [Green Version]
- Harrison, J.A.; Andress, L.E. Preserving Food: Drying Fruits and Vegetables; University of Georgia Cooperative Extension Service: Athens, GA, USA, 2000; Available online: https://nchfps.uga.edu/publications/uga_dry_fruit.pdf (accessed on 11 July 2022).
- Orak, H.H.; Aktas, T.; Yagar, H.; Isbilir, S.S.; Ekinci, N.; Sahin, F.H. Effects of hot air and freeze drying methods on antioxidant activity, color and some nutritional characteristics of strawberry tree (Arbutus unedo L.) fruit. Food Sci. Technol. Int. 2012, 18, 391–402. [Google Scholar] [CrossRef]
- Sablani, S.S. Drying of fruits and vegetables: Retention of nutritional/functional quality. Dry. Technol. 2006, 24, 123–135. [Google Scholar] [CrossRef]
- Zepp, M.; Hirneisen, A.; LaBorde, L. Let’s Preserve: Drying Fruits and Vegetables (Dehydration). PennState Extension. 2019. Available online: https://extension.psu.edu/lets-preserve-drying-fruits-and-vegetables-dehydration (accessed on 10 July 2022).
- Zhang, M.; Chen, H.; Mujumdar, A.S.; Tang, J.; Miao, S.; Wang, Y. Recent developments in high-quality drying of vegetables, fruits, and aquatic products. Crit. Rev. Food Sci. Nutr. 2017, 57, 1239–1255. [Google Scholar] [CrossRef] [PubMed]
- Schmutz, P.; Hoyle, E.H. Drying Foods. Clemson Cooperative Extension. 1999. Available online: https://hgic.clemson.edu/factsheet/drying-foods/ (accessed on 10 November 2022).
- Dehydrator Blog. Dehydrating Time & Temperature Guide: Fruits, Vegetables, Meat, Herbs, Spices & Leather. 2018. Available online: https://dehydratorblog.com/food-dehydrating-time-temperature-guide/ (accessed on 21 March 2022).
- Mercer, D.G. A Basic Guide to Drying Fruits and Vegetables; University of Guelph: Guelph, ON, Canada, 2012; Available online: http://iufost.org/iufostftp/Guide%20to%20Drying-Full.pdf (accessed on 6 August 2022).
- Jiang, G.-L. Comparison and application of non-destructive NIR evaluations of seed protein and oil content in soybean breeding. Agronomy 2020, 10, 77. [Google Scholar] [CrossRef] [Green Version]
- Burton, J.W.; Carter, T.E., Jr.; Fountain, M.O.; Bowman, D.T. Registration of ‘NC-Raleigh’ soybean. Crop Sci. 2006, 46, 2710–2711. [Google Scholar] [CrossRef] [Green Version]
Trait (mg g−1) | MSY a | MSS | MSM | MSG | MSMG | MSSG | MSSM | MSSMG |
---|---|---|---|---|---|---|---|---|
Cysteine | 4.91 ** | 22.86 ** | 1.75 ** | 1.18 ** | 0.09 | 0.10 | 4.17 ** | 0.04 |
Methionine | 0.35 ** | 0.25 * | 0.17 * | 0.41 ** | 0.02 | 0.03 | 0.31 ** | 0.01 |
Histidine | 1.02 ** | 0.17 | 3.47 ** | 3.63 ** | 0.03 | 0.04 | 1.69 ** | 0.03 |
Isoleucine | 20.33 ** | 7.73 ** | 2.90 ** | 8.51 ** | 0.10 | 0.09 | 1.52 ** | 0.05 |
Leucine | 41.03 ** | 3.42 * | 0.83 | 28.24 ** | 0.20 | 0.27 | 0.15 | 0.14 |
Lysine | 76.84 ** | 8.13 ** | 14.44 ** | 16.07 ** | 0.22 | 0.19 | 1.51 * | 0.17 |
Phenylalanine | 56.11 ** | 2.86 ** | 6.38 ** | 13.51 ** | 0.15 | 0.28 | 1.76 ** | 0.11 |
Threonine | 39.73 ** | 0.63 | 4.54 ** | 7.88 ** | 0.11 | 0.16 | 0.15 | 0.09 |
Tryptophan | 7.60 ** | 1.43 ** | 3.45 ** | 0.25 ** | 0.04 | 0.05 | 0.36 * | 0.02 |
Valine | 66.39 ** | 0.08 | 5.34 ** | 14.16 ** | 0.13 | 0.37 | 3.38 ** | 0.12 |
Alanine | 54.89 ** | 2.69 ** | 5.51 ** | 6.53 ** | 0.07 | 0.26 | 0.35 | 0.05 |
Arginine | 245.79 ** | 5.33 | 13.76 ** | 41.04 ** | 0.62 | 1.59 | 1.34 | 0.25 |
Aspartic acid | 86.44 ** | 25.11 ** | 24.57 ** | 66.51 ** | 0.57 | 0.62 | 15.78 ** | 0.38 |
Glutamic acid | 153.32 ** | 57.27 ** | 172.84 ** | 226.07 ** | 1.46 | 1.58 | 24.72 | 1.43 |
Glycine | 56.02 ** | 0.42 | 6.96 ** | 6.12 ** | 0.13 | 0.35 | 0.41 | 0.09 |
Proline | 65.56 ** | 3.25 | 79.65 ** | 10.80 ** | 0.48 | 1.69 | 1.50 | 0.25 |
Serine | 246.63 ** | 10.52 ** | 66.75 ** | 10.61 ** | 0.29 | 1.44 | 1.98 | 0.30 |
Tyrosine | 44.86 ** | 2.78 * | 14.81 ** | 4.69 ** | 0.10 | 0.22 | 3.71 ** | 0.04 |
Other AA b | 8.08 ** | 6.04 ** | 8.44 ** | 0.80 ** | 0.10 | 0.15 | 2.83 ** | 0.07 |
Total AA c | 13031.00 ** | 54.56 | 219.88 | 4626.93 ** | 35.31 | 64.63 | 35.01 | 25.25 |
Trait (mg g−1) | Mean | Difference | ||
---|---|---|---|---|
Ground Samples | Whole Seed Samples | Value | % of Ground Samples | |
Cysteine | 5.6 ± 0.5 | 6.1 ± 0.5 | 0.45 * | 7.99 |
Methionine | 5.0 ± 0.3 | 5.1 ± 0.3 | 0.04 * | 0.85 |
Histidine | 11.5 ± 0.6 | 11.4 ± 0.6 | −0.04 NS | −0.33 |
Isoleucine | 20.7 ± 0.7 | 21.0 ± 0.8 | 0.25 * | 1.22 |
Leucine | 33.5 ± 1.4 | 33.7 ± 1.4 | 0.17 * | 0.50 |
Lysine | 27.7 ± 1.2 | 27.9 ± 1.3 | 0.25 * | 0.92 |
Phenylalanine | 22.2 ± 1.0 | 22.3 ± 1.2 | 0.14 * | 0.64 |
Threonine | 16.5 ± 1.1 | 16.6 ± 0.8 | 0.07 NS | 0.43 |
Tryptophan | 3.9 ± 0.5 | 4.0 ± 0.2 | 0.11 * | 2.68 |
Valine | 20.4 ± 0.9 | 20.3 ± 1.4 | −0.05 NS | −0.24 |
Alanine | 18.4 ± 0.7 | 18.6 ± 1.1 | 0.13 * | 0.73 |
Arginine | 32.5 ± 1.8 | 32.2 ± 2.5 | −0.26 * | −0.81 |
Aspartic acid | 48.5 ± 2.5 | 48.0 ± 2.2 | −0.48 * | −0.98 |
Glutamic acid | 76.5 ± 4.5 | 75.8 ± 4.5 | −0.69 * | −0.90 |
Glycine | 18.6 ± 0.7 | 18.6 ± 1.2 | 0.04 NS | 0.22 |
Proline | 18.9 ± 1.4 | 19.0 ± 2.3 | 0.12 NS | 0.62 |
Serine | 19.0 ± 1.2 | 19.2 ± 2.4 | 0.26 * | 1.37 |
Tyrosine | 15.3 ± 0.7 | 15.5 ± 1.2 | 0.14 * | 0.91 |
Other AA a | 3.8 ± 0.5 | 3.6 ± 0.6 | −0.24 * | −6.22 |
Total AA b | 418.4 ± 18.0 | 418.8 ± 19.0 | 0.43 NS | 0.10 |
Trait (mg g−1) | Ground Samples | Whole Seed Samples | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
MSY a | MSM | MSG | MSMG | Repeatability | MSY | MSM | MSG | MSMG | Repeatability | |
Cysteine | 1.83 ** | 1.84 ** | 0.81 ** | 0.06 | 92.82 | 3.53 ** | 4.08 ** | 0.47 ** | 0.07 | 85.05 |
Methionine | 1.40 ** | 0.12 * | 0.23 ** | 0.02 | 91.63 | 0.88 ** | 0.37 ** | 0.20 ** | 0.02 | 92.26 |
Histidine | 8.74 ** | 1.16 ** | 1.73 ** | 0.03 | 98.05 | 5.06 ** | 4.00 ** | 1.95 ** | 0.03 | 98.48 |
Isoleucine | 10.78 ** | 0.11 | 3.96 ** | 0.08 | 98.01 | 12.02 ** | 4.31 ** | 4.61 ** | 0.07 | 98.41 |
Leucine | 51.76 ** | 0.49 | 12.73 ** | 0.11 | 99.12 | 10.08 ** | 0.50 | 15.80 ** | 0.23 | 98.53 |
Lysine | 32.21 ** | 5.68 ** | 7.46 ** | 0.17 | 97.69 | 45.20 ** | 10.27 ** | 8.79 ** | 0.22 | 97.47 |
Phenylalanine | 24.37 ** | 2.13 ** | 5.84 ** | 0.11 | 98.11 | 34.91 ** | 6.01 ** | 7.87 ** | 0.15 | 98.14 |
Threonine | 52.94 * | 3.09 ** | 3.50 ** | 0.07 | 98.11 | 2.90 ** | 1.60 ** | 4.55 ** | 0.13 | 97.24 |
Tryptophan | 13.64 ** | 2.99 ** | 0.11 | 0.04 | 33.36 | 0.19 ** | 0.82 ** | 0.16 ** | 0.02 | 86.84 |
Valine | 17.27 ** | 0.11 | 6.21 ** | 0.11 | 98.09 | 71.66 ** | 8.61 ** | 8.11 ** | 0.14 | 98.33 |
Alanine | 9.64 ** | 1.60 ** | 2.81 ** | 0.06 | 97.95 | 59.57 ** | 4.27 ** | 3.84 ** | 0.06 | 98.36 |
Arginine | 43.89 ** | 4.08 * | 20.63 ** | 0.40 | 98.05 | 260.98 ** | 11.02 ** | 21.23 ** | 0.47 | 97.78 |
Aspartic acid | 228.67 ** | 11.21 ** | 31.76 ** | 0.35 | 98.91 | 34.47 ** | 29.13 ** | 35.55 ** | 0.61 | 98.29 |
Glutamic acid | 595.03 ** | 47.43 ** | 108.37 ** | 0.98 | 99.09 | 456.98 ** | 150.13 ** | 119.30 ** | 1.90 | 98.41 |
Glycine | 8.51 ** | 2.70 ** | 2.72 ** | 0.12 | 95.77 | 62.30 ** | 4.67 ** | 3.60 ** | 0.10 | 97.12 |
Proline | 43.48 ** | 41.68 ** | 5.29 ** | 0.36 | 93.26 | 314.57 ** | 39.48 ** | 5.97 ** | 0.37 | 93.85 |
Serine | 27.39 ** | 25.35 ** | 4.28 ** | 0.19 | 95.52 | 305.92 ** | 43.38 ** | 7.00 ** | 0.40 | 94.34 |
Tyrosine | 4.59 ** | 7.38 ** | 2.21 ** | 0.07 | 96.70 | 73.77 ** | 11.14 ** | 2.57 ** | 0.07 | 97.32 |
Other AA b | 2.23 ** | 8.89 ** | 0.38 ** | 0.05 | 87.05 | 6.41 ** | 2.38 ** | 0.57 ** | 0.13 | 77.74 |
Total AA c | 7097.16 ** | 128.52 | 2130.69 ** | 24.63 | 98.84 | 6255.94 ** | 126.37 | 2545.02 ** | 35.92 | 98.59 |
Trait (mg g−1) | Freeze Drying | Low-Heat Drying | High-Heat Drying |
---|---|---|---|
Cysteine | 0.810 ** | 0.799 ** | 0.725 ** |
Methionine | 0.852 ** | 0.877 ** | 0.585 ** |
Histidine | 0.928 ** | 0.949 ** | 0.934 ** |
Isoleucine | 0.965 ** | 0.960 ** | 0.953 ** |
Leucine | 0.944 ** | 0.973 ** | 0.980 ** |
Lysine | 0.952 ** | 0.948 ** | 0.925 ** |
Phenylalanine | 0.942 ** | 0.948 ** | 0.931 ** |
Threonine | 0.900 ** | 0.967 ** | 0.935 ** |
Tryptophan | 0.387 | 0.555 * | 0.621 ** |
Valine | 0.958 ** | 0.923 ** | 0.896 ** |
Alanine | 0.946 ** | 0.938 ** | 0.829 ** |
Arginine | 0.914 ** | 0.902 ** | 0.887 ** |
Aspartic acid | 0.946 ** | 0.976 ** | 0.953 ** |
Glutamic acid | 0.928 ** | 0.979 ** | 0.972 ** |
Glycine | 0.902 ** | 0.896 ** | 0.736 ** |
Proline | 0.719 ** | 0.674 ** | 0.656 ** |
Serine | 0.862 ** | 0.758 ** | 0.620 ** |
Tyrosine | 0.909 ** | 0.904 ** | 0.825 ** |
Other AA a | 0.498 * | 0.384 | 0.682 ** |
Total AA b | 0.958 ** | 0.966 ** | 0.937 ** |
Average | 0.861 | 0.864 | 0.829 |
Whole Seed | Freeze Drying | Low-Heat Drying | High-Heat Drying | Repeatability (%) | |||||
Trait (mg g−1) | MSY a | MSG | MSY | MSG | MSY | MSG | Freeze Drying | Low-Heat Drying | High-Heat Drying |
Cysteine | 0.39 ** | 0.19 ** | 0.92 ** | 0.24 ** | 3.25 ** | 0.19 | 57.63 | 58.77 | 15.90 |
Methionine | 1.00 ** | 0.09 ** | 0.29 ** | 0.09 * | 0.08 | 0.05 | 77.99 | 53.85 | 34.93 |
Histidine | 3.38 ** | 0.68 ** | 1.75 ** | 0.73 ** | 0.61 ** | 0.61 ** | 90.27 | 91.31 | 91.36 |
Isoleucine | 4.53 ** | 1.50 ** | 7.84 ** | 1.74 ** | 1.59 ** | 1.51 ** | 86.53 | 91.72 | 92.33 |
Leucine | 7.18 ** | 5.39 ** | 4.94 ** | 5.73 ** | 3.78 ** | 5.14 ** | 90.68 | 93.01 | 93.49 |
Lysine | 11.66 ** | 2.94 ** | 19.40 ** | 3.09 ** | 16.43 ** | 3.20 ** | 84.59 | 89.89 | 93.21 |
Phenylalanine | 5.11 ** | 2.58 ** | 21.02 ** | 2.75 ** | 12.35 ** | 2.83 ** | 86.30 | 91.03 | 93.27 |
Threonine | 1.01 ** | 1.55 ** | 2.96 ** | 1.65 ** | 4.79 ** | 1.58 ** | 91.06 | 91.23 | 92.16 |
Tryptophan | 0.17 ** | 0.07 * | 0.26 ** | 0.08 ** | 0.15 ** | 0.05 * | 55.35 | 58.07 | 47.88 |
Valine | 15.46 ** | 2.70 ** | 42.60 ** | 3.16 ** | 18.02 ** | 2.52 ** | 88.75 | 92.30 | 90.96 |
Alanine | 11.83 ** | 1.23 ** | 26.85 ** | 1.44 ** | 22.74 ** | 1.30 ** | 88.94 | 91.87 | 91.58 |
Arginine | 71.92 ** | 7.01 ** | 86.22 ** | 7.44 ** | 104.78 ** | 7.75 ** | 85.56 | 91.96 | 89.79 |
Aspartic acid | 35.58 ** | 12.27 ** | 9.07 ** | 13.92 ** | 6.35 ** | 10.56 ** | 90.30 | 90.90 | 90.99 |
Glutamic acid | 306.87 ** | 40.52 ** | 113.55 ** | 44.72 ** | 88.28 ** | 37.80 ** | 91.19 | 92.55 | 93.29 |
Glycine | 10.12 ** | 1.14 ** | 28.33 ** | 1.39 ** | 26.75 ** | 1.28 ** | 81.15 | 87.33 | 90.82 |
Proline | 143.83 ** | 2.03 ** | 107.58 ** | 2.33 ** | 70.53 ** | 2.32 ** | 73.14 | 82.56 | 86.23 |
Serine | 58.16 ** | 2.03 ** | 138.84 ** | 2.66 ** | 118.97 ** | 30.5 ** | 80.36 | 83.98 | 89.23 |
Tyrosine | 37.99 ** | 0.88 ** | 24.33 ** | 1.00 ** | 14.37 ** | 0.84 ** | 83.28 | 88.26 | 89.07 |
Other AA a | 13.02 ** | 0.14 ** | 0.38 ** | 0.18 ** | 0.09 | 0.48 ** | 59.04 | 72.95 | 61.90 |
Total AA b | 922.66 ** | 87.56 ** | 3311.83 ** | 945.06 ** | 2502.21 ** | 825.20 ** | 89.65 | 92.17 | 93.19 |
Average | 81.59 | 84.29 | 81.08 | ||||||
Ground Sample | Freeze Drying | Low-Heat Drying | High-Heat Drying | Repeatability (%) | |||||
Trait (mg g−1) | MSY a | MSG | MSY | MSG | MSY | MSG | Freeze Drying | Low-Heat Drying | High-Heat Drying |
Cysteine | 0.28 ** | 0.33 ** | 0.80 ** | 0.32 ** | 1.47 ** | 0.29 ** | 54.43 | 68.36 | 56.62 |
Methionine | 0.85 ** | 0.08 ** | 0.37 ** | 0.10 * | 0.89 ** | 0.09 ** | 77.92 | 75.09 | 59.32 |
Histidine | 5.75 ** | 0.61 ** | 2.57 ** | 0.60 ** | 1.99 ** | 0.56 ** | 91.48 | 90.62 | 84.00 |
Isoleucine | 2.55 ** | 1.26 ** | 2.17 ** | 1.60 ** | 7.04 ** | 1.27 ** | 93.93 | 92.45 | 90.18 |
Leucine | 22.97 ** | 4.12 ** | 14.42 ** | 4.88 ** | 17.90 ** | 3.93 ** | 93.59 | 93.21 | 92.30 |
Lysine | 12.27 ** | 2.50 ** | 10.12 ** | 3.49 ** | 19.88 ** | 2.19 ** | 92.95 | 88.68 | 86.81 |
Phenylalanine | 9.93 ** | 1.75 ** | 6.18 ** | 2.30 ** | 14.86 ** | 1.97 ** | 93.15 | 92.17 | 90.02 |
Threonine | 20.77 ** | 1.3 ** | 9.12 ** | 1.22 ** | 25.86 ** | 1.10 ** | 89.03 | 89.14 | 87.61 |
Tryptophan | 10.69 ** | 0.04 * | 4.19 ** | 0.06 ** | 1.23 ** | 0.07 | 55.09 | 65.02 | 26.74 |
Valine | 5.46 ** | 2.12 ** | 4.89 ** | 2.42 ** | 10.28 ** | 1.86 ** | 95.02 | 94.32 | 92.24 |
Alanine | 2.35 ** | 0.96 ** | 2.46 ** | 1.12 ** | 7.09 ** | 0.83 ** | 93.70 | 91.90 | 87.80 |
Arginine | 10.66 ** | 6.13 ** | 14.25 ** | 8.28 ** | 21.20 ** | 7.00 ** | 87.90 | 89.37 | 82.80 |
Aspartic acid | 79.54 ** | 10.36 ** | 71.18 ** | 11.95 ** | 83.88 ** | 10.05 ** | 91.33 | 91.10 | 89.94 |
Glutamic acid | 299.01 ** | 36.08 ** | 212.40 ** | 39.62 ** | 120.56 ** | 34.45 ** | 93.07 | 92.25 | 89.70 |
Glycine | 3.22 ** | 0.83 ** | 3.73 ** | 1.28 ** | 5.99 ** | 0.79 ** | 90.11 | 88.20 | 78.77 |
Proline | 4.02 ** | 1.12 ** | 7.70 ** | 3.03 ** | 51.04 ** | 1.80 ** | 71.08 | 80.63 | 72.21 |
Serine | 5.37 ** | 1.27 ** | 5.93 ** | 2.06 ** | 27.82 ** | 1.29 ** | 80.51 | 78.26 | 74.83 |
Tyrosine | 0.15 | 0.63 ** | 0.95 ** | 1.10 ** | 6.31 ** | 0.61 ** | 85.46 | 88.24 | 82.45 |
Other AA a | 0.41 ** | 0.12 ** | 4.07 ** | 0.19 ** | 0.03 | 0.16 ** | 60.43 | 45.75 | 63.45 |
Total AA b | 2568.77 ** | 674.19 ** | 2251.72 ** | 840.79 ** | 3193.47 ** | 655.89 ** | 93.87 | 92.40 | 89.77 |
Average | 84.20 | 84.36 | 78.88 |
Whole Seed | Freeze Drying | Low-Heat Drying | High-Heat Drying | Relative Difference (%) c | Correlation with Freeze Drying | |||||
Trait (mg g−1) | Mean | Range | Mean | Range | Mean | Range | Low-Heat | High-Heat | Low-Heat | High-Heat |
Cysteine | 6.3 ± 0.3 | 5.4–7.3 | 6.0 ± 0.4 | 5.0–7.0 | 5.9 ± 0.5 | 4.8–7.1 | 5.30 a | 7.07 a | 0.752 ** | 0.585 ** |
Methionine | 5.2 ± 0.3 | 4.4–5.8 | 5.0 ± 0.2 | 4.4–5.5 | 5.1 ± 0.2 | 4.5–5.5 | 2.62 a | 1.73 a | 0.887 ** | 0.811 ** |
Histidine | 11.7 ± 0.6 | 10.2–12.8 | 11.4 ± 0.5 | 9.6–12.4 | 11.3 ± 0.5 | 9.9–12.3 | 2.83 a | 3.79 b | 0.966 ** | 0.943 ** |
Isoleucine | 20.7 ± 0.8 | 18.9–23.3 | 21.1 ± 0.9 | 18.5–23.3 | 21.2 ± 0.7 | 19.1–22.9 | 1.75 a | 2.13 a | 0.945 ** | 0.942 ** |
Leucine | 33.7 ± 1.4 | 30.2–37.7 | 33.7 ± 1.4 | 29.6–37.1 | 33.6 ± 1.3 | 30.0–36.6 | 0.04 | 0.45 | 0.953 ** | 0.937 ** |
Lysine | 27.5 ± 1.2 | 24.6–31.6 | 28.1 ± 1.3 | 24.8–31.3 | 28.2 ± 1.3 | 24.4–31.0 | 2.05 a | 2.48 a | 0.915 ** | 0.923 ** |
Phenylalanine | 22.0 ± 1.0 | 19.7–25.6 | 22.5 ± 1.3 | 19.2–25.5 | 22.5 ± 1.2 | 19.4–25.4 | 2.20 a | 2.18 a | 0.933 ** | 0.936 ** |
Threonine | 16.6 ± 0.7 | 14.7–18.8 | 16.4 ± 0.8 | 14.2–18.3 | 16.7 ± 0.8 | 14.3–19.1 | 0.99 a | 0.69 | 0.930 ** | 0.885 ** |
Tryptophan | 4.0 ± 0.2 | 3.5–4.6 | 3.9 ± 0.2 | 3.5–4.6 | 4.1 ± 0.2 | 3.7–4.6 | 1.45 | 3.55 a | 0.810 ** | 0.733 ** |
Valine | 20.1 ± 1.2 | 17.1–24.0 | 20.7 ± 1.6 | 16.9–24.2 | 20.1 ± 1.2 | 16.8–22.9 | 2.89 a | 0.03 | 0.960 ** | 0.960 ** |
Alanine | 18.3 ± 0.9 | 16.0–20.9 | 18.7 ± 1.2 | 15.9–21.2 | 18.7 ± 1.2 | 16.0–21.0 | 2.04 a | 2.35 a | 0.958 ** | 0.963 ** |
Arginine | 31.8 ± 2.3 | 26.8–37.9 | 32.5 ± 2.4 | 26.8–37.1 | 32.4 ± 2.6 | 26.7–36.7 | 2.14 a | 2.06 a | 0.942 ** | 0.943 ** |
Aspartic acid | 48.7 ± 2.3 | 42.9–53.4 | 47.6 ± 2.2 | 41.9–51.8 | 47.7 ± 1.9 | 42.4–51.5 | 2.31 a | 2.08 a | 0.958 ** | 0.930 ** |
Glutamic acid | 77.4 ± 4.9 | 66.4–86.7 | 75.4 ± 4.2 | 63.3–84.5 | 74.7 ± 3.8 | 63.8–84.2 | 2.55 a | 3.54 b | 0.951 ** | 0.922 ** |
Glycine | 18.4 ± 0.9 | 16.4–21.1 | 18.9 ± 1.3 | 16.4–21.5 | 18.7 ± 1.2 | 16.1–20.9 | 2.67 b | 1.67 a | 0.914 ** | 0.934 ** |
Proline | 19.0 ± 2.6 | 15.1–24.5 | 19.8 ± 2.3 | 15.9–23.6 | 18.3 ± 1.9 | 15.1–22.2 | 4.21 b | 3.33 a | 0.852 ** | 0.905 ** |
Serine | 18.4 ± 1.8 | 14.8–22.8 | 19.6 ± 2.6 | 15.3–24.0 | 19.7 ± 2.4 | 15.4–24.2 | 6.51 a | 7.41 a | 0.842 ** | 0.924 ** |
Tyrosine | 15.0 ± 1.4 | 12.5–18.2 | 15.7 ± 1.1 | 13.4–18.0 | 15.7 ± 0.9 | 13.7–17.9 | 4.06 a | 4.71 a | 0.915 ** | 0.942 ** |
Other AA d | 3.7 ± 0.8 | 2.6–5.0 | 3.6 ± 0.3 | 2.9–4.3 | 3.4 ± 0.5 | 2.3–4.7 | 0.90 | 8.42 a | 0.679 ** | 0.483 * |
Total AA e | 418.3 ± 17.6 | 371.9–478.7 | 420.3 ± 20.6 | 363.4–469.1 | 417.8 ± 18.7 | 362.7–464.1 | 0.47 | 0.12 | 0.955 ** | 0.949 ** |
Average | 2.50 | 2.99 | 0.901 | 0.878 | ||||||
Ground Sample | Freeze Drying | Low-Heat Drying | High-Heat Drying | Relative Difference (%) c | Correlation with Freeze Drying | |||||
Trait (mg g−1) | Mean | Range | Mean | Range | Mean | Range | Low-Heat | High-Heat | Low-Heat | High-Heat |
Cysteine | 5.6 ± 0.5 | 4.8–6.9 | 5.5 ± 0.4 | 4.4–6.5 | 5.8 ± 0.5 | 4.8–6.7 | 1.84 | 3.65 a | 0.920 ** | 0.734 ** |
Methionine | 5.0 ± 0.3 | 4.5–5.7 | 5.0 ± 0.2 | 4.4–5.6 | 5.1 ± 0.3 | 4.5–5.8 | 0.18 | 1.52 a | 0.881 ** | 0.759 ** |
Histidine | 11.6 ± 0.7 | 9.6–12.7 | 11.3 ± 0.5 | 9.5–12.4 | 11.5 ± 0.5 | 9.7–12.5 | 1.97 a | 0.22 | 0.968 ** | 0.929 ** |
Isoleucine | 20.7 ± 0.7 | 19.0–23.5 | 20.8 ± 0.8 | 18.6–22.7 | 20.8 ± 0.8 | 18.5–23.3 | 0.31 | 0.34 | 0.947 ** | 0.950 ** |
Leucine | 33.6 ± 1.5 | 29.2–36.5 | 33.5 ± 1.4 | 28.8–37.0 | 33.4 ± 1.4 | 28.7–36.8 | 0.35 | 0.41 | 0.971 ** | 0.975 ** |
Lysine | 27.4 ± 1.1 | 24.0–29.8 | 27.9 ± 1.2 | 24.5–30.9 | 27.7 ± 1.2 | 23.8–30.8 | 2.03 a | 1.30 a | 0.939 ** | 0.917 ** |
Phenylalanine | 22.0 ± 1.0 | 19.2–23.9 | 22.4 ± 1.0 | 19.2–24.8 | 22.1 ± 1.1 | 18.7–25.2 | 1.46 a | 0.34 | 0.947 ** | 0.933 ** |
Threonine | 16.5 ± 1.1 | 13.5–18.7 | 16.3 ± 0.9 | 13.7–18.1 | 16.7 ± 1.2 | 13.5–18.8 | 0.98 a | 1.47 b | 0.961 ** | 0.950 ** |
Tryptophan | 3.9 ± 0.7 | 3.0–4.9 | 3.7 ± 0.4 | 3.0–4.6 | 4.1 ± 0.3 | 2.8–4.1 | 4.04 b | 1.13 a | 0.736 ** | 0.091 |
Valine | 20.3 ± 0.9 | 17.7–22.2 | 20.4 ± 0.9 | 17.5–22.7 | 20.1 ± 1.0 | 17.4–23.1 | 0.39 | 0.13 | 0.947 ** | 0.943 ** |
Alanine | 18.3 ± 0.6 | 16.3–19.4 | 18.5 ± 0.7 | 16.4–20.1 | 18.5 ± 0.7 | 16.1–20.5 | 1.40 a | 1.42 a | 0.961 ** | 0.940 ** |
Arginine | 32.2 ± 1.6 | 27.1–34.8 | 32.7 ± 1.8 | 26.5–37.4 | 32.5 ± 1.9 | 26.1–36.4 | 1.47 b | 0.92 ab | 0.942 ** | 0.943 ** |
Aspartic acid | 48.5 ± 2.5 | 40.3–52.8 | 48.1 ± 2.6 | 39.4–53.1 | 48.8 ± 2.6 | 39.8–53.6 | 0.96 a | 0.63 | 0.971 ** | 0.965 ** |
Glutamic acid | 77.4 ± 4.8 | 62.7–86.3 | 75.9 ± 4.5 | 61.0–84.8 | 76.3 ± 4.0 | 62.7–82.6 | 1.94 a | 1.45 a | 0.974 ** | 0.974 ** |
Glycine | 18.4 ± 0.6 | 16.4–19.4 | 18.8 ± 0.8 | 16.5–20.7 | 18.5 ± 0.7 | 16.1–20.9 | 2.02 a | 0.66 | 0.932 ** | 0.847 ** |
Proline | 18.6 ± 0.8 | 16.9–20.6 | 19.7 ± 1.2 | 17.2–22.7 | 18.3 ± 1.7 | 15.6–22.7 | 6.10 a | 1.41 | 0.873 ** | 0.810 ** |
Serine | 18.3 ± 0.8 | 15.7–19.6 | 19.4 ± 1.0 | 16.5–22.6 | 19.3 ± 1.3 | 15.3–22.2 | 5.80 a | 5.22 | 0.890 ** | 0.879 ** |
Tyrosine | 15.1 ± 0.5 | 14.0–16.4 | 15.7 ± 0.73 | 14.0–17.5 | 15.3 ± 0.7 | 13.4–17.5 | 4.48 a | 5.53 b | 0.945 ** | 0.896 ** |
Other AA d | 3.7 ± 0.3 | 3.1–4.4 | 4.2 ± 0.5 | 3.0–5.2 | 3.5 ± 0.3 | 2.8–4.1 | 13.51 b | 4.16 a | 0.660 ** | 0.680 ** |
Total AA e | 416.9 ± 17.4 | 360.0–449.8 | 419.6 ± 18.6 | 357.8–461.0 | 418.6 ± 18.3 | 354.3–464.8 | 0.65 | 0.41 | 0.971 ** | 0.962 ** |
Average | 2.59 | 1.62 | 0.917 | 0.854 |
Genotype | Cysteine | Methionine | Histidine | Isoleucine | Leucine | Lysine | Phenylalanine | Threonine | Tryptophan | Valine |
Asmara | 6.0 ± 0.3 | 4.8 ± 0.1 | 11.3 ± 0.2 | 21.0 ± 0.9 | 33.8 ± 0.8 | 28.0 ± 1.2 | 22.4 ± 1.3 | 16.4 ± 0.7 | 3.9 ± 0.3 | 20.8 ± 1.8 |
Moon Cake | 5.7 ± 0.3 | 5.0 ± 0.3 | 11.2 ± 0.0 | 20.8 ± 0.7 | 33.1 ± 0.6 | 28.1 ± 1.3 | 22.2 ± 1.1 | 16.0 ± 0.5 | 3.8 ± 0.2 | 20.4 ± 1.3 |
N6202-8 | 6.3 ± 0.5 | 5.3 ± 0.2 | 12.0 ± 0.3 | 21.9 ± 0.7 | 35.3 ± 0.8 | 29.2 ± 1.1 | 23.6 ± 1.2 | 17.1 ± 0.5 | 3.9 ± 0.1 | 21.6 ± 1.4 |
NC 346 | 6.1 ± 0.3 | 5.0 ± 0.3 | 11.4 ± 0.1 | 21.4 ± 1.1 | 34.3 ± 1.1 | 28.4 ± 1.9 | 22.9 ± 1.8 | 16.8 ± 0.9 | 4.2 ± 0.3 | 20.9 ± 2.0 |
NC Green | 6.3 ± 0.2 | 5.2 ± 0.2 | 11.9 ± 0.3 | 22.0 ± 1.2 | 35.5 ± 0.9 | 29.2 ± 1.7 | 23.7 ± 1.7 | 17.4 ± 0.9 | 4.3 ± 0.4 | 22.2 ± 2.2 |
NC Raleigh | 5.5 ± 0.4 | 4.7 ± 0.4 | 10.1 ± 0.4 | 19.2 ± 0.5 | 30.5 ± 0.7 | 25.6 ± 0.7 | 20.2 ± 0.8 | 14.6 ± 0.5 | 3.9 ± 0.2 | 18.1 ± 1.0 |
Randolph | 6.1 ± 0.2 | 5.1 ± 0.2 | 11.7 ± 0.0 | 21.3 ± 1.0 | 34.3 ± 1.0 | 28.6 ± 1.5 | 22.9 ± 1.5 | 16.7 ± 0.6 | 4.0 ± 0.2 | 20.9 ± 1.7 |
VS11-0022 | 6.1 ± 0.8 | 5.0 ± 0.4 | 11.5 ± 0.2 | 21.5 ± 0.7 | 34.3 ± 0.6 | 28.6 ± 0.9 | 22.9 ± 1.0 | 16.7 ± 0.8 | 3.9 ± 0.1 | 21.3 ± 1.9 |
VS11-0112 | 6.0 ± 0.2 | 5.0 ± 0.2 | 11.2 ± 0.4 | 20.8 ± 0.5 | 33.1 ± 0.6 | 27.8 ± 0.9 | 22.1 ± 0.9 | 16.2 ± 0.4 | 3.8 ± 0.1 | 20.2 ± 1.2 |
VS11-0137 | 5.8 ± 0.3 | 5.0 ± 0.1 | 11.1 ± 0.5 | 20.4 ± 0.4 | 32.5 ± 0.8 | 27.4 ± 0.4 | 21.6 ± 0.5 | 15.9 ± 0.1 | 3.8 ± 0.2 | 20.0 ± 1.0 |
VS12-0021 | 5.8 ± 0.4 | 5.0 ± 0.2 | 11.3 ± 0.5 | 21.0 ± 0.5 | 33.5 ± 0.6 | 28.0 ± 0.7 | 22.3 ± 0.8 | 16.4 ± 0.5 | 3.7 ± 0.2 | 20.1 ± 1.1 |
VS12-0161 | 5.9 ± 0.1 | 5.0 ± 0.3 | 11.5 ± 0.4 | 20.8 ± 0.9 | 33.5 ± 0.6 | 27.9 ± 1.1 | 22.3 ± 1.2 | 16.5 ± 0.5 | 3.8 ± 0.1 | 20.7 ± 1.6 |
VS15-4007 | 5.8 ± 0.5 | 4.9 ± 0.2 | 11.4 ± 0.4 | 21.3 ± 0.4 | 34.0 ± 0.1 | 28.0 ± 1.1 | 22.6 ± 0.9 | 16.3 ± 0.2 | 3.9 ± 0.1 | 20.8 ± 1.6 |
VS15-4049 | 5.8 ± 0.4 | 5.0 ± 0.2 | 11.0 ± 0.5 | 20.6 ± 0.8 | 32.7 ± 1.3 | 27.2 ± 1.0 | 21.7 ± 1.0 | 15.7 ± 0.5 | 3.9 ± 0.1 | 20.0 ± 1.1 |
VS15-5148 | 6.3 ± 0.4 | 5.1 ± 0.0 | 11.6 ± 0.3 | 21.7 ± 0.6 | 34.6 ± 0.4 | 28.7 ± 1.1 | 23.1 ± 1.2 | 16.8 ± 0.6 | 3.9 ± 0.1 | 21.2 ± 1.9 |
VS15-6005 | 5.8 ± 0.4 | 4.8 ± 0.2 | 11.0 ± 0.6 | 20.7 ± 0.6 | 32.7 ± 1.0 | 27.1 ± 0.7 | 21.8 ± 0.8 | 15.8 ± 0.4 | 3.9 ± 0.2 | 20.0 ± 1.4 |
VS15-6077 | 6.1 ± 0.4 | 5.1 ± 0.2 | 11.5 ± 0.5 | 20.9 ± 0.6 | 33.7 ± 0.7 | 27.9 ± 1.2 | 22.4 ± 1.2 | 16.6 ± 0.2 | 4.1 ± 0.3 | 20.6 ± 1.4 |
VS15-4018 | 6.2 ± 0.2 | 5.2 ± 0.1 | 12.1 ± 0.2 | 22.4 ± 1.4 | 36.0 ± 1.5 | 30.0 ± 1.8 | 24.2 ± 1.9 | 17.8 ± 0.7 | 4.0 ± 0.1 | 22.6 ± 2.3 |
VS15-6021 | 6.5 ± 0.1 | 5.3 ± 0.1 | 11.6 ± 0.4 | 21.4 ± 0.5 | 34.2 ± 0.2 | 28.6 ± 0.9 | 23.0 ± 0.9 | 16.9 ± 0.3 | 4.2 ± 0.3 | 21.5 ± 1.7 |
VS15-6023 | 6.1 ± 0.3 | 5.1 ± 0.2 | 11.0 ± 0.6 | 20.8 ± 0.5 | 33.0 ± 0.3 | 27.5 ± 0.7 | 22.2 ± 0.7 | 16.4 ± 0.2 | 4.1 ± 0.2 | 20.6 ± 1.4 |
LSD0.05 | 0.45 | 0.29 | 0.6 | 0.55 | 0.92 | 0.81 | 0.72 | 0.55 | 0.27 | 0.72 |
Genotype | Alanine | Arginine | Aspartic Acid | Glutamic Acid | Glycine | Proline | Serine | Tyrosine | Other AA a | Total AA b |
Asmara | 18.7 ± 1.4 | 32.3 ± 2.3 | 47.5 ± 0.5 | 75.0 ± 1.6 | 19.0 ± 1.4 | 20.0 ± 2.9 | 19.9 ± 3.3 | 15.6 ± 1.3 | 3.5 ± 0.2 | 419.8 ± 17.9 |
Moon Cake | 18.6 ± 1.3 | 32.9 ± 2.9 | 47.0 ± 0.8 | 73.8 ± 1.6 | 18.8 ± 1.3 | 19.8 ± 2.0 | 19.4 ± 2.6 | 15.5 ± 1.0 | 3.7 ± 0.2 | 415.7 ± 17.0 |
N6202-8 | 19.3 ± 1.2 | 34.2 ± 2.3 | 50.0 ± 1.0 | 80.5 ± 2.8 | 19.5 ± 1.4 | 20.6 ± 2.3 | 20.1 ± 2.6 | 16.3 ± 1.1 | 3.3 ± 0.4 | 439.8 ± 14.8 |
NC 346 | 18.8 ± 1.7 | 32.3 ± 2.8 | 48.8 ± 1.1 | 77.1 ± 0.5 | 19.0 ± 1.9 | 19.6 ± 3.2 | 19.8 ± 3.7 | 15.8 ± 1.6 | 3.8 ± 0.3 | 426.3 ± 25.4 |
NC Green | 19.6 ± 1.7 | 33.9 ± 2.7 | 50.4 ± 1.0 | 79.9 ± 1.7 | 19.8 ± 1.8 | 20.8 ± 3.0 | 20.9 ± 3.5 | 16.4 ± 1.5 | 3.6 ± 0.4 | 442.8 ± 23.5 |
NC Raleigh | 16.9 ± 1.0 | 28.2 ± 1.7 | 42.6 ± 1.0 | 66.2 ± 2.7 | 17.2 ± 0.9 | 17.9 ± 2.1 | 17.5 ± 2.4 | 14.4 ± 0.9 | 4.0 ± 0.1 | 377.2 ± 10.7 |
Randolph | 18.9 ± 1.4 | 33.5 ± 3.1 | 48.8 ± 1.2 | 77.6 ± 1.3 | 19.1 ± 1.5 | 20.0 ± 2.7 | 19.7 ± 2.9 | 15.8 ± 1.4 | 3.8 ± 0.3 | 428.7 ± 21.4 |
VS11-0022 | 19.1 ± 1.3 | 33.1 ± 2.2 | 48.2 ± 1.0 | 76.8 ± 2.9 | 19.4 ± 1.3 | 20.7 ± 2.5 | 20.5 ± 3.1 | 16.1 ± 1.3 | 3.5 ± 0.2 | 429.1 ± 12.7 |
VS11-0112 | 18.4 ± 1.1 | 32.0 ± 2.1 | 46.7 ± 1.3 | 73.8 ± 3.6 | 18.6 ± 1.2 | 19.5 ± 2.5 | 19.2 ± 2.9 | 15.4 ± 1.0 | 3.7 ± 0.2 | 413.5 ± 10.8 |
VS11-0137 | 18.2 ± 0.7 | 31.8 ± 1.4 | 45.8 ± 2.0 | 72.3 ± 4.4 | 18.4 ± 0.6 | 19.5 ± 1.5 | 19.1 ± 2.0 | 15.2 ± 0.7 | 3.4 ± 0.2 | 407.2 ± 5.2 |
VS12-0021 | 18.4 ± 1.0 | 31.2 ± 1.5 | 46.5 ± 1.5 | 74.1 ± 3.6 | 18.6 ± 0.9 | 19.0 ± 2.1 | 19.4 ± 2.8 | 15.6 ± 1.2 | 3.0 ± 0.1 | 412.6 ± 7.8 |
VS12-0161 | 18.7 ± 1.2 | 33.0 ± 2.3 | 47.4 ± 0.9 | 75.4 ± 2.5 | 18.9 ± 1.2 | 19.4 ± 2.7 | 19.5 ± 2.6 | 15.5 ± 1.3 | 3.5 ± 0.2 | 419.1 ± 16.1 |
VS15-4007 | 18.7 ± 1.2 | 32.5 ± 2.5 | 48.0 ± 0.8 | 76.1 ± 3.2 | 18.8 ± 1.4 | 19.4 ± 2.7 | 19.1 ± 2.6 | 15.6 ± 1.2 | 3.7 ± 0.2 | 420.8 ± 11.3 |
VS15-4049 | 18.0 ± 1.0 | 31.2 ± 1.4 | 46.1 ± 2.4 | 73.2 ± 4.6 | 18.2 ± 0.9 | 18.8 ± 1.0 | 18.2 ± 1.5 | 15.3 ± 0.7 | 3.7 ± 0.5 | 406.2 ± 14.9 |
VS15-5148 | 19.1 ± 1.4 | 33.0 ± 2.5 | 49.2 ± 0.6 | 78.2 ± 2.7 | 19.2 ± 1.5 | 20.4 ± 3.1 | 19.9 ± 3.2 | 15.9 ± 1.4 | 3.9 ± 0.1 | 431.6 ± 15.1 |
VS15-6005 | 18.1 ± 0.9 | 31.3 ± 1.7 | 46.0 ± 2.1 | 73.0 ± 4.5 | 18.2 ± 1.0 | 18.7 ± 2.0 | 18.3 ± 1.9 | 15.1 ± 0.9 | 3.9 ± 0.3 | 405.9 ± 10.1 |
VS15-6077 | 18.6 ± 1.2 | 32.4 ± 2.4 | 47.7 ± 1.0 | 76.0 ± 3.1 | 18.8 ± 1.2 | 19.3 ± 2.7 | 19.5 ± 2.8 | 15.5 ± 1.2 | 3.7 ± 0.3 | 420.3 ± 14.3 |
VS15-4018 | 20.0 ± 1.7 | 35.3 ± 2.7 | 50.8 ± 1.1 | 80.9 ± 0.9 | 20.1 ± 1.8 | 21.6 ± 2.8 | 21.4 ± 3.0 | 16.9 ± 1.7 | 3.6 ± 0.2 | 451.1 ± 25.0 |
VS15-6021 | 19.3 ± 1.2 | 33.8 ± 2.2 | 48.5 ± 1.0 | 76.9 ± 3.2 | 19.4 ± 1.2 | 21.0 ± 2.4 | 20.7 ± 2.9 | 15.8 ± 1.2 | 3.7 ± 0.0 | 432.1 ± 11.0 |
VS15-6023 | 18.7 ± 1.1 | 32.2 ± 1.3 | 46.5 ± 1.5 | 73.1 ± 3.8 | 18.7 ± 1.0 | 20.0 ± 2.2 | 19.9 ± 2.4 | 15.3 ± 1.1 | 3.8 ± 0.2 | 414.9 ± 8.1 |
LSD0.05 | 0.50 | 1.12 | 1.63 | 2.65 | 0.61 | 0.93 | 0.95 | 0.50 | 0.32 | 12.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, G.-L.; Townsend, W.; Ren, S. Analysis of Seed Amino Acids in Vegetable Soybeans Dried by Freeze and Thermal Drying. Agronomy 2023, 13, 574. https://doi.org/10.3390/agronomy13020574
Jiang G-L, Townsend W, Ren S. Analysis of Seed Amino Acids in Vegetable Soybeans Dried by Freeze and Thermal Drying. Agronomy. 2023; 13(2):574. https://doi.org/10.3390/agronomy13020574
Chicago/Turabian StyleJiang, Guo-Liang, William Townsend, and Shuxin Ren. 2023. "Analysis of Seed Amino Acids in Vegetable Soybeans Dried by Freeze and Thermal Drying" Agronomy 13, no. 2: 574. https://doi.org/10.3390/agronomy13020574
APA StyleJiang, G. -L., Townsend, W., & Ren, S. (2023). Analysis of Seed Amino Acids in Vegetable Soybeans Dried by Freeze and Thermal Drying. Agronomy, 13(2), 574. https://doi.org/10.3390/agronomy13020574