The Study of Possible Soybean Introduction into New Cultivation Regions Based on the Climate Change Analysis and the Agro-Ecological Testing of the Varieties
Abstract
:1. Introduction
2. Materials and Methods
- -
- the northern ecotype varieties that were taken as a control—Mageva, Okskaya, Svetlaya, Kasatka, Georghiya, developed by the Institute of Seed Production and Agrotechnologies—a branch of the Federal Scientific Agroengineering Center VIM, recommended for the Central Region of the Non-Chernozem zone [33];
- -
- the southern varieties—Lira, Avanta, Bara, selected by the Federal State Budgetary Scientific Institution of the Federal Scientific Center “All-Russian Research Institute of Oilseeds named after V.S. Pustovoit” and “Soybean Complex” Company LLC;
- -
- the Far Eastern varieties—Persona, Umka, Lydia, Gratsiya, selected by the Federal Research Center of the Federal State Budgetary Scientific Institution “All-Russian Research Institute of Soybeans”.
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Seleiman, M.F.; Abdelaal, M.S. Effect of Organic, Inorganic and Bio-fertilization on Growth, Yield and Quality Traits of Some Chickpea (Cicer arietinum L.) Varieties. Egypt. J. Agron. 2018, 40, 105–117. [Google Scholar] [CrossRef]
- Popova, N.P.; Belyshkina, M.E.; Kobozeva, T.P. Protein complex features of the northern ecotype soybean seeds. Izv. Timiryazev Agric. Acad. 2018, 1, 104–108. [Google Scholar] [CrossRef]
- Mirriam, A.; Mugwe, J.; Raza, M.A.; Seleiman, M.F.; Maitra, S.; Gitari, H.H. Aggrandizing soybean yield, phosphorus use efficiency and economic returns under phosphatic fertilizer application and inoculation with Bradyrhizobium. J. Soil Sci. Plant Nutr. 2022, 22, 5086–5098. [Google Scholar] [CrossRef]
- Taha, R.S.; Seleiman, M.F.; Alotaibi, M.; Alhammad, B.A.; Rady, M.M.; Mahdi, A.H.A. Exogenous Potassium Treatments Elevate Salt Tolerance and Performances of Glycine max L. by Boosting Antioxidant Defense System under Actual Saline Field Conditions. Agronomy 2020, 10, 1741. [Google Scholar] [CrossRef]
- Dusenge, M.E.; Duarte, A.G.; Way, D.A. Plant carbon metabolism and climate change: Elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration. New Phytol. 2019, 221, 32–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iizumi, T.; Kim, W.; Shin, Y.; Kim, M.; Choi, J. Global crop yield forecasting using seasonal climate information from a multi-model ensemble. Clim. Serv. 2018, 11, 13–23. [Google Scholar] [CrossRef]
- Leng, G.; Zhang, X.; Asrar, G.R.; Huang, M.; Leung, L.R. The role of climate covariability on crop yields in the conterminous United States. Sci. Rep. 2016, 6, 33160. [Google Scholar] [CrossRef]
- Sun, Q.; Miao, C.; Duan, Q.; Hanel, M.; Borthwick, A.G.L.; Ji, D.; Li, H. Global heat stress on health, wildfires, and agricultural crops under different levels of climate warming. Environ. Int. 2019, 128, 125–136. [Google Scholar] [CrossRef]
- Haskett, J.D.; Pachepsky, Y.A.; Acock, B. Effect of climate and atmospheric change on soybean water stress: A study of Iowa. Ecol. Model. 2000, 135, 265–277. [Google Scholar] [CrossRef]
- Ivanov, A.L. Global climate change and its impact on agriculture in Russia. Zemled 2009, 1, 3–5. [Google Scholar]
- Cahill, K.N.; Lobell, D.B.; Field, C.B.; Bonfils, C.; Hayhoe, K. Modeling Climate Change Impacts on Wine Grape Yields and Quality in California. In Rechauffement Climatique, Quels Impacts Probables sur les Vignobles? 2007; pp. 1–9. Available online: https://chaireunesco-vinetculture.u-bourgogne.fr/colloques/actes_clima/Actes/Article_Pdf/Cahill.pdf (accessed on 22 November 2022).
- Schauberger, B.; Gornott, C.; Wechsung, F. Global evaluation of a semiempirical model for yield anomalies and application to within-season yield forecasting. Glob. Change Biol. 2017, 23, 4750–4764. [Google Scholar] [CrossRef] [PubMed]
- Lybbert, T.J.; Smith, A.; Sumner, D.A. Weather shocks and inter-hemispheric supply responses: Implications for climate change effects on global food markets. Clim. Change Econ. 2014, 5, 1450010. [Google Scholar] [CrossRef] [Green Version]
- Akatov, P.V. Global warming and its regional implications for the European part of Russia. Zhivye I Biokosnye Sist. 2016, 15, 14–22. [Google Scholar]
- Krasnoschekov, V.N.; Olgarenko, D.G.; Rozhkova, O.N. Climate change and agriculture in Russia: Problems and solutions. Environ. Eng. 2017, 2, 80–88. [Google Scholar]
- Sukhoveeva, O.E. Changes in climatic conditions and agroclimatic resources in the Central region of the Non-Chernozem zone. Proc. Voronezh State University. Series: Geography. Geoecology 2016, 4, 41–49. [Google Scholar]
- Vico, G.; Way, D.A.; Hurry, V.; Manzoni, S. Can leaf net photosynthesis acclimate to rising and more variable temperatures? Plant Cell Environ. 2019, 42, 1913–1928. [Google Scholar] [CrossRef]
- Pavlovsky, A.A. Climate Changes and Frequency of Extreme Hydrothermal Events. Vestn. St. Petersburg Univ. 2006, 3, 88–94. [Google Scholar]
- Korsak, V.V.; Kravchuk, A.V.; Prokopets, R.V.; Nikishanov, A.N.; Arzhanukhina, E.V. Scenarios of global warming and forecasts of changes in agroclimatic resources of the Volga region. Agrar. Sci. J. 2018, 1, 51–55. [Google Scholar]
- Pavlova, V.N. Agroclimatic resources and agricultural productivity of Russia in the implementation of new climatic scenarios in the XXI century. Proc. Main Geophys. Obs. 2013, 569, 20–37. [Google Scholar]
- Omelyanyuk, L.V.; Tanakulov, A.K.; Asanov, A.M. Productivity of early maturing soybean varieties and lines depending on changing growing conditions. Omsk. Sci. Bull. 2012, 1, 195–198. [Google Scholar]
- Burchfield, E.; Matthews-Pennanen, N.; Schoof, J.; Lant, C. Changing yields in the central United States under climate and technological change. Clim. Change 2020, 159, 329–346. [Google Scholar] [CrossRef]
- Mistry, M.N.; De Cian, E.; Sue Wing, I. Simulated vs. Empirical weather responsiveness of crop yields: US evidence and implications for the agricultural impacts of climate change. Environ. Res. Lett. 2017, 12, 075007. [Google Scholar] [CrossRef]
- Ray, D.K.; Gerber, J.S.; Macdonald, G.K.; West, P.C. Climate variation explains a third of global crop yield variability. Nat. Commun. 2015, 6, 6989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eulenstein, F.; Lana, M.; Tauschke, M.; Behrend, A.; Sheudzhen, A.; Schlindwein, S.; Guevara, E.; Meira, S. Trends of soybean yields under climate change scenarios. Horticulturae 2017, 3, 10. [Google Scholar] [CrossRef] [Green Version]
- Bulgakov, D.S.; Rukhovich, D.I.; Shishkonakova, E.A.; Vil’chevskaya, E.V. The application of soil-agroclimatic index for assessing the agronomic potential of arable lands in the forest-steppe zone of Russia. Eurasian Soil Sc. 2018, 51, 448–459. [Google Scholar] [CrossRef]
- Boote, K.J. Improving soybean cultivars for adaptation to climate change and climate variability. In Crop Adaptation to Climate Change; Wiley: New York, NY, USA, 2011; pp. 370–395. [Google Scholar] [CrossRef]
- Kochegura, A.V.; Trunova, M.V. Potential of modern soybean varieties for the south of European Russia. Zemledelie 2010, 3, 42–44. [Google Scholar]
- Penalba, O.C.; Bettolli, M.L.; Vargas, W.M. The impact of climate variability on soybean yields in Argentina. Multivariate regression. Meteorol. Appl. 2007, 14, 3–14. [Google Scholar] [CrossRef]
- Bita, C.E.; Greats, T. Plant tolerance to high temperature in a changing environment: Scientific fundamentals and production of heat stress-tolerant crops. Front. Plant Sci. 2013, 4, 273. [Google Scholar] [CrossRef] [Green Version]
- Song, W.; Sun, S.; Wu, T.; Sapey, E.; Jiang, B.; Hou, W.; Wu, C.; Han, T.; Ibrahim, S.E.; Xu, Z.; et al. Standard cultivar selection and digital quantification for precise classification of maturity groups in soybean. Crop Sci. 2019, 59, 1997–2006. [Google Scholar] [CrossRef] [Green Version]
- Badenko, V.L.; Topaj, A.G.; Yakushev, V.V.; Mirschel, W.; Nendel, C. Crop models as research and interpretative tools. Agric. Biol. 2017, 52, 437–445. [Google Scholar] [CrossRef] [Green Version]
- Gataulina, G.G.; Zarenkova, N.V.; Nikitina, S.S. Northern soybean varieties: Limate effect on growth, development and yield. Fodd. Prod. 2019, 7, 34–40. [Google Scholar]
- State Register of Breeding Achievements Approved for Use. Vol. 1, “Plant Varieties”; FGBNU Rosinformagrotech: Moscow, Russia, 2020; 504p.
- Specialized Arrays for Climate Research: Information of the VNIIGMI-MDC. Available online: http://aisori.meteo.ru/ClimateR (accessed on 18 November 2022).
- Selyaninov, G.T. On agricultural climate assessment. In Proceedings of Agricultural Meteorology; Gidrometeoizdat: Leningrad, Russia, 1928; Volume 20, pp. 165–177. [Google Scholar]
- Fehr, W.R.; Caviness, C.E.; Burmood, D.T.; Pennington, J.S. Stage of development descriptions for soybeans, Glycine max (L.) Merrill. Crop Sci. 1971, 11, 929–931. [Google Scholar] [CrossRef]
- Egli, D.B. Soybean reproductive sink size and short-term reductions in photosynthesis during flowering and pod set. Crop Sci. 2010, 50, 1971–1977. [Google Scholar] [CrossRef]
- Taratukhin, O.D.; Novikova, L.Y.; Seferova, I.V.; Gerasimova, T.V.; Nuzhdin, S.V.; Samsonova, M.G.; Kozlov, K.N. An artificial neural network model for prediction of phenology of early maturing soybean varieties in relation to climate factors. Biophysics 2020, 65, 125–137. [Google Scholar] [CrossRef]
- Belyshkina, M.E. Agrobiological Justification of Early Maturing Soybean Varieties Production Process in Climatic Conditions of the Central Region of the Non-Chernozem Zone. Ph.D. Thesis, Saratov State Agrarian University named after N.I. Vavilov, Saratov, Russia, 2022; 405p. [Google Scholar]
- Mingalev, D.E. Climate change in Russia (1985–2016) on the example of comparing old and new maps of agroclimatic zones. Eurasian Union. Sci. 2017, 42, 5–9. [Google Scholar]
- Golovina, E.V.; Zotikov, V.I. The effect of climatic factors to vegetation and yield formation in soya varieties of the northern ecotype. Agric. Biol. 2013, 48, 112–118. [Google Scholar] [CrossRef]
- Semenova, N.A.; Smirnov, A.A.; Grishin, A.A.; Chilingaryan, N.O.; Dorokhov, A.S.; Izmailov, A.Y.; Pishchalnikov, R.Y.; Chesalin, D.D.; Gudkov, S.V.; Skorokhodova, A.N. The effect of plant growth compensation by adding silicon-containing fertilizer under light stress conditions. Plants 2021, 10, 1287. [Google Scholar] [CrossRef]
- Srebric, M.; Dumanovic, Z.; Perić, V.; Andjelkovic, V. Decrease of yield components and morphological traits of soybean full-sibs under drought conditions. Genetics 2020, 52, 1249–1262. [Google Scholar] [CrossRef]
Agro-Climatic Subzone | Color | Average Temperature for May–August, °C | ∑T ≥ 10 °C | ∑ Precipitations, mm | HTC for the Growing Season |
---|---|---|---|---|---|
Northern (Tver, Yaroslavl, Kostroma Oblast) | 16.0–18.0 | 2000–2200 | 285–295 | 1.4–1.7 | |
Central (Smolensk, Moscow, Kaluga, Vladimir, Ivanovo Oblast) | 18.0–19.0 | 2200–2400 | 265–285 | 1.1–1.4 | |
Southern (Bryansk, Oryol, Ryazan, Tula Oblast) | 19.0–21.0 | 2400–2600 | 255–265 | 0.7–1.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belyshkina, M.; Zagoruiko, M.; Mironov, D.; Bashmakov, I.; Rybalkin, D.; Romanovskaya, A. The Study of Possible Soybean Introduction into New Cultivation Regions Based on the Climate Change Analysis and the Agro-Ecological Testing of the Varieties. Agronomy 2023, 13, 610. https://doi.org/10.3390/agronomy13020610
Belyshkina M, Zagoruiko M, Mironov D, Bashmakov I, Rybalkin D, Romanovskaya A. The Study of Possible Soybean Introduction into New Cultivation Regions Based on the Climate Change Analysis and the Agro-Ecological Testing of the Varieties. Agronomy. 2023; 13(2):610. https://doi.org/10.3390/agronomy13020610
Chicago/Turabian StyleBelyshkina, Marina, Mikhail Zagoruiko, Denis Mironov, Igor Bashmakov, Dmitry Rybalkin, and Anna Romanovskaya. 2023. "The Study of Possible Soybean Introduction into New Cultivation Regions Based on the Climate Change Analysis and the Agro-Ecological Testing of the Varieties" Agronomy 13, no. 2: 610. https://doi.org/10.3390/agronomy13020610
APA StyleBelyshkina, M., Zagoruiko, M., Mironov, D., Bashmakov, I., Rybalkin, D., & Romanovskaya, A. (2023). The Study of Possible Soybean Introduction into New Cultivation Regions Based on the Climate Change Analysis and the Agro-Ecological Testing of the Varieties. Agronomy, 13(2), 610. https://doi.org/10.3390/agronomy13020610