Evaluation of Nutritional Compositions, Bioactive Components, and Antioxidant Activity of Three Cherry Tomato Varieties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Description of Morphological Characteristics and Determination of pH Value, Total Soluble Solid Content, and Total Acid Content of Cherry Tomatoes
2.3. Determination of Moisture, Protein, Fat, Starch, and Total Dietary Fiber Contents of Cherry Tomatoes
2.4. Estimates of the Amount of Glucose, Fructose, Maltose, Lactose, and Sucrose in Cherry Tomatoes
2.5. Mineral Elements in Cherry Tomatoes Determined
2.6. Determination of Lycopene, β-Carotene, and Lutein in Cherry Tomatoes
2.7. Estimation of GSH, Vitamin C, Rutin, and Esculeoside A Contents in Cherry Tomatoes
2.8. Determination of In Vitro Antioxidant Activity in Cherry Tomatoes
2.8.1. Preparation of Samples
2.8.2. Determination of DPPH Radicals Scavenging Ability of Cherry Tomatoes
2.8.3. Determination of Hydroxyl Radicals Scavenging Capacity in Cherry Tomatoes
2.9. Determination of In Vivo Antioxidant Activity in Cherry Tomatoes
2.9.1. Preparation of Samples
2.9.2. Animals
2.9.3. Experimental Design and Index Determination
2.10. Statistical Analysis
3. Results and Discussion
3.1. Morphological Characteristics, pH Value, Total Soluble Solid Content, and Total Acid Content of Cherry Tomatoes
3.2. Nutrient Composition of Cherry Tomatoes
3.3. Bioactive Components of Cherry Tomatoes
3.4. DPPH Radicals Scavenging Activity of Cherry Tomatoes
3.5. The Ability of Cherry Tomatoes to Scavenge Hydroxyl Free Radicals
3.6. Effects of Cherry Tomatoes on Antioxidant Capacity in Mice
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Foolad, M.R. Genome Mapping and Molecular Breeding of Tomato. Int. J. Plant Genom. 2007, 2007, 64358. [Google Scholar] [CrossRef] [Green Version]
- Abdullahi, I.I.; Abdullahi, N.; Abdu, A.M.; Ibrahim, A.S. Proximate, Mineral and Vitamin Analysis of Fresh and Canned Tomato. Biosci. Biotechnol. Res. Asia 2016, 13, 1163–1169. [Google Scholar] [CrossRef]
- Pinela, J.; Barros, L.; Carvalho, A.M.; Ferreira, I. Nutritional composition and antioxidant activity of four tomato (Lycopersicon esculentum L.) farmer’ varieties in Northeastern Portugal homegardens. Food Chem. Toxicol. 2012, 50, 829–834. [Google Scholar] [CrossRef]
- Chaudhary, P.; Sharma, A.; Singh, B.; Nagpal, A.K. Bioactivities of phytochemicals present in tomato. J. Food Sci. Technol. 2018, 55, 2833–2849. [Google Scholar] [CrossRef]
- Salehi, B.; Sharifi-Rad, R.; Sharopov, F.; Namiesnik, J.; Farjadian, F.; Kamle, M.; Kumar, P.; Martins, N.; Sharifi-Rad, J. Beneficial effects and potential risks of tomato consumption for human health: An overview. Nutrition 2019, 62, 201–208. [Google Scholar] [CrossRef]
- Lee, L.-C.; Wei, L.; Huang, W.-C.; Hsu, Y.-J.; Chen, Y.-M.; Huang, C.-C. Hypolipidemic Effect of Tomato Juice in Hamsters in High Cholesterol Diet-Induced Hyperlipidemia. Nutrients 2015, 7, 10525–10537. [Google Scholar] [CrossRef] [Green Version]
- Alshatwia, A.A.; Obaaida, M.A.A.; Sedairya, S.A.A.; Al-Assaf, A.H.; Zhang, J.J.; Lei, K.Y. Tomato powder is more protective than lycopene supplement against lipid peroxidation in rats. Nutr. Res. 2010, 30, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Michel, M.; Benítez-Buelga, C.; Calvo, P.A.; Hanna, B.M.F.; Mortusewicz, O.; Masuyer, G.; Davies, J.; Wallner, O.; Sanjiv, K.; Albers, J.J.; et al. Small-molecule activation of OGG1 increases oxidative DNA damage repair by gaining a new function. Science 2022, 376, 1471–1476. [Google Scholar] [CrossRef]
- Weber, D.; Davies, M.J.; Grune, T. Determination of protein carbonyls in plasma, cell extracts, tissue homogenates, isolated proteins: Focus on sample preparation and derivatization conditions. Redox Biol. 2015, 5, 367–380. [Google Scholar] [CrossRef] [Green Version]
- Antonio, A.; Mario, M.F.; Sandro, A. Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. Oxidative Med. Cell. Longev. 2014, 2014, 360438. [Google Scholar]
- Ali, Y.; Ibn Sina, A.A.; Khandker, S.S.; Neesa, L.; Tanvir, E.M.; Kabir, A.; Khalil, I.; Gan, S.H. Nutritional Composition and Bioactive Compounds in Tomatoes and Their Impact on Human Health and Disease: A Review. Foods 2021, 10, 45. [Google Scholar] [CrossRef]
- Torregrosa-Crespo, J.; Montero, Z.; Fuentes, J.L.; García-Galbis, M.R.; Garbayo, I.; Vílchez, C.; Martínez-Espinosa, R.M. Exploring the Valuable Carotenoids for the Large-Scale Production by Marine Microorganisms. Mar. Drugs 2018, 16, 203. [Google Scholar] [CrossRef] [Green Version]
- Zhu, R.; Chen, B.; Bai, Y.; Miao, T.; Rui, L.; Zhang, H.; Xia, B.; Li, Y.; Gao, S.; Wang, X.-D.; et al. Lycopene in protection against obesity and diabetes: A mechanistic review. Pharmacol. Res. 2020, 159, 104966. [Google Scholar] [CrossRef]
- Wang, J.Q.; Wang, S.S.; Chu, P.; Ma, X.D.; Tang, Z.Y. Investigating into anti-cancer potential of lycopene: Molecular targets. Biomed. Pharmacother. 2021, 138, 111546. [Google Scholar]
- Durairajanayagam, D.; Agarwal, A.; Ong, C.; Prashast, P. Lycopene and male infertility. Asian J. Androl. 2014, 16, 420–425. [Google Scholar] [CrossRef]
- Choi, S.-H.; Kim, H.-R.; Kim, H.-J.; Lee, I.-S.; Kozukue, N.; Levin, C.E.; Friedman, M. Free Amino Acid and Phenolic Contents and Antioxidative and Cancer Cell-Inhibiting Activities of Extracts of 11 Greenhouse-Grown Tomato Varieties and 13 Tomato-Based Foods. J. Agric. Food Chem. 2011, 59, 12801–12814. [Google Scholar] [CrossRef]
- Nohara, T.; Ono, M.; Ikeda, T.; Fujiwara, Y.; El-Aasr, M. The tomato saponin, esculeoside A. J. Nat. Prod. 2010, 73, 1734–1741. [Google Scholar] [CrossRef]
- Guo, X.-X.; Zhao, D.; Zhuang, M.-H.; Wang, C.; Zhang, F.-S. Fertilizer and pesticide reduction in cherry tomato production to achieve multiple environmental benefits in Guangxi, China. Sci. Total. Environ. 2021, 793, 148527. [Google Scholar] [CrossRef]
- Kotíková, Z.; Hejtmánková, A.; Lachman, J. Determination of the Influence of Variety and Level of Maturity on the Content and Development of Carotenoids in Tomatoes. Czech J. Food Sci. 2009, 27, S200–S203. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.H.; Lin, H.Y.; Chang, C.Y.; Liu, Y.C. Comparisons on the antioxidant properties of fresh, freeze-dried and hot-air-dried tomatoes. J. Food Eng. 2006, 77, 478–485. [Google Scholar] [CrossRef]
- Kaboré, K.; Konaté, K.; Sanou, A.; Dakuyo, R.; Sama, H.; Santara, B.; Compaoré, E.W.R.; Dicko, M.H. Tomato By-Products, a Source of Nutrients for the Prevention and Reduction of Malnutrition. Nutrients 2022, 14, 2871. [Google Scholar] [CrossRef]
- Shen, X.; Chen, J.; Wang, T.; Dai, H.; Han, Y.; Gu, J.; Zheng, Q. Analysis and Assess of Nutritional Quality of Cherry Tomato in Suzhou Region. Heilongjiang Agric. Sci. 2015, 7, 72–76. [Google Scholar]
- Terol, A.; Paredes, E.; Maestre, S.E.; Prats, S.; Todolí, J.L. Rapid and sensitive determination of carbohydrates in foods using high temperature liquid chromatography with evaporative light scattering detection. J. Sep. Sci. 2012, 35, 929–936. [Google Scholar] [CrossRef]
- Shen, F.; Wu, J.; Ying, Y.; Li, B.; Jiang, T. Differentiation of Chinese rice wines from different wineries based on mineral elemental fingerprinting. Food Chem. 2013, 141, 4026–4030. [Google Scholar] [CrossRef]
- Hostetler, G.L.; Benét, S.; Buis, R.; Campos-Giménez, E.; Christiansen, S.; Daniel, A.; DeBorde, J.-L.; De Haan, E.; Eckes, J.; Gill, B.; et al. Determination of Lutein, β-Carotene, and Lycopene in Infant Formula and Adult Nutritionals by Ultra-High Performance Liquid Chromatography: Collaborative Study, Final Action 2016.13 for β-Carotene and Lycopene Only. J. AOAC Int. 2020, 103, 818–832. [Google Scholar] [CrossRef]
- Appala, R.N.; Chigurupati, S.; Appala, R.V.; Selvarajan, K.K.; Mohammad, J.I. A Simple HPLC-UV Method for the Determination of Glutathione in PC-12 Cells. Scientifica 2016, 2016, 6897890. [Google Scholar] [CrossRef] [Green Version]
- Zhu, M.; Tang, J.; Tu, X.; Chen, W. Determination of Ascorbic Acid, Total Ascorbic Acid, and Dehydroascorbic Acid in Bee Pollen Using Hydrophilic Interaction Liquid Chromatography-Ultraviolet Detection. Molecules 2020, 25, 5696. [Google Scholar] [CrossRef] [PubMed]
- Kendir, G.; Dinç, E.; Güvenç, A.K. Ultra-Performance Liquid Chromatography for the Simultaneous Quantification of Rutin and Chlorogenic Acid in Leaves of Ribes L. Species by Conventional and Chemometric Calibration Approaches. J Chromatogr. Sci. 2015, 53, 1577–1587. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; Chen, J.; Zhang, X.; Zhong, J.; Zhu, Y.; Liu, H. Study on antioxidant activity of tomato in vitro. Guangdong Agric. Sci. 2012, 13, 131–133. [Google Scholar]
- Deng, L.; Fu, X.; Jia, M.; Zhong, J.; Dang, Y. The Extraction of Lycopene and Polysaccharides from Tomato Pomace. Food Ind. 2021, 42, 24–29. [Google Scholar]
- Ong, E.S.; Pek, C.J.N.; Tan, J.C.W.; Leo, C.H. Antioxidant and Cytoprotective Effect of Quinoa (Chenopodium quinoa Willd.) with Pressurized Hot Water Extraction (PHWE). Antioxidants 2020, 9, 1110. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, S.; Meyerstein, D.; Czapski, G. The Fenton reagents. Free Radic. Biol. Med. 1993, 15, 435–445. [Google Scholar] [CrossRef] [PubMed]
- Elvira-Torales, L.I.; Navarro-González, I.; Rodrigo-García, J.; Seva, J.; García-Alonso, J.; Periago-Castón, M.J. Consumption of Spinach and Tomato Modifies Lipid Metabolism, Reducing Hepatic Steatosis in Rats. Antioxidants 2020, 9, 1041. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, L.; Liu, J.; Lu, F.; Wang, L.; Chen, Y.; Li, D. Hypoglycemic effects of esculeoside A are mediated via activation of AMPK and upregulation of IRS-1. BMC Complement. Altern. Med. 2019, 19, 136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Z.; Zhang, L.; Wu, Y.-H.; Li, D.-P.; Li, W. Evaluation of Chemical Constituents of Litchi Pericarp Extracts and Its Antioxidant Activity in Mice. Foods 2022, 11, 3837. [Google Scholar] [CrossRef]
- Guil-Guerrero, J.; Rebolloso-Fuentes, M. Nutrient composition and antioxidant activity of eight tomato (Lycopersicon esculentum) varieties. J. Food Compos. Anal. 2009, 22, 123–129. [Google Scholar] [CrossRef]
- Oboulbiga, E.B.; Parkouda, C.; Sawadogo-Lingani, H.; Compaoré, E.W.R.; Sakira, A.K.; Traoré, A.S. Nutritional Composition, Physical Characteristics and Sanitary Quality of the Tomato Variety Mongol F1 from Burkina Faso. Food Sci. Nutr. 2017, 8, 444–455. [Google Scholar] [CrossRef] [Green Version]
- Bernal, J.; Mendiola, J.; Ibáñez, E.; Cifuentes, A. Advanced analysis of nutraceuticals. J. Pharm. Biomed. Anal. 2011, 55, 758–774. [Google Scholar] [CrossRef] [Green Version]
- Buttriss, J.L.; Stokes, C.S. Dietary fibre and health: An overview. Nutr. Bull. 2008, 33, 186–200. [Google Scholar] [CrossRef]
- Baer, L.; Platman, S.R.; Fieve, R.R. The Role of Electrolytes in Affective Disorders. Sodium, potassium, and lithium ions. Arch. Gen. Psychiatry 1970, 22, 108–113. [Google Scholar] [CrossRef]
- Ionete, R.E.; Dinca, O.R.; Geana, E.I.; Costinel, D. Macro-and microelements as possible markers of quality and authenticity for fruits and derived products. Prog. Cryog. Isot. Sep. 2016, 19, 55. [Google Scholar]
- Srivastava, S.; Kulshreshtha, K. Nutritional Content and Significance of Tomato Powder. Ann. Arid. Zone 2013, 52, 121–124. [Google Scholar]
- Zugravu, C.-A.; Parvu, M.; Patrascu, D.; Stoian, A. Correlations between Lead and Cadmium Pollution of Honey and Environmental Heavy Metal Presence in Two Romanian Counties. Bull. Univ. Agric. 1970, 66, 230–233. [Google Scholar] [CrossRef]
- Ferro, Y.; Mazza, E.; Angotti, E.; Pujia, R.; Mirarchi, A.; Salvati, M.A.; Terracciano, R.; Savino, R.; Romeo, S.; Scuteri, A.; et al. Effect of a novel functional tomato sauce (OsteoCol) from vine-ripened tomatoes on serum lipids in individuals with common hypercholesterolemia: Tomato sauce and hypercholesterolemia. J. Transl. Med. 2021, 19, 19. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.; Han, P.; Song, M.; Zhang, H.; Shen, W.; Huang, G.; Zhao, M.; Sun, Q.; Zhao, Y.; Min, L. β-carotene Rescues Busulfan Disrupted Spermatogenesis Through Elevation in Testicular Antioxidant Capability. Front. Pharmacol. 2021, 12, 593953. [Google Scholar] [CrossRef]
- Vallverdú-Queralt, A.; Medina-Remón, A.; Martínez-Huélamo, M.; Jáuregui, O.; Andres-Lacueva, C.; Lamuela-Raventos, R.M. Phenolic Profile and Hydrophilic Antioxidant Capacity as Chemotaxonomic Markers of Tomato Varieties. J. Agric. Food Chem. 2011, 59, 3994–4001. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, Y.; Kiyota, N.; Hori, M.; Matsushita, S.; Iijima, Y.; Aoki, K.; Shibata, D.; Takeya, M.; Ikeda, T.; Nohara, T.; et al. Esculeogenin A, a New Tomato Sapogenol, Ameliorates Hyperlipidemia and Atherosclerosis in ApoE-Deficient Mice by Inhibiting ACAT. Arter. Thromb. Vasc. Biol. 2007, 27, 2400–2406. [Google Scholar] [CrossRef] [Green Version]
- Cui, X.Y.; Park, S.H.; Park, W.H. Anti-Cancer Effects of Auranofin in Human Lung Cancer Cells by Increasing Intracellular ROS Levels and Depleting GSH Levels. Molecules 2022, 27, 5207. [Google Scholar] [CrossRef]
- Straaten, H.M.O.; Man, A.M.S.; Waard, M.C. Vitamin C revisited. Crit. Care. 2014, 18, 460. [Google Scholar] [CrossRef] [Green Version]
- Grosso, G.; Bei, R.; Mistretta, A.; Marventano, S.; Calabrese, G.; Masuelli, L.; Giganti, M.G.; Modesti, A.; Galvano, F.; Gazzolo, D. Effects of Vitamin C on health: A review of evidence. Front. Biosci. 2013, 18, 1017–1029. [Google Scholar] [CrossRef]
- La, J.; Kim, M.-J.; Lee, J. Evaluation of solvent effects on the DPPH reactivity for determining the antioxidant activity in oil matrix. Food Sci. Biotechnol. 2021, 30, 367–375. [Google Scholar] [CrossRef]
- Kang, D.-M.; Kwon, J.-M.; Jeong, W.-J.; Jung, Y.J.; Kang, K.K.; Ahn, M.-J. Antioxidant Constituents and Activities of the Pulp with Skin of Korean Tomato Cultivars. Molecules 2022, 27, 8741. [Google Scholar] [CrossRef] [PubMed]
- Treml, J.; Šmejkal, K. Flavonoids as Potent Scavengers of Hydroxyl Radicals. Compr. Rev. Food Sci. Food Saf. 2016, 15, 720–738. [Google Scholar] [CrossRef] [PubMed]
- Takashima, M.; Shichiri, M.; Hagihara, Y.; Yoshida, Y.; Niki, E. Capacity of peroxyl radical scavenging and inhibition of lipid peroxidation by β-carotene, lycopene, and commercial tomato juice. Food Funct. 2012, 3, 1153–1160. [Google Scholar] [CrossRef]
- Pérez-Vargas, J.E.; Zarco, N.; Vergara, P.; Shibayama, M.; Segovia, J.; Tsutsumi, V.; Muriel, P. l-Theanine prevents carbon tetrachloride-induced liver fibrosis via inhibition of nuclear factor κB and down-regulation of transforming growth factor β and connective tissue growth factor. Hum. Exp. Toxicol. 2016, 35, 135–146. [Google Scholar] [CrossRef]
- Chynna, N.B.; Valeria, C.C. SOD Enzymes and Microbial Pathogens: Surviving the Oxidative Storm of Infection. PLoS Pathog. 2016, 12, e1005295. [Google Scholar]
- Chung, B.Y.; Choi, S.R.; Moon, I.J.; Park, C.W.; Kim, Y.-H.; Chang, S.E. The Glutathione Derivative, GSH Monoethyl Ester, May Effectively Whiten Skin but GSH Does Not. Int. J. Mol. Sci. 2016, 17, 629. [Google Scholar] [CrossRef] [Green Version]
- Krych, J.; Gebicka, L. Catalase is inhibited by flavonoids. Int. J. Biol. Macromol. 2013, 58, 148–153. [Google Scholar] [CrossRef] [PubMed]
- Aini, N.; Sustriawan, B.; Wahyuningsih, N.; Mela, E. Blood Sugar, Haemoglobin and Malondialdehyde Levels in Diabetic White Rats Fed a Diet of Corn Flour Cookies. Foods 2022, 11, 1819. [Google Scholar] [CrossRef]
Item | Qianxi | Jinbi | Lvfeicui |
---|---|---|---|
Exterior color of mature fruit | Red | Yellow | Green |
Average fruit weight (g) | 14.82 ± 1.21 c | 22.43 ± 2.13 a | 18.53 ± 1.62 b |
Average longitudinal fruit diameter (cm) | 3.43 ± 0.22 b | 3.94 ± 0.31 a | 3.53 ± 0.22 b |
Average transverse fruit diameter (cm) | 2.54 ± 0.24 b | 3.13 ± 0.22 a | 3.12 ± 0.13 a |
Average fruit shape index | 1.36 ± 0.15 a | 1.26 ± 0.19 a | 1.13 ± 0.11 a |
Predominant fruit shape | Oval-shaped | Oval-shaped | Oval-shaped |
Average fruit hardness (kg/cm2) | 1.48 ± 0.25 c | 1.92 ± 0.28 | 2.35 ± 0.21 a |
pH value | 4.52 ± 0.16 b | 4.98 ± 0.13 a | 4.66 ± 0.15 b |
Total soluble solid content (%) | 5.42 ± 0.13 c | 6.52 ± 0.18 b | 7.89 ± 0.19 a |
Total acid content (%) | 0.39 ± 0.02 a | 0.35 ± 0.02 b | 0.32 ± 0.01 c |
Item | Qianxi | Jinbi | Lvfeicui |
---|---|---|---|
Macronutrient | |||
Moisture (g/100 g FW) | 91.53 ± 2.12 a | 91.64 ± 1.98 a | 90.92 ± 1.83 a |
Proteins (g/100 g FW) | 0.64 ± 0.03 b | 0.82 ± 0.01 a | 0.56 ± 0.02 c |
Fat (g/100 g FW) | 0.28 ± 0.01 b | 0.33 ± 0.01 a | 0.30 ± 0.01 b |
Starch (g/100 g FW) | 0.01 ± 0.00 a | 0.01 ± 0.00 a | 0.01 ± 0.00 a |
Total fiber (g/100 g FW) | 2.11 ± 0.14 b | 2.34 ± 0.15 b | 2.82 ± 0.11 a |
Fructose (g/100 g FW) | 3.21 ± 0.32 a | 3.43 ± 0.28 a | 2.85 ± 0.33 b |
Glucose (g/100 g FW) | 2.89 ± 0.25 a | 3.02 ± 0.15 a | 2.98 ± 0.23 a |
Sucrose (g/100 g FW) | 0.02 ± 0.00 a | 0.01 ± 0.00 a | 0.01 ± 0.00 a |
Maltose (g/100 g FW) | Not detected | Not detected | Not detected |
Lactose (g/100 g FW) | Not detected | Not detected | Not detected |
Energy (kcal/100 g FW) | 33.80 ± 1.92 b | 36.69 ± 1.58 a | 33.91 ± 1.77 b |
Mineral | |||
Sodium (Na) (mg/Kg FW) | 125.33 ± 3.92 b | 132.64 ± 4.12 a | 133.91 ± 3.21 a |
Potassium (K) (mg/Kg FW) | 1380.32 ± 29.63 a | 990.92 ± 22.73 c | 1107.93 ± 31.22 b |
Calcium (Ca) (mg/Kg FW) | 95.58 ± 4.21 a | 78.34 ± 3.13 b | 93.77 ± 2.82 a |
Magnesium (Mg) (mg/Kg FW) | 129.51 ± 3.32 a | 106.20 ± 2.92 b | 96.54 ± 3.63 c |
Iron (Fe) (mg/Kg FW) | 3.05 ± 0.18 a | 2.22 ± 0.21 b | 2.89 ± 0.11 a |
Zinc (Zn) (mg/Kg FW) | 1.92 ± 0.12 a | 1.89 ± 0.13 a | 1.57 ± 0.09 b |
Copper (Cu) (mg/Kg FW) | 0.51 ± 0.04 c | 0.73 ± 0.03 a | 0.59 ± 0.03 b |
Item | Qianxi | Jinbi | Lvfeicui |
---|---|---|---|
Lycopene (mg/Kg FW) | 56.25 ± 2.41 a | 5.13 ± 0.22 b | 1.53 ± 0.11 c |
β-carotene (mg/Kg FW) | 6.85 ± 0.18 a | 0.78 ± 0.03 b | 0.54 ± 0.02 c |
Lutein (mg/Kg FW) | 0.79 ± 0.01 b | 1.68 ± 0.03 a | 0.33 ± 0.01 c |
Rutin (mg/Kg FW) | 9.84 ± 0.15 c | 12.31 ± 0.21 a | 11.12 ± 0.29 b |
Esculeoside A (mg/Kg FW) | 687.43 ± 13.22 a | 433.32 ± 16.54 b | 357.40 ± 15.12 c |
GSH (mg/Kg FW) | 1894.33 ± 52.61 c | 2013.90 ± 40.84 b | 2446.54 ± 50.12 a |
Vitamin C (mg/Kg FW) | 578.33 ± 21.22 c | 656.63 ± 18.71 b | 692.72 ± 22.62 a |
Item | DPPH Radicals Scavenging Activity (%) | ||||
---|---|---|---|---|---|
16-Fold Dilution | 8-Fold Dilution | 4-Fold Dilution | 2-Fold Dilution | Extract Solution | |
Qianxi | |||||
Fat-soluble constituents | 33.92 ± 1.21 a | 52.13 ± 1.42 a | 69.73 ± 2.13 a | 88.42 ± 1.91 a | 94.54 ± 1.51 a |
Water-soluble components | 18.84 ± 0.82 d | 29.54 ± 1.53 c | 45.72 ± 1.82 d | 63.33 ± 1.14 c | 78.21 ± 2.12 c |
Jinbi | |||||
Fat-soluble constituents | 25.71 ± 1.12 b | 35.32 ± 1.92 b | 52.24 ± 1.83 c | 65.52 ± 1.40 c | 73.72 ± 2.14 d |
Water-soluble components | 30.62 ± 1.21 a | 48.13 ± 1.32 a | 59.44 ± 1.63 b | 76.42 ± 1.31 b | 89.51 ± 1.62 b |
Lvfeicui | |||||
Fat-soluble constituents | 21.50 ± 1.12 c | 36.42 ± 2.13 b | 50.51 ± 0.90 c | 62.22 ± 1.41 c | 74.83 ± 2.32 d |
Water-soluble components | 19.43 ± 0.80 d | 32.53 ± 1.61 b,c | 48.21 ± 2.13 c,d | 63.32 ± 1.54 c | 79.70 ± 1.41 c |
Item | Hydroxyl Free Radicals Scavenging Activity (%) | ||||
---|---|---|---|---|---|
16-Fold Dilution | 8-Fold Dilution | 4-Fold Dilution | 2-Fold Dilution | Extract Solution | |
Qianxi | |||||
Fat-soluble constituents | 28.21 ± 1.53 a | 45.32 ± 1.24 a | 61.63 ± 2.10 a | 71.92 ± 1.64 a | 89.31 ± 2.22 a |
Water-soluble components | 21.14 ± 1.12 b | 25.92 ± 1.40 b | 33.63 ± 2.14 b | 40.61 ± 1.32 b | 45.72 ± 1.93 b |
Jinbi | |||||
Fat-soluble constituents | 18.51 ± 1.12 b | 23.80 ± 0.91 b,c | 28.33 ± 0.71 c | 33.52 ± 0.92 c | 39.63 ± 1.33 c |
Water-soluble components | 21.22 ± 0.64 b | 25.13 ± 0.52 b | 30.70 ± 0.70 b,c | 35.62 ± 0.60 c | 43.21 ± 0.92 b,c |
Lvfeicui | |||||
Fat-soluble constituents | 19.13 ± 0.32 b | 22.04 ± 0.31 c | 26.82 ± 0.64 c | 32.33 ± 0.42 c | 37.23 ± 0.52 c |
Water-soluble components | 21.70 ± 0.21 b | 25.81 ± 0.42 b | 30.33 ± 0.60 b,c | 35.23 ± 0.52 c | 41.51 ± 0.71 b,c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.; Li, W.; Li, D.; Chan, A.S.C. Evaluation of Nutritional Compositions, Bioactive Components, and Antioxidant Activity of Three Cherry Tomato Varieties. Agronomy 2023, 13, 637. https://doi.org/10.3390/agronomy13030637
Yang Z, Li W, Li D, Chan ASC. Evaluation of Nutritional Compositions, Bioactive Components, and Antioxidant Activity of Three Cherry Tomato Varieties. Agronomy. 2023; 13(3):637. https://doi.org/10.3390/agronomy13030637
Chicago/Turabian StyleYang, Ziming, Wei Li, Dianpeng Li, and Albert S. C. Chan. 2023. "Evaluation of Nutritional Compositions, Bioactive Components, and Antioxidant Activity of Three Cherry Tomato Varieties" Agronomy 13, no. 3: 637. https://doi.org/10.3390/agronomy13030637
APA StyleYang, Z., Li, W., Li, D., & Chan, A. S. C. (2023). Evaluation of Nutritional Compositions, Bioactive Components, and Antioxidant Activity of Three Cherry Tomato Varieties. Agronomy, 13(3), 637. https://doi.org/10.3390/agronomy13030637