Influences of Organic Acid Salts and Bacterial Additives on Fermentation Profile, Aerobic Stability, and In Vitro Digestibility of Total Mixed Ration Silage Prepared with Wet Hulless Barley Distillers’ Grains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Total Mixed Ration Silage Making
2.2. Aerobic Stability
2.3. Chemical and Microbiological Analyses
2.4. In Vitro Digestibility and Gas Production
2.5. Statistical Analysis
3. Results and Discussion
3.1. Chemical Compositions and Microbial Populations of Ingredients and Pre-Ensiled TMR
3.2. Fermentation Profile, Microbial and Chemical Compositions of TMR Silage
3.3. Aerobic Stability
3.4. In Vitro Digestibility and Gas Production
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, S.; Yuan, X.; Dong, Z.; Li, J.; Shao, T. Effect of Ensiling Corn Stover with Legume Herbages in Different Proportions on Fermentation Characteristics, Nutritive Quality and In vitro Digestibility on the Tibetan Plateau. Grassland Sci. 2017, 63, 236–244. [Google Scholar] [CrossRef]
- Yuan, X.; Yu, C.; Li, Z.; Shimojo, M.; Shao, T. Effect of Inclusion of Grasses and Wet Hulless-Barley Distillers’ Grains on the Fermentation and Nutritive Quality of Oat Straw-and Straw-Grass Silages in Tibet. Anim. Prod. Sci. 2013, 53, 419–426. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, J.; Yu, C.; Li, J.; Tao, X.; Chen, S.; Shao, T. Nutritional Evaluation of Wet Brewers’ Grains as Substitute for Common Vetch in Ensiled Total Mixed Ration. Italian J. Anim. Sci. 2020, 19, 1015–1025. [Google Scholar] [CrossRef]
- Kondo, M.; Shimizu, K.; Jayanegara, A.; Mishima, T.; Matsui, H.; Karita, S.; Fujihara, T. Changes in Nutrient Composition and In vitro Ruminal Fermentation of Total Mixed Ration Silage Stored at Different Temperatures and Periods. J. Sci. Food Agr. 2016, 96, 1175–1180. [Google Scholar] [CrossRef] [PubMed]
- Dai, T.; Dong, D.; Wang, S.; Zong, C.; Yin, X.; Jia, Y.; Shao, T. The Effectiveness of Chemical Additives on Fermentation Profiles, Aerobic Stability and In vitro Ruminal Digestibility of Total Mixed Ration Ensiled with Napier Grass and Wet Distillers’ Grains in Southeast China. Italian J. Anim. Sci. 2022, 21, 979–989. [Google Scholar] [CrossRef]
- Bueno, A.V.I.; Lazzari, G.; Jobim, C.C.; Daniel, J.L.P. Ensiling Total Mixed Ration for Ruminants: A Review. Agronomy 2020, 10, 879. [Google Scholar] [CrossRef]
- Queiroz, O.C.M.; Arriola, K.G.; Daniel, J.L.P.; Adesogan, A.T. Effects of 8 Chemical and Bacterial Additives on the Quality of Corn Silage. J. Dairy Sci. 2013, 96, 5836–5843. [Google Scholar] [CrossRef] [PubMed]
- Kleinschmit, D.H.; Kung, L., Jr. A Meta-Analysis of the Effects of Lactobacillus buchneri on the Fermentation and Aerobic Stability of Corn and Grass and Small-Grain Silages. J. Dairy Sci. 2006, 89, 4005–4013. [Google Scholar] [CrossRef]
- Nishino, N.; Hattori, H.; Wada, H.; Touno, E. Biogenic Amine Production in Grass, Maize and Total Mixed Ration Silages Inoculated with Lactobacillus casei or Lactobacillus buchneri. J. Appl. Microbiol. 2007, 103, 325–332. [Google Scholar] [CrossRef]
- Muck, R.E. Recent Advances in Silage Microbiology. Agri. Food Sci. 2013, 22, 3–15. [Google Scholar] [CrossRef] [Green Version]
- Kung, L., Jr.; Stokes, M.R.; Linc, J. Silage Additives. In Silage Science and Technology; Buxton, D.R., Muck, R.E., Harrison, J.H., Eds.; American Society of Agronomy, Crop Science Society of America, Soil Science Society of America: Madison, WI, USA, 2003; pp. 305–360. [Google Scholar]
- Mills, J.A.; Kung, L., Jr. The Effect of Delayed Ensiling and Application of a Propionic Acid-Based Additive on the Fermentation of Barley Silage. J. Dairy Sci. 2002, 85, 1969–1975. [Google Scholar] [CrossRef] [Green Version]
- Kung, L., Jr.; Smith, M.L.; da Silva, E.B.; Windle, M.C.; da Silva, T.C.; Polukis, S.A. An Evaluation of the Effectiveness of a Chemical Additive Based on Sodium Benzoate, Potassium Sorbate, and Sodium Nitrite on the Fermentation and Aerobic Stability of Corn Silage. J. Dairy Sci. 2018, 101, 5949–5960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knický, M.; Spörndly, R. Sodium Benzoate, Potassium Sorbate and Sodium Nitrite as Silage Additives. J. Sci. Food Agr. 2009, 89, 2659–2667. [Google Scholar] [CrossRef]
- Li, Y.F.; Wang, L.L.; Jeong, E.C.; Kim, H.J.; Ahmadi, F.; Kim, J.G. Effects of Sodium Diacetate or Microbial Inoculants on Aerobic Stability of Wilted Rye Silage. Anim. Bio. 2022, 35, 1871–1880. [Google Scholar] [CrossRef]
- Okur, A.A.; Gozluklu, K.; Okur, E.; Okuyucu, B.; Koc, F.; Ozduven, M.L. Effects of Apple Vinegar Addition on Aerobic Deterioration of Fermented High Moisture Maize Using Infrared Thermography as an Indicator. Sensors 2022, 22, 771. [Google Scholar] [CrossRef]
- Oliveira, A.S.; Weinberg, Z.G.; Ogunade, I.M.; Cervantes, A.A.; Arriola, K.G.; Jiang, Y.; Kim, D.; Li, X.; Gonçalves, M.C.; Vyas, D.; et al. Meta-Analysis of Effects of Inoculation with Homofermentative and Facultative Heterofermentative Lactic Acid Bacteria on Silage Fermentation, Aerobic Stability, and the Performance of Dairy Cows. J. Dairy Sci. 2017, 100, 4587–4603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilkinson, J.M.; Davies, D.R. The Aerobic Stability of Silage: Key Findings and Recent Developments. Grass Forage Sci. 2013, 68, 1–19. [Google Scholar] [CrossRef]
- Jasaitis, D.K.; Wohlt, J.E.; Evans, J.L. Influence of Feed Ion Content on Buffering Capacity of Ruminant Feedstuffs In vitro. J. Dairy Sci. 1987, 70, 1391–1403. [Google Scholar] [CrossRef]
- Broderick, G.A.; Kang, J.H. Automated Simultaneous Determination of Ammonia and Total Amino Acids in Ruminal Fluid and In vitro Media. J. Dairy Sci. 1980, 63, 64–75. [Google Scholar] [CrossRef]
- Owens, V.; Albrecht, K.; Muck, R.; Duke, S. Protein Degradation and Fermentation Characteristics of Red Clover and Alfalfa Silage Harvested with Varying Levels of Total Nonstructural Carbohydrates. Crop Sci. 1999, 39, 1873–1880. [Google Scholar] [CrossRef] [Green Version]
- Association of Official and Analytical Chemist (AOAC). Official Methods of Analysis, 18th ed.; AOAC: Washington DC, USA, 2000. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Liu, Q.H.; Li, X.Y.; Desta, S.T.; Zhang, J.G.; Shao, T. Effects of Lactobacillus plantarum and Fibrolytic Enzyme on the Fermentation Quality and In vitro Digestibility of Total Mixed Rations Silage Including Rape Straw. J. Integr. Agr. 2016, 15, 2087–2096. [Google Scholar] [CrossRef] [Green Version]
- SAS (Statistical Analysis System). Inc: SAS® User’s Guide: Statistics, Version 8.2; SAS Institution: Cary, NC, USA, 2001. [Google Scholar]
- McDonald, P.; Henderson, A.; Heron, S.J.E. The Biochemistry of Silage; Chalcombe Publications: Southampton, UK, 1991. [Google Scholar]
- Chen, L.; Yuan, X.J.; Li, J.F.; Wang, S.R.; Dong, Z.H.; Shao, T. Effect of Lactic Acid Bacteria and Propionic Acid on Conservation Characteristics, Aerobic Stability and In vitro Gas Production Kinetics and Digestibility of Whole-Crop Corn Based Total Mixed Ration Silage. J. Integr. Agr. 2017, 16, 1592–1600. [Google Scholar] [CrossRef] [Green Version]
- Ni, K.; Wang, Y.; Pang, H.; Cai, Y. Effect of Cellulase and Lactic Acid Bacteria on Fermentation Quality and Chemical Composition of Wheat Straw Silage. Am. J. Plant Sci. 2014, 5, 1877–1884. [Google Scholar] [CrossRef] [Green Version]
- Keshri, J.; Chen, Y.; Pinto, R.; Kroupitski, Y.; Weinberg, Z.G.; Sela Saldinger, S. Bacterial Dynamics of Wheat Silage. Front. Microbiol. 2019, 10, 1532. [Google Scholar] [CrossRef]
- Carvalho, B.F.; Avila, C.L.S.; Pinto, J.C.; Neri, J.; Schwan, R.F. Microbiological and Chemical Profile of Sugar Cane Silage Fermentation Inoculated with Wild Strains of Lactic Acid Bacteria. Anim. Feed Sci. Technol. 2014, 195, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Pahlow, G.; Muck, R.E.; Driehuis, F.; Oude Elferink, S.J.W.H.; Spoelstra, S.F. Microbiology of Ensiling. In Silage Science and Technology (Agronomy Series No. 42); Buxton, D.R., Muck, R.E., Harrison, H.J., Eds.; American Society of Agronomy: Madison, WI, USA, 2003; pp. 31–93. [Google Scholar]
- Dolci, P.; Tabacco, E.; Cocolin, L.; Borreani, G. Microbial Dynamics during Aerobic Exposure of Corn Silage Stored under Oxygen Barrier or Polyethylene Films. Appl. Environ. Microb. 2011, 77, 7499–7507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McEniry, J.; O’Kiely, P.; Clipson, N.J.W.; Forristal, P.D.; Doyle, E.M. The Microbiological and Chemical Composition of Baled and Precision-Chop Silages on a Sample of Farms in County Meath. Irish J. Agr. Food Res. 2006, 45, 73–83. [Google Scholar]
- Leibensperger, R.Y.; Pitt, R.E. Modelling the Effects of Formic Acid and Molasses on Ensilage. J. Dairy Sci. 1988, 71, 1220–1231. [Google Scholar] [CrossRef]
- Holzer, M.; Mayrhuber, E.; Danner, H.; Braun, R. The Role of Lactobacillus buchneri in Forage Preservation. Trends Biotechnol. 2003, 21, 282–287. [Google Scholar] [CrossRef]
- Kung, L., Jr.; Shaver, R.D.; Grant, R.J.; Schmidt, R.J. Silage Review: Interpretation of Chemical, Microbial, and Organoleptic Components of Silages. J. Dairy Sci. 2018, 101, 4020–4033. [Google Scholar] [CrossRef] [PubMed]
- McDonald, P.; Edwards, R.A.; Greenhalgh, J.F.D.; Morgan, C.A. Animal Nutrition, 6th ed; Longman Scientific and Technical: Harlow, UK, 2002; pp. 515–535. [Google Scholar]
- Han, Z.; Xu, G.; Wang, S.; Dai, T.; Dong, D.; Zong, C.; Shao, T. Antimicrobial Effects of Four Chemical Additives on Fermentation Quality, Aerobic Stability, and In vitro Ruminal Digestibility of Total Mixed Ration Silage Prepared with Local Food By-Products. Anim. Sci. J. 2022, 93, e13755. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Dairy Cattle, 7th ed.; National Academies Press: Washington, DC, USA, 2001. [Google Scholar]
- Humer, E.; Petri, R.M.; Aschenbach, J.R.; Bradford, B.J.; Penner, G.B.; Tafaj, M.; Zebeli, Q. Invited Review: Practical Feeding Management Recommendations to Mitigate the Risk of Subacute Ruminal Acidosis in Dairy Cattle. J. Dairy Sci. 2018, 101, 872–888. [Google Scholar] [CrossRef] [Green Version]
- Weinberg, Z.G. Preservation of Forage Crops by Solid-state Lactic Acid Fermentation-ensiling. In Current Developments in Solid-State Fermentation; Springer: Berlin/Heidelberg, Germany, 2008; pp. 443–467. [Google Scholar]
- Wen, A.Y.; Yuan, X.J.; Jian, W.; Desta, S.T.; Shao, T. Effects of Four Short-Chain Fatty Acids or Salts on Dynamics of Fermentation and Microbial Characteristics of Alfalfa Silage. Anim. Feed Sci. Technol. 2017, 223, 141–148. [Google Scholar] [CrossRef]
- Kleinschmit, D.H.; Schmidt, R.J.; Kung, L., Jr. The Effects of Various Antifungal Additives on the Fermentation and Aerobic Stability of Corn Silage. J. Dairy Sci. 2005, 88, 2130–2139. [Google Scholar] [CrossRef] [Green Version]
- Muck, R.E. Factors Influencing Silage Quality and their Implications for Management. J. Dairy Sci. 1988, 71, 2992–3002. [Google Scholar] [CrossRef]
- Ni, K.; Wang, F.; Zhu, B.; Yang, J.; Zhou, G.; Pan, Y.; Zhong, J. Effects of Lactic Acid Bacteria and Molasses Additives on the Microbial Community and Fermentation Quality of Soybean Silage. Bioresour. Technol. 2017, 238, 706–715. [Google Scholar] [CrossRef] [PubMed]
- Danner, H.; Holzer, M.; Mayrhuber, E.; Braun, R. Acetic Acid Increases Stability of Silage under Aerobic Conditions. Appl. Environ. Microbiol. 2003, 69, 562–567. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, B.F.; Fernandes, B.T.; Piza, R.A.P.D.T.; Nascimento, L.B.; Teresinha, B.T.; Andrade, R.R. Fermentation and Aerobic Stability of Corn Silage Inoculated with Lactobacillus buchneri. Rev. Bras. Zootecn. 2012, 41, 2369–2373. [Google Scholar]
- Dai, T.; Dong, D.; Wang, S.; Zong, C.; Yin, X.; Xu, G.; Shao, T. Assessment of Organic Acid Salts on Fermentation Quality, Aerobic Stability, and In vitro Rumen Digestibility of Total Mixed Ration Silage. Trop. Anim. Health Pro. 2022, 54, 261. [Google Scholar] [CrossRef]
- Chen, L.; Yuan, X.J.; Li, J.F.; Dong, Z.H.; Wang, S.R.; Guo, G.; Shao, T. Effects of Applying Lactic Acid Bacteria and Propionic Acid on Fermentation Quality, Aerobic Stability and In vitro Gas Production of Forage-Based Total Mixed Ration Silage in Tibet. Anim. Production Sci. 2019, 59, 376–383. [Google Scholar] [CrossRef]
- Lema, M.; Felix, A.; Salako, S.; Cebert, E.; Bishnoi, U. Nutrient Content and In vitro Dry Matter Digestibility of Silages made from Various Grain Sorghum Cultivars. J. Appl. Anim. Res. 2001, 19, 129–136. [Google Scholar] [CrossRef]
- Xu, G.; Han, Z.; Wang, S.; Dai, T.; Dong, D.; Zong, C.; Shao, T. Soy Sauce Residue in Total Mixed Ration Silage: Fermentation Characteristics, Chemical Compositions, In vitro Digestibility and Gas Production. Italian J. Anim. Sci. 2022, 21, 1058–1066. [Google Scholar] [CrossRef]
Items 1 | Wet Hulless Barley Distillers’ Grain | Common Vetch | Whole-Crop Oat | Hulless Barley Straw | Mixed Concentrate |
---|---|---|---|---|---|
Dry matter (g kg−1 of FW) | 147 | 283 | 485 | 968 | 904 |
Crude protein | 288 | 188 | 79.9 | 42.5 | 159 |
aNDFom | 499 | 447 | 417 | 576 | 161 |
ADFom | 165 | 78.1 | 253 | 151 | 148 |
Ether extract | 140 | 54.7 | 74.3 | 46.8 | 60.7 |
Ash | 79.9 | 74.2 | 50.7 | 63.1 | 114 |
Water soluble carbohydrate | 71.6 | 85.4 | 139 | 46.3 | 110 |
Buffering capacity (mEq kg−1 DM) | 168 | 320 | 209 | 43.9 | 171 |
Items 1 | Total Mixed Ration |
---|---|
Ingredient proportions (%FW) | |
Wet hulless barley distillers’ grain | 10.00 |
Common vetch | 35.00 |
Whole-crop oat | 15.00 |
Hulless barley straw | 10.00 |
Mixed concentrate | 30.00 |
Chemical components (g kg−1 DM) | |
Dry matter (g kg−1 FW) | 555 |
Crude protein | 158 |
Water soluble carbohydrate | 95.6 |
aNDFom | 375 |
ADFom | 141 |
Ether extract | 67.2 |
Ash | 82.1 |
Buffering capacity (mEq kg−1 DM) | 216 |
Microbial populations (Log10 cfu g−1 FW) | |
Lactic acid bacteria | 4.62 |
Aerobic bacteria | 6.29 |
Yeasts | 6.64 |
Molds | 5.81 |
Items 1 | Treatments 2 | SEM | p-Value 3 | |||||
---|---|---|---|---|---|---|---|---|
Control | CAP | POS | SDA | LB | LAC | |||
Fermentation profile (g kg−1 DM) | ||||||||
pH | 4.49 a | 4.47 ab | 4.42 b | 4.51 a | 4.32 c | 4.33 c | 0.018 | <0.001 |
Lactic acid | 63.1 cd | 66.6 c | 62.5 d | 63.5 cd | 76.5 b | 82.4 a | 1.87 | <0.001 |
Acetic acid | 28.2 b | 21.2 cd | 25.0 bc | 31.3 a | 19.7 d | 22.4 cd | 1.02 | <0.001 |
Lactic acid/acetic acid | 2.25 c | 3.15 b | 2.50 c | 2.03 c | 3.89 a | 3.67 a | 0.174 | <0.001 |
Propionic acid | 3.22 b | 7.41 a | 1.33 d | 1.96 c | 1.82 c | 1.88 c | 0.505 | <0.001 |
Butyric acid | 1.44 bc | 1.40 bc | 1.38 bc | 1.34 c | 1.44 b | 1.56 a | 0.019 | <0.001 |
VFAs | 32.8 ab | 30.0 bc | 27.7 c | 34.6 a | 23.0 d | 25.9 cd | 1.01 | <0.001 |
Ethanol | 26.3 a | 10.9 d | 15.8 bc | 16.9 b | 12.3 cd | 14.1 bcd | 1.25 | <0.001 |
Water soluble carbohydrates | 25.0 b | 29.8 a | 23.1 bc | 21.0 c | 22.4 bc | 21.6 c | 0.76 | <0.001 |
NH3-N (g kg−1 total nitrogen) | 87.1 a | 69.1 c | 75.4 b | 73.5 bc | 77.4 b | 74.1 b | 1.38 | <0.001 |
Chemical compositions (g kg−1 DM) | ||||||||
Dry matter (g kg−1 FW) | 503 d | 530 a | 525 ab | 512 c | 524 b | 497 e | 2.9 | <0.001 |
Crude protein | 151 a | 152 a | 145 b | 143 b | 142 b | 138 c | 1.3 | <0.001 |
Ash | 83.9 a | 85.3 a | 75.9 b | 84.8 a | 76.9 b | 83.9 a | 0.99 | <0.001 |
Ether extract | 83.2 a | 73.9 c | 75.2 bc | 75.5 bc | 74.9 c | 79.5 ab | 0.86 | <0.001 |
aNDFom | 443 b | 428 c | 426 c | 385 e | 407 d | 462 a | 5.9 | <0.001 |
ADFom | 151 c | 150 c | 169 b | 114 d | 158 bc | 276 a | 5.2 | <0.001 |
Microbial numbers (Log10 cfu g−1 FW) | ||||||||
Lactic acid bacteria | 7.91 | 7.71 | 7.85 | 7.69 | 7.48 | 7.47 | 0.058 | 0.119 |
Aerobic bacteria | 7.37 a | 5.62 c | 6.28 b | 5.56 c | 5.51 c | 5.57 c | 0.170 | <0.001 |
Yeasts | 5.67 b | 6.52 a | 6.49 a | 5.80 b | 5.66 b | 5.75 b | 0.096 | <0.001 |
Molds | 4.63 c | 5.26 b | 5.74 a | 4.59 c | 4.62 c | 4.57 c | 0.062 | <0.001 |
Items 1 | Treatments 2 | Days of Air Exposure | SEM 3 | p-Value 4 | |||||
---|---|---|---|---|---|---|---|---|---|
0 | 6 | 9 | 14 | T | D | T × D | |||
pH | Control | 4.49 Bb | 4.54 Aa | 4.53 ABa | 4.53 ABb | 0.002 | <0.001 | <0.001 | <0.001 |
CAP | 4.47 Dab | 4.54 Ba | 4.51 Cab | 4.58 Ab | |||||
POS | 4.42 Cb | 4.46 Ab | 4.46 ABb | 4.43 BCc | |||||
SDA | 4.51 a | 4.54 a | 4.51 ab | 4.56 b | |||||
LB | 4.32 Bc | 4.38 Ac | 4.37 ABc | 4.38 Ac | |||||
LAC | 4.33 Cc | 4.40 BCc | 4.45 Bb | 5.30 Aa | |||||
Lactic acid (g kg−1 DM) | Control | 63.1 Bcd | 58.7 BCb | 68.2 Aab | 56.7 Cc | 0.19 | <0.001 | <0.001 | <0.001 |
CAP | 66.6 Bc | 60.4 Cb | 70.8 Aa | 66.7 Bb | |||||
POS | 62.5 Bd | 57.8 Cb | 59.3 BCc | 69.4 Aab | |||||
SDA | 63.5 ABcd | 57.9 BCb | 64.9 Ab | 56.6 Cc | |||||
LB | 76.5 Ab | 66.2 Ca | 70.8 Ba | 72.1 Ba | |||||
LAC | 82.4 Aa | 69.6 Ba | 56.7 Cc | 67.0 Bb | |||||
Acetic acid (g kg−1 DM) | Control | 28.2 Aab | 25.3 ABa | 26.2 ABa | 22.4 Bab | 0.18 | <0.001 | <0.001 | <0.001 |
CAP | 21.2 cd | 19.4 bc | 22.2 ab | 21.9 abc | |||||
POS | 25.0 bc | 22.4 ab | 20.9 b | 24.2 a | |||||
SDA | 31.3 Aa | 24.8 Ba | 26.3 Ba | 25.8 Ba | |||||
LB | 19.7 Ad | 17.3 ABc | 16.0 Bc | 17.5 ABbc | |||||
LAC | 22.4 Acd | 19.1 Bbc | 13.0 Dc | 16.8 Cc | |||||
Propionic acid (g kg−1 DM) | Control | 3.22 Ab | 2.54 ABb | 2.53 ABb | 2.15 Bb | 0.022 | <0.001 | <0.001 | <0.001 |
CAP | 7.41 Aa | 6.46 Ba | 7.27 Aa | 7.45 Aa | |||||
POS | 1.33 ABd | 1.21 Bc | 1.28 ABc | 1.34 Ac | |||||
SDA | 1.96 c | 1.42 c | 1.50 c | 1.53 c | |||||
LB | 1.82 Ac | 1.38 Bc | 1.36 Bc | 1.47 Bc | |||||
LAC | 1.88 Ac | 1.56 Bc | 1.45 Bc | 1.56 Bc | |||||
Butyric acid (g kg−1 DM) | Control | 1.44 Ab | 1.21 AB | 1.25 AB | 1.11 B | 0.009 | 0.087 | <0.001 | 0.002 |
CAP | 1.40 Abc | 1.16 C | 1.27 B | 1.08 C | |||||
POS | 1.38 Abc | 1.17 B | 1.12 B | 1.15 B | |||||
SDA | 1.34 c | 1.37 | 1.28 | 1.18 | |||||
LB | 1.44 Abc | 1.12 B | 1.14 B | 1.29 AB | |||||
LAC | 1.56 Aa | 1.21 B | 1.21 B | 1.14 B |
Items 1 | Treatments 2 | Days of Air Exposure | SEM 3 | p-Value 4 | |||||
---|---|---|---|---|---|---|---|---|---|
0 | 6 | 9 | 14 | T | D | T × D | |||
Water soluble carbohydrates (g kg−1 DM) | Control | 25.0 Ab | 25.0 Ab | 14.6 Bbc | 16.4 Bde | 0.19 | <0.001 | <0.001 | <0.001 |
CAP | 29.8 Aa | 29.8 Aa | 26.6 Aa | 19.5 Bcd | |||||
POS | 23.1 Abc | 23.1 Ab | 18.6 Bb | 23.6 Aab | |||||
SDA | 21.0 Bc | 21.7 Bb | 13.2 Cbc | 26.9 Aa | |||||
LB | 22.4 Abc | 23.4 Ab | 12.5 Bc | 22.4 Abc | |||||
LAC | 21.6 Ac | 23.3 Ab | 11.2 Cc | 15.6 Be | |||||
Ammonia nitrogen (g kg−1 total nitrogen) | Control | 87.1 Aa | 63.2 Ba | 55.7 Cab | 33.7 Db | 0.24 | <0.001 | <0.001 | <0.001 |
CAP | 69.1 Ac | 43.7 Cd | 57.9 Ba | 45.0 Ca | |||||
POS | 75.4 Ab | 55.0 Bb | 56.8 Bab | 46.4 Ca | |||||
SDA | 73.5 Abc | 47.2 Ccd | 58.0 Ba | 46.3 Ca | |||||
LB | 77.4 Ab | 55.3 Bb | 53.2 Bbc | 36.2 Cb | |||||
LAC | 74.1 Ab | 52.6 Bbc | 49.1 Bc | 47.0 Ba | |||||
Lactic acid bacteria (Log10 cfu g−1 FW) | Control | 7.91 B | 7.42 Ca | 8.31 Aa | 8.29 A | 0.019 | <0.001 | <0.001 | <0.001 |
CAP | 7.71 B | 7.33 Ba | 7.33 Bbc | 8.35 A | |||||
POS | 7.85 B | 6.48 Db | 6.99 Cc | 8.33 A | |||||
SDA | 7.69 B | 7.22 Ba | 7.30 Bbc | 8.49 A | |||||
LB | 7.48 B | 6.70 Cb | 7.65 Bb | 8.13 A | |||||
LAC | 7.47 B | 7.39 Ba | 7.65 Bb | 8.24 A | |||||
Aerobic bacteria (Log10 cfu g−1 FW) | Control | 7.37 Aa | 5.61 Bb | 5.66 Bb | 5.97 Ba | 0.021 | <0.001 | 0.014 | <0.001 |
CAP | 5.62 Bc | 6.41 Aa | 5.66 Bb | 5.91 ABab | |||||
POS | 6.28 Ab | 5.64 Bb | 5.70 Bb | 5.85 Bab | |||||
SDA | 5.56 Bc | 5.83 ABb | 6.48 Aa | 5.54 Bb | |||||
LB | 5.51 c | 5.58 b | 5.61 b | 5.82 ab | |||||
LAC | 5.57 Bc | 5.70 Bb | 6.18 Aa | 5.85 ABab | |||||
Yeasts (Log10 cfu g−1 FW) | Control | 5.67 Ab | 4.63 Cc | 5.70 Ac | 5.13 Bb | 0.020 | <0.001 | <0.001 | <0.001 |
CAP | 6.52 a | 6.22 a | 6.65 a | 6.46 a | |||||
POS | 6.49 Aa | 6.19 Bab | 6.20 Bb | 5.54 Cb | |||||
SDA | 5.80 Bb | 6.45 Aa | 6.24 Ab | 4.55 Cc | |||||
LB | 5.66 Ab | 4.71 Bc | 5.35 Ad | 4.59 Bc | |||||
LAC | 5.75 Ab | 5.67 ABb | 5.22 Bd | 5.52 ABb | |||||
Molds (Log10 cfu g−1 FW) | Control | 4.36 Bc | 4.57 Aa | 4.63 Aa | 4.25 Bb | 0.024 | <0.001 | <0.001 | <0.001 |
CAP | 4.56 Ab | 4.28 Cc | 4.68 Aa | 4.42 Bab | |||||
POS | 4.52 Ab | 4.21 Bc | 4.23 Bb | 3.87 Cc | |||||
SDA | 4.75 Aa | 4.49 Bb | 4.21 Cb | 3.45 Dd | |||||
LB | 4.67 Aa | 4.68 Aa | 4.32 Bb | 4.61 Aa | |||||
LAC | 4.76 Aa | 4.62 Aa | 4.26 Cb | 4.54 Ba |
Items 1 | Treatments 2 | SEM 3 | p-Value | |||||
---|---|---|---|---|---|---|---|---|
Control | CAP | POS | SDA | LB | LAC | |||
In vitro digestibility | ||||||||
IVDMD (%) | 48.4 c | 57.5 a | 54.8 ab | 56.0 a | 53.1 abc | 51.1 bc | 0.82 | <0.001 |
IVNDFD (%) | 41.1 c | 51.6 a | 48.4 ab | 49.8 a | 47.2 ab | 45.2 bc | 0.88 | <0.001 |
SCFA (mmol g−1 DM) | 13.2 | 17.2 | 13.5 | 13.7 | 14.5 | 15.2 | 0.57 | 0.371 |
MCP (mg g−1 DM) | 290 cd | 291 cd | 347 ab | 319 bc | 273 d | 351 a | 7.4 | <0.001 |
Available energy (MJ kg−1 DM) | ||||||||
Metabolizable energy (ME) | 18.5 | 23.4 | 18.9 | 19.1 | 20.1 | 21.0 | 0.70 | 0.367 |
Net energy for lactation (NEL) | 12.1 | 15.5 | 12.3 | 12.5 | 13.2 | 13.8 | 0.49 | 0.373 |
Gas production kinetics | ||||||||
GP72 (mL) | 168 c | 223 a | 173 bc | 174 bc | 180 bc | 193 b | 4.8 | <0.001 |
Potential gas production (mL) | 169 d | 227 a | 174 d | 180 c | 182 c | 193 b | 1.4 | 0.007 |
Gas production rate constant (mL h−1) | 0.048 b | 0.049 b | 0.047 b | 0.041 c | 0.049 b | 0.053 a | 0.0015 | 0.026 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Liu, H.; Zhao, J.; Dong, Z.; Li, J.; Shao, T. Influences of Organic Acid Salts and Bacterial Additives on Fermentation Profile, Aerobic Stability, and In Vitro Digestibility of Total Mixed Ration Silage Prepared with Wet Hulless Barley Distillers’ Grains. Agronomy 2023, 13, 672. https://doi.org/10.3390/agronomy13030672
Wang S, Liu H, Zhao J, Dong Z, Li J, Shao T. Influences of Organic Acid Salts and Bacterial Additives on Fermentation Profile, Aerobic Stability, and In Vitro Digestibility of Total Mixed Ration Silage Prepared with Wet Hulless Barley Distillers’ Grains. Agronomy. 2023; 13(3):672. https://doi.org/10.3390/agronomy13030672
Chicago/Turabian StyleWang, Siran, Haopeng Liu, Jie Zhao, Zhihao Dong, Junfeng Li, and Tao Shao. 2023. "Influences of Organic Acid Salts and Bacterial Additives on Fermentation Profile, Aerobic Stability, and In Vitro Digestibility of Total Mixed Ration Silage Prepared with Wet Hulless Barley Distillers’ Grains" Agronomy 13, no. 3: 672. https://doi.org/10.3390/agronomy13030672
APA StyleWang, S., Liu, H., Zhao, J., Dong, Z., Li, J., & Shao, T. (2023). Influences of Organic Acid Salts and Bacterial Additives on Fermentation Profile, Aerobic Stability, and In Vitro Digestibility of Total Mixed Ration Silage Prepared with Wet Hulless Barley Distillers’ Grains. Agronomy, 13(3), 672. https://doi.org/10.3390/agronomy13030672