Drop Size Measurement Techniques for Agricultural Sprays:A State-of-The-Art Review
Abstract
:1. Introduction
- The first section discusses the most important characteristic mean diameters and the main drop size distribution functions used for the description of sprays;
- In the second section, non-intrusive measurement methods are presented, namely, laser diffraction, phase Doppler particle analysis and high-speed imaging;
- The third section discusses two widespread intrusive methods, namely water-sensitive papers and liquid immersion;
- The fourth section presents some methods for drop sizing based on machine learning approaches;
- In the last section, error sources common to all the measurement methods are briefly discussed.
2. Mean Characteristic Diameters and Statistical Characterization of Sprays
- : surface mean diameter, best suited for surface controlling applications such as absorption. It is the diameter of a drop, the surface of which, multiplied by the total droplet number, equals the sum of all droplet surfaces:
- : volume mean diameter, best suited for volume-controlling applications such as hydrology. It is the diameter of a drop, the volume of which, multiplied by the total droplet number, equals the sum of all droplet volumes:
- D32: Sauter mean diameter (also known as SMD), best suited to calculating the efficiency and mass transfer rates in chemical reactions, such as the fuel injection in combustors. It is the diameter of a drop with the same volume/surface area ratio as the total volume of all the drops to the total surface area of all the drops:
3. Measuring Techniques for Spray Characterization
4. Non-Intrusive Measurement Methods
4.1. Laser Diffraction (LD)
4.2. Phase Doppler Particle Analysis (PDPA)
4.3. High-Speed Imaging (HSI)
5. Intrusive Measurement Methods
5.1. Water-Sensitive Papers (WSPs)
5.2. Liquid Immersion (LI)
6. Machine Learning (ML)
7. Final Considerations
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gil, Y.; Sinfort, C. Emission of pesticides to the air during sprayer application: A bibliographic review. Atmos. Environ. 2005, 39, 5183–5193. [Google Scholar] [CrossRef]
- Tudi, M.; Daniel Ruan, H.; Wang, L.; Lyu, J.; Sadler, R.; Connell, D.; Chu, C.; Phung, D.T. Agriculture Development, Pesticide Application and Its Impact on the Environment. Int. J. Environ. Res. Public Health 2021, 18, 1112. [Google Scholar] [CrossRef] [PubMed]
- European Union. Directive 2009/128/EC of the European Parliament and of the Council of 21 October 2009 establishing a framework for Community action to achieve the sustainable use of pesticides. Off, J. Eur. Union 2009, L 309, 71–86. [Google Scholar]
- Roussel, O.; Cavelier, A.; van der Werf, H.M. Adaptation and use of a fuzzy expert system to assess the environmental effect of pesticides applied to field crops. Agric. Ecosyst. Environ. 2000, 80, 143–158. [Google Scholar] [CrossRef]
- van der Werf, H.M.G. Assessing the impact of pesticides on the environment. Agric. Ecosyst. Environ. 1996, 60, 81–96. [Google Scholar] [CrossRef]
- Damalas, C.A.; Eleftherohorinos, I.G. Pesticide Exposure, Safety Issues, and Risk Assessment Indicators. Int. J. Environ. Res. Public Health 2011, 8, 1402–1419. [Google Scholar] [CrossRef]
- Yarpuz-Bozdogan, N. The importance of personal protective equipment in pesticide applications in agriculture. Curr. Opin. Environ. Sci. Health 2018, 4, 1–4. [Google Scholar] [CrossRef]
- Nuyttens, D.; Baetens, K.; De Schampheleire, M.; Sonck, B. Effect of nozzle type, size and pressure on spray droplet characteristics. Biosyst. Eng. 2007, 97, 333–345. [Google Scholar] [CrossRef]
- Martins, R.N.; Fialho e Moraes, H.M.; de Freitas, M.A.; da Costa Lima, A.; Furtado Junior, M.R. Effect of nozzle type and pressure on spray droplet characteristics. Idesia 2021, 39, 101–107. [Google Scholar] [CrossRef]
- Derksen, R.; Zhu, H.; Ozkan, H.; Hammond, R.; Dorrance, A.; Spongberg, A. Determining the influence of spray quality, nozzle type, spray volume, and air assisted application strategies on deposition of pesticide in soybean canopy. Trans. ASABE 2008, 51, 1529–1537. [Google Scholar] [CrossRef] [Green Version]
- Prokop, M.; Veverka, K. Influence of droplet spectra on the efficiency of contact fungicides and mixtures of contact and systemic fungicides. Plant. Prot. Sci. 2006, 42, 26–33. [Google Scholar] [CrossRef] [Green Version]
- Matthews, G. How was the pesticide applied? Crop Prot. 2004, 23, 651–653. [Google Scholar] [CrossRef]
- Nuyttens, D.; Braekman, P.; Windey, S.; Sonck, B. Potential dermal pesticide exposure affected by greenhouse spray application technique. Pest Manag. Sci. 2009, 65, 781–790. [Google Scholar] [CrossRef]
- De Cock, N.; Massinon, M.; Salah, S.; Lebeau, F. Investigation on optimal spray properties for ground based agricultural applications using deposition and retention models. Biosyst. Eng. 2017, 162, 99–111. [Google Scholar] [CrossRef] [Green Version]
- Cerruto, E.; Manetto, G.; Santoro, F.; Pascuzzi, S. Operator dermal exposure to pesticides in tomato and strawberry greenhouses from hand-held sprayers. Sustainability 2018, 10, 2273. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Lan, Y.; Zhou, Z.; Ouyang, F.; Wang, G.; Huang, X.; Deng, X.; Cheng, S. Effect of droplet size parameters on droplet deposition and drift of aerial spraying by using plant protection UAV. Agronomy 2020, 10, 195. [Google Scholar] [CrossRef] [Green Version]
- Lodwik, D.; Pietrzyk, J.; Malesa, W. Analysis of volume distribution and evaluation of the spraying spectrum in terms of spraying quality. Appl. Sci. 2020, 10, 2395. [Google Scholar] [CrossRef] [Green Version]
- Tellaeche, A.; BurgosArtizzu, X.P.; Pajares, G.; Ribeiro, A.; Fernandez-Quintanilla, C. A new vision-based approach to differential spraying in precision agriculture. Comput. Electron. Agric. 2008, 60, 144–155. [Google Scholar] [CrossRef] [Green Version]
- Mogili, U.M.R.; Deepak, B.B.V.L. Review on Application of Drone Systems in Precision Agriculture. Procedia Comput. Sci. 2018, 133, 502–509. [Google Scholar] [CrossRef]
- Meshram, A.T.; Vanalkar, A.V.; Kalambe, K.B.; Badar, A.M. Pesticide spraying robot for precision agriculture: A categorical literature review and future trends. J. Field Robot. 2021, 39, 153–171. [Google Scholar] [CrossRef]
- Baltazar, A.R.; dos Santos, F.N.; Moreira, A.P.; Valente, A.; Cunha, J.B. Smarter Robotic Sprayer System for Precision Agriculture. Electronics 2021, 10, 2026. [Google Scholar] [CrossRef]
- Danton, A.; Roux, J.C.; Dance, B.; Cariou, C.; Lenain, R. Development of a spraying robot for precision agriculture: An edge following approach. In Proceedings of the 2020 IEEE Conference on Control Technology and Applications (CCTA), Montreal, QC, Canada, 24–26 August 2020. [Google Scholar]
- Cantelli, L.; Bonaccorso, F.; Longo, D.; Melita, C.D.; Schillaci, G.; Muscato, G. A Small Versatile Electrical Robot for Autonomous Spraying in Agriculture. AgriEng. 2019, 1, 29. [Google Scholar] [CrossRef] [Green Version]
- ISO 25358:2018; Crop Protection Equipment—Droplet-Size Spectra from Atomizers—Measurement and Classification. ISO (International Organization for Standardization): Geneva, Switzerland, 2018. Available online: https://www.iso.org/standard/66412.html (accessed on 5 May 2022).
- da Cunha, J.P.; dos Reis, E.F.; de Assunção, H.H.; Landim, T.N. Evaluation of droplet spectra of the spray tip AD 11002 using different techniques. Eng. Agríc. 2019, 39, 476–481. [Google Scholar] [CrossRef] [Green Version]
- Sijs, R.; Kooij, S.; Holterman, H.J.; van de Zande, J.; Bonn, D. Drop size measurement techniques for sprays: Comparison of image analysis, phase Doppler particle analysis, and laser diffraction. AIP Adv. 2021, 11, 015315. [Google Scholar] [CrossRef]
- Pascuzzi, S.; Manetto, G.; Santoro, F.; Cerruto, E. A brief review of nozzle spray drop size measurement techniques. In Proceedings of the 2021 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), Trento-Bolzano, Italy, 3–5 November 2021. [Google Scholar] [CrossRef]
- Nuyttens, D.; Baetens, K.; De Schampheleire, M.; Sonck, B. PDPA laser-based characterisation of agricultural sprays. Agric. Eng. Int. CIGR J. 2006, 8, 1–18. [Google Scholar]
- Fritz, B.K.; Hoffmann, W.C. Measuring spray droplet size from agricultural nozzles using laser diffraction. J. Vis. Exp. 2016, 115, e54533. [Google Scholar] [CrossRef] [Green Version]
- Lad, N.; Aroussi, E.A.; Muhamad Said, M.F. Droplet size measurement for liquid spray using digital image analysis technique. J. Appl. Sci. 2011, 11, 1966–1972. [Google Scholar] [CrossRef] [Green Version]
- Castrejón-García, R.; Castrejón-Pita, J.; Martin, G.; Hutchings, I. The shadowgraph imaging technique and its modern application to fluid jets and drops. Rev. Mex. Fís. 2011, 57, 266–275. [Google Scholar]
- De Cock, N.; Massinon, M.; Salah, S.O.T.; Mercatoris, B.C.N.; Lebeau, F. Droplet size distribution measurements of ISO nozzles by shadowgraphy method. Commun. Agric. Appl. Biol. Sci. 2015, 80, 295–301. [Google Scholar]
- Minov, S.V.; Cointault, F.; Vangeyte, J.; Pieters, J.G.; Nuyttens, D. Spray droplet characterization from a single nozzle by high speed image analysis using an in-focus droplet criterion. Sensors 2016, 16, 218. [Google Scholar] [CrossRef] [Green Version]
- Tuck, C.; Butler Ellis, M.; Miller, P. Techniques for measurement of droplet size and velocity distributions in agricultural sprays. Crop Prot. 1997, 16, 619–628. [Google Scholar] [CrossRef]
- Salyani, M.; Zhu, H.; Sweeb, R.D.; Pai, N. Assessment of spray distribution with water-sensitive paper. Agric. Eng. Int. CIGR J. 2013, 15, 101–111. [Google Scholar]
- Fujimatsu, T.; Kito, M.; Kondo, K. Droplet Size Measurement of Liquid Atomization by the Immersion Liquid Method (Droplet Coalescence and Solution into the Immersion Liquid); WIT Transactions on Engineering Sciences; WIT Press: Southampton, UK, 2014; Volume 82. [Google Scholar]
- Guo, H.; Zhou, J.; Liu, F.; He, Y.; Huang, H.; Wang, H. Application of Machine Learning Method to Quantitatively Evaluate the Droplet Size and Deposition Distribution of the UAV Spray Nozzle. Appl. Sci. 2020, 10, 1759. [Google Scholar] [CrossRef] [Green Version]
- Srikanth, S.; Dubey, S.K.; Javed, A.; Goel, S. Droplet based microfluidics integrated with machine learning. Sens. Actuators A. Phys. 2021, 332, 113096. [Google Scholar] [CrossRef]
- Schick, R.J. Spray Technology Reference Guide: Understanding Drop Size. Spray Systems Co.: Wheaton, IL, USA, 2008. [Google Scholar]
- Marangoni Junior, A.; da Costa Ferreira, M. Influence of working pressure and spray nozzle on the distribution of spray liquid in manual backpack sprayers. Arq. Inst. Biol. 2019, 86, 1–9. [Google Scholar] [CrossRef] [Green Version]
- ASABE S572:2020; Spray Nozzle Classification by Droplet Spectra. ASABE (American Society of Agricultural and Biological Engineers): St. Joseph, MI, USA, 2020. Available online: https://www.asabe.org (accessed on 1 January 2023).
- Cerruto, E.; Manetto, G.; Papa, R.; Longo, D. Modelling spray pressure effects on droplet size distribution from agricultural nozzles. Appl. Sci. 2021, 11, 9283. [Google Scholar] [CrossRef]
- Déchelette, A.; Babinsky, E.; Sojka, P. Drop size distributions. In Handbook of Atomization and Sprays; Ashgriz, N., Ed.; Springer: Boston, MA, USA, 2011; pp. 479–495. [Google Scholar] [CrossRef]
- Mohandas, A.; Luo, H.; Ramakrishna, S. An Overview on Atomization and Its Drug Delivery and Biomedical Applications. Appl. Sci. 2021, 11, 5173. [Google Scholar] [CrossRef]
- Lefebvre, A.H.; McDonell, V.G. Drop size distributions of sprays. In Atomization and Sprays, 2nd ed.; Chigier, N., Ed.; CRC Press: Boca Raton, FL, USA, 2017; pp. 55–70. [Google Scholar]
- Majewski, J. Measurement techniques concerning droplet size distribution of electrosprayed water. Prz. Elektrotech. 2013, 89, 300–302. [Google Scholar]
- Jurado, E.; Bravo, V.; Camacho, F.; Vicaria, J.M.; Fernandez-Arteaga, A. Estimation of the distribution of droplet size, interfacial area and volume in emulsions. Colloids Surf. A Physicochem. Eng. Asp. 2007, 295, 91–98. [Google Scholar] [CrossRef]
- González-Tello, P.; Camacho, P.; Vicaria, J.M.; González, P. A modified Nukiyama-Tanasawa distribution function and a Rosin-Rammler model for the particle-size-distributions analysis. Pow. Tech. 2008, 186, 278–281. [Google Scholar] [CrossRef]
- Villermaux, E.; Marmottant, P.; Duplat, J. Ligament-mediated spray formation. Phys. Rev. Lett. 2004, 92, 074501. [Google Scholar] [CrossRef] [Green Version]
- Alderliesten, M. The Rosin-Rammler size distribution: Physical and mathematical properties and relationships to moment-ratio defined mean particle diameters. Part. Part. Syst. Charact. 2013, 30, 244–257. [Google Scholar] [CrossRef]
- Panão, M.O.; Moita, A.S.; Moreira, A.L. On the Statistical Characterization of Sprays. Appl. Sci. 2020, 10, 6122. [Google Scholar] [CrossRef]
- Lefebvre, A.H.; McDonell, V.G. Spray Size and Patternation Methods. In Atomization and Sprays, 2nd ed.; Chigier, N., Ed.; CRC Press: Boca Raton, FL, USA, 2017; pp. 243–274. [Google Scholar]
- Dorr, G.J.; Hewitt, A.J.; Adkins, S.W.; Hanan, J.; Zhang, H.; Noller, B. A comparison of initial spray characteristics produced by agricultural nozzles. Crop Prot. 2013, 53, 109–117. [Google Scholar] [CrossRef]
- Bachalo, W.; Houser, M. Phase/Doppler spray analyzer for simultaneous measurements of drop size and velocity distributions. Opt. Eng. 1984, 23, 583–590. [Google Scholar] [CrossRef]
- Nuyttens, D.; De Schampheleire, M.; Steurbaut, W.; Baetens, K.; Verboven, P.; Nicolaï, B.; Ramon, H.; Sonck, B. Characterization of agricultural sprays using laser techniques. Asp. Appl. Biol. 2006, 77, 179. [Google Scholar]
- Hijazi, B.; Decourselle, T.; Minov, S.V.; Nuyttens, D.; Cointault, F.; Pieters, J.; Vangeyte, J. The Use of High-Speed Imaging Systems for Applications in Precision Agriculture. In New Technologies: Trends, Innovation and Research; Volosencu, C., Ed.; Intech: London, UK, 2012; pp. 280–296. [Google Scholar] [CrossRef] [Green Version]
- De Cock, N.; Massinon, M.; Nuyttens, D.; Dekeyser, D.; Lebeau, F. Measurements of reference ISO nozzles by high-speed imaging. Crop Prot. 2016, 89, 105–115. [Google Scholar] [CrossRef] [Green Version]
- Sirmour, A.; Verma, A. Droplet Size characterization of agricultural sprays using laser diffraction. Int. J. Chem. Stud. 2019, 7, 2895–2899. [Google Scholar]
- Merkus, H. Laser Diffraction. In Particle Size Measurements; Particle Technology Series; Springer: Dordrecht, The Netherlands, 2009; pp. 259–285. [Google Scholar] [CrossRef]
- Fritz, B.K.; Hoffmann, W.C.; Czaczyk, Z.; Bagley, W.; Kruger, G.; Henry, R. Measurement and Classification Methods using The ASAE S572.1 Reference Nozzles. J. Plant Prot. Res. 2012, 52, 446–457. [Google Scholar] [CrossRef]
- Eshel, G.; Levy, G.; Mingelgrin, U.; Singer, M. Critical Evaluation of the Use of Laser Diffraction for Particle-Size Distribution Analysis. Soil Sci. Soc. Am. J. 2004, 68, 736–743. [Google Scholar] [CrossRef]
- Tian, G.; Li, H.; Xu, H.; Li, Y.; Raj, S.M. Spray Characteristics Study of DMF Using Phase Doppler Particle Analyzer. SAE Int. J. Passeng. Cars Mech. Syst. 2010, 3, 947–958. [Google Scholar] [CrossRef]
- Dodge, L.G.; Rhodes, D.J.; Reitz, R.D. Drop-size measurement techniques for sprays: Comparison of Malvern laser-diffraction and Aerometrics phase/doppler. App. Opt. 1987, 26, 2144–2154. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.S.; Lia, C.; Christena, C.E.; Hogan, C.J., Jr.; Fredericks, S.A.; Hong, J. Automated droplet size distribution measurements using digital inline holography. J. Aerosol Sci. 2019, 137, 105442. [Google Scholar] [CrossRef] [Green Version]
- Castanet, G.; Dunand, P.; Caballina, O.; Lemoine, F. High-speed shadow imagery to characterize the size and velocity of the secondary droplets produced by drop impacts onto a heated surface. Exp. Fluids 2013, 54, 1489. [Google Scholar] [CrossRef] [Green Version]
- Asgarian, A.; Yang, Z.; Tang, Z.; Bussmann, M.; Chattopadhyay, K. An image feature consolidation technique (IFCT) to capture multi-range droplet size distributions in atomizing liquid sheets. Exp. Fluids 2019, 61, 14. [Google Scholar] [CrossRef]
- Cerruto, E.; Manetto, G.; Privitera, S.; Papa, R.; Longo, D. Effect of Image Segmentation Thresholding on Droplet Size Measurement. Agronomy 2022, 12, 1677. [Google Scholar] [CrossRef]
- Manetto, G.; Cerruto, E.; Longo, D.; Papa, R. Error on drop size measurement due to image analysis digitisation. Lect. Notes Civ. Eng. 2022, 252, 365–1374. [Google Scholar] [CrossRef]
- Mangado, J.; Arazuri, S.; Arnal, P.; Jarén, C.; López, A. Measuring the accuracy of a pesticide treatment by an image analyzer. Procedia Technol. 2013, 8, 498–502. [Google Scholar] [CrossRef] [Green Version]
- Guler, H.; Zhu, H.; Ozkan, E.H.; Ling, P. Characterization of Hydraulic Nozzles for Droplet Sizes and Spray Coverage. At. Sprays 2012, 22, 627–645. [Google Scholar] [CrossRef] [Green Version]
- Cunha, J.; Farnese, A.; Olivet, J. Computer Programs for Analysis of Droplets Sprayed on Water Sensitive Papers. Planta Daninha 2013, 31, 715–720. [Google Scholar] [CrossRef] [Green Version]
- Cunha, M.; Carvalho, C.; Marcal, A.R.S. Assessing the ability of image processing software to analyse spray quality on water-sensitive papers used as artificial targets. Biosyst. Eng. 2012, 111, 11–23. [Google Scholar] [CrossRef] [Green Version]
- Marçal, A.R.; Cunha, M. Image Processing of Artificial Targets for Automatic Evaluation of Spray Quality. Trans. ASABE 2008, 51, 811–821. [Google Scholar] [CrossRef] [Green Version]
- Connor Ferguson, J.; Chechetto, R.G.; O’Donnell, C.C.; Fritz, B.K.; Hoffmann, W.C.; Coleman, C.E.; Chauhan, B.S.; Adkins, S.W.; Kruger, G.R.; Hewitt, A.J. Assessing a novel smartphone application—SnapCard, compared to five imaging systems to quantify droplet deposition on artificial collectors. Comput. Electron. Agric. 2016, 128, 193–198. [Google Scholar] [CrossRef] [Green Version]
- Abramoff, M.D.; Magelhaes, P.J.; Ram, S.J. Image processing with Image. J. Biophot. Int. 2004, 11, 36–42. [Google Scholar]
- Cerruto, E.; Manetto, G.; Longo, D.; Failla, S.; Papa, R. A model to estimate the spray deposit by simulated water sensitive papers. Crop Prot. 2019, 124, 104861. [Google Scholar] [CrossRef]
- Özlüoymak, Ö.B.; Bolat, A. Development and assessment of a novel imaging software for optimizing the spray parameters on water-sensitive papers. Comput. Electron. Agric. 2019, 168, 105104. [Google Scholar] [CrossRef]
- Hoffmann, W.C.; Hewitt, A.J. Comparison of three imaging systems for water-sensitive papers. Appl. Eng. Agric. 2005, 21, 961–964. [Google Scholar] [CrossRef]
- Zhu, H.; Salyani, M.; Fox, R.D. A portable scanning system for evaluation of spray deposit distribution. Comput. Electron. Agric. 2011, 76, 38–43. [Google Scholar] [CrossRef]
- Kathiravelu, G.; Lucke, T.; Nichols, P. Rain drop measurement techniques: A review. Water 2016, 8, 29. [Google Scholar] [CrossRef] [Green Version]
- Eigel, J.D.; Moore, I.D. A Simplified Technique for Measuring Raindrop Size and Distribution. Trans. ASAE 1983, 26, 1079–1084. [Google Scholar] [CrossRef]
- Hurlburt, E.T.; Hanratty, T.J. Measurement of drop size in horizontal annular flow with the immersion method. Exp. Fluids 2002, 32, 692–699. [Google Scholar] [CrossRef]
- Longo, D.; Manetto, G.; Papa, R.; Cerruto, E. Design and construction of a low-cost test bench for testing agricultural spray nozzles. Appl. Sci. 2020, 10, 5221. [Google Scholar] [CrossRef]
- Rehman, T.U.; Mahmud, M.S.; Chang, Y.K.; Jin, J.; Shin, J. Current and future applications of statistical machine learning algorithms for agricultural machine vision systems. Comput. Electron. Agric. 2019, 156, 585–605. [Google Scholar] [CrossRef]
- Talaviya, T.; Shah, D.; Patel, N.; Yagnik, H.; Shah, M. Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides. Artif. Intell. Agric. 2020, 4, 58–73. [Google Scholar] [CrossRef]
- Chlingaryan, A.; Sukkarieh, S.; Whelan, B. Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review. Comput. Electron. Agric. 2018, 151, 61–69. [Google Scholar] [CrossRef]
- Eli-Chukwu, N.C. Applications of Artificial Intelligence in Agriculture: A Review. Eng. Technol. Appl. Sci. Res. 2019, 9, 4377–4383. [Google Scholar] [CrossRef]
- Gargari, H.P.; Teimourlou, R.F.; Valizadeh, M. Spray droplet characterization using a piezoelectric sensor through classification based on machine learning. INMATEH-Agric. Eng. 2019, 59, 151–160. [Google Scholar] [CrossRef]
- Pieloth, D.; Rodeck, M.; Schaldach, G.; Thommes, M. Categorization of Sprays by Image Analysis with Convolutional Neuronal Networks. Chem. Eng. Technol. 2023, 46, 264–269. [Google Scholar] [CrossRef]
- Liao, J.; Hewitt, A.J.; Wang, P.; Luo, X.; Zang, Y.; Zhou, Z.; Lan, Y.; O’Donnell, C. Development of droplet characteristics prediction models for air induction nozzles based on wind tunnel tests. Int. J. Agric. Biol. Eng. 2019, 12, 1–6. [Google Scholar] [CrossRef]
- Dong, T.; Wang, J.; Wang, Y.; Tang, G.; Cheng, Y.; Yan, W. Development of machine learning based droplet diameter prediction model for electrohydrodynamic atomization systems. Chem. Eng. Sci. 2023, 268, 118398. [Google Scholar] [CrossRef]
- ISO 5682-1; Equipment for Crop Protection—Spraying Equipment—Part 1: Test Methods for Sprayer Nozzles. ISO (International Organization for Standardization): Geneva, Switzerland, 2017. Available online: https://www.iso.org/standard/60053.html (accessed on 1 January 2023).
Reference Nozzle | Pressure (MPa) | Flow Rate (mL/s) | Class Boundary |
---|---|---|---|
Mee Fog IP-16 impaction pin | 0.550 | 8.1 | XF/VF |
TeeJet TP 11001-SS | 0.450 | 8.2 | VF/F |
TeeJet TP 11003-SS | 0.300 | 19.6 | F/M |
TeeJet TP 11006-SS | 0.200 | 32.3 | M/C |
TeeJet TP 8008-SS | 0.220 | 45.1 | C/VC |
TeeJet TP 6510-SS | 0.120 | 42.2 | VC/XC |
TeeJet TP 6515-SS | 0.100 | 56.8 | XC/UC |
DIA | |||||
---|---|---|---|---|---|
LD | PDPA | HSI | WSP | LI | ML |
26, 27, 29, 39, 52, 53, 58, 59, 60, 61, 63, 89 | 26, 27, 28, 39, 52, 54, 55, 62, 63 | 26, 27, 30, 31, 32, 33, 39, 52, 56, 57, 64, 65, 66, 67, 68, 80, 89 | 27, 35, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 88 | 27, 36, 67, 80, 81, 82, 83 | 37, 38, 84, 85, 86, 87, 88, 89, 90, 91 |
Total = 12 | Total = 9 | Total = 17 | Total = 16 | Total = 7 | Total = 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Privitera, S.; Manetto, G.; Pascuzzi, S.; Pessina, D.; Cerruto, E. Drop Size Measurement Techniques for Agricultural Sprays:A State-of-The-Art Review. Agronomy 2023, 13, 678. https://doi.org/10.3390/agronomy13030678
Privitera S, Manetto G, Pascuzzi S, Pessina D, Cerruto E. Drop Size Measurement Techniques for Agricultural Sprays:A State-of-The-Art Review. Agronomy. 2023; 13(3):678. https://doi.org/10.3390/agronomy13030678
Chicago/Turabian StylePrivitera, Salvatore, Giuseppe Manetto, Simone Pascuzzi, Domenico Pessina, and Emanuele Cerruto. 2023. "Drop Size Measurement Techniques for Agricultural Sprays:A State-of-The-Art Review" Agronomy 13, no. 3: 678. https://doi.org/10.3390/agronomy13030678
APA StylePrivitera, S., Manetto, G., Pascuzzi, S., Pessina, D., & Cerruto, E. (2023). Drop Size Measurement Techniques for Agricultural Sprays:A State-of-The-Art Review. Agronomy, 13(3), 678. https://doi.org/10.3390/agronomy13030678