QTL Analysis of Yield and End-Use Quality Traits in Texas Hard Red Winter Wheat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Field Trials
2.2. Phenotypic Data Collection
2.3. Statistical Analysis
2.4. Genotyping, Linkage Mapping, and Quantitative Trait Locus Analysis
3. Results
3.1. Mean Performance, Variance Component Estimation, Heritability, and Correlations
3.2. Genetic Map
3.3. QTL Identification
3.3.1. QTL for End-Use Quality
3.3.2. QTL for Agronomical Traits
3.3.3. QTLs for Yield and Component Traits
3.3.4. QTLs for Kernel-Related Parameters
3.4. Pleiotropic QTLs
3.5. Interactions of Epistasis, Epistasis-By-Environment, and Additive-By-Environment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RIL | recombinant inbred line |
QTL | quantitative trait loci |
SNP | single nucleotide polymorphisms |
HRWW | hard red winter wheat |
SKCS | single kernel characterization system |
NIR | near infra-red spectrometry |
HMWGs | high molecular weight Glutenin Subunits |
LMWGs | low molecular weight Glutenin Subunits |
YLD | grain yield |
HD | heading date |
PH | plant height |
HARD | kernel hardness index |
DIAM | kernel diameter |
SKW | single kernel weight |
FYLD | flour yield |
PROT | flour protein content |
ASH | flour ash content |
MLPT | midline peak time |
MLPV | midline peak value |
MLPW | midline peak width |
MLRS | midline right slope |
MLTW | midline tail width |
MLTXT | midline time X time |
MLTXW | midline time X width |
BM | dry biomass from hand harvested 0.5 m long inner row sample |
BMYLD | grain weight from BM as hand harvested dry grain weight |
HI | harvest index; |
KPS | kernels per spike, kernels spike−1 |
SPM | spikes per square meter, spikes m−2 |
TKW | thousand kernel weight |
SHDW | single head dry weight |
SHGW | single head dry grain weight |
KAREA | kernel area |
KLEN | kernel length |
KPERI | kernel perimeter |
KWID | kernel width |
REML | restricted maximum likelihood method |
BLUP | best linear unbiased predictors |
CTAB | cetyltrimethyl ammonium bromide |
ANOVA | analysis of variance |
References
- Food and Agriculture Organization of the United Nations (FAO). 2017. Available online: http://faostat.fao.org/default.aspx (accessed on 16 February 2020).
- Hussain, W.; Baenziger, P.S.; Belamkar, V.; Guttieri, M.J.; Venegas, J.P.; Easterly, A.; Sallam, A.; Poland, J. Genotyping-by-Sequencing Derived High-Density Linkage Map and its Application to QTL Mapping of Flag Leaf Traits in Bread Wheat. Sci. Rep. 2017, 7, 16394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delwiche, S.R.; Norris, K. Classification of hard red wheat by near-infrared diffuse reflectance spectroscopy. Cereal Chem. 1993, 70, 29–35. [Google Scholar]
- Fufa, H.; Baenziger, P.S.; Beecher, B.S.; Graybosch, R.A.; Eskridge, K.M.; Nelson, L.A. Genetic improvement trends in agronomic performances and end-use quality characteristics among hard red winter wheat cultivars in Nebraska. Euphytica 2005, 144, 187–198. [Google Scholar] [CrossRef] [Green Version]
- Guzman, C.; Peña, R.J.; Singh, R.; Autrique, E.; Dreisigacker, S.; Crossa, J.; Rutkoski, J.; Poland, J.; Battenfield, S. Wheat quality improvement at CIMMYT and the use of genomic selection on it. Appl. Transl. Genom. 2016, 11, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Jernigan, K.L.; Morris, C.F.; Zemetra, R.; Chen, J.; Garland-Campbell, K.; Carter, A.H. Genetic analysis of soft white wheat end-use quality traits in a club by common wheat cross. J. Cereal Sci. 2017, 76, 148–156. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, R.; Wang, J.; Liao, X.; Branlard, G.; Jia, J. Novel and favorable QTL allele clusters for end-use quality revealed by introgression lines derived from synthetic wheat. Mol. Breed. 2012, 29, 627–643. [Google Scholar] [CrossRef]
- Giroux, M.J.; Morris, C.F. A glycine to serine change in puroindoline b is associated with wheat grain hardness and low levels of starch-surface friabilin. Theor. Appl. Genet. 1997, 95, 857–864. [Google Scholar] [CrossRef]
- Bhave, M.; Morris, C.F. Molecular genetics of puroindolines and related genes: Allelic diversity in wheat and other grasses. Plant Mol. Biol. 2008, 66, 205–219. [Google Scholar] [CrossRef]
- Payne, P.I.; Nightingale, M.A.; Krattiger, A.F.; Holt, L.M. The relationship between HMW glutenin subunit composition and the bread-making quality of British-grown wheat varieties. J. Sci. Food Agric. 1987, 40, 51–65. [Google Scholar] [CrossRef]
- Payne, P.I.; Holt, L.M.; Jackson, E.A.; Law, C.N.; Damania, A.B. Wheat storage proteins: Their genetics and their potential for manipulation by plant breeding. Philos. Trans. R. Soc. London B Biol. Sci. 1984, 304, 359–371. [Google Scholar] [CrossRef]
- Campbell, K.G.; Finney, P.L.; Bergman, C.J.; Gualberto, D.G.; Anderson, J.A.; Giroux, M.J.; Siritunga, D.; Zhu, J.; Gendre, F.; Roué, C.; et al. Quantitative Trait Loci Associated with Milling and Baking Quality in a Soft × Hard Wheat Cross. Crop Sci. 2001, 41, 1275–1285. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.Q.; Cloutier, S.; Lycar, L.; Radovanovic, N.; Humphreys, D.G.; Noll, J.S.; Somers, D.J.; Brown, P.D. Molecular detection of QTLs for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.). Theor. Appl. Genet. 2006, 113, 753–766. [Google Scholar] [CrossRef] [PubMed]
- McCartney, C.A.; Somers, D.J.; Lukow, O.; Ames, N.; Noll, J.; Cloutier, S.; Humphreys, D.G.; McCallum, B.D. QTL analysis of quality traits in the spring wheat cross RL4452 × ‘AC Domain’. Plant Breed. 2006, 125, 565–575. [Google Scholar] [CrossRef]
- Mann, G.; Diffey, S.; Cullis, B.; Azanza, F.; Martin, D.; Kelly, A.; McIntyre, C.; Schmidt, A.; Matthew, M.; Nath, Z.; et al. Genetic control of wheat quality: Interactions between chromosomal regions determining protein content and composition, dough rheology, and sponge and dough baking properties. Theor. Appl. Genet. 2009, 118, 1519–1537. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Y.; Xiao, Y.; Yan, J.; Zhang, Y.; Zhang, Y.; Ma, C.; Xia, X.; He, Z. QTL mapping for milling, gluten quality, and flour pasting properties in a recombinant inbred line population derived from a Chinese softhard wheat cross. Crop Pasture Sci. 2009, 60, 587–597. [Google Scholar] [CrossRef]
- Patil, R.; Oak, M.; Tamhankar, S.; Rao, V. Molecular mapping of QTLs for gluten strength as measured by sedimentation volume and mixograph in durum wheat (Triticum turgidum L. ssp durum). J. Cereal Sci. 2009, 49, 378–386. [Google Scholar] [CrossRef]
- Tsilo, T.J.; Simsek, S.; Ohm, J.-B.; Hareland, G.A.; Chao, S.; Anderson, J.A. Quantitative trait loci influencing endosperm texture, dough-mixing strength, and bread-making properties of the hard red spring wheat breeding lines. Genome 2011, 54, 460–470. [Google Scholar] [CrossRef]
- Simons, K.; Anderson, J.A.; Mergoum, M.; Faris, J.D.; Klindworth, D.L.; Xu, S.S.; Sneller, C.; Ohm, J.; Hareland, G.A.; Edwards, M.C.; et al. Genetic Mapping Analysis of Bread-Making Quality Traits in Spring Wheat. Crop Sci. 2012, 52, 2182–2197. [Google Scholar] [CrossRef] [Green Version]
- El-Feki, W.M.; Byrne, P.F.; Reid, S.D.; Lapitan, N.L.; Haley, S.D. Quantitative Trait Locus Mapping for End-Use Quality Traits in Hard Winter Wheat Under Contrasting Soil Moisture Levels. Crop Sci. 2013, 53, 1953–1967. [Google Scholar] [CrossRef]
- Echeverry-Solarte, M.; Kumar, A.; Kianian, S.; Simsek, S.; Alamri, M.S.; Mantovani, E.E.; McClean, P.E.; Deckard, E.L.; Elias, E.; Schatz, B.; et al. New QTL alleles for quality-related traits in spring wheat revealed by RIL population derived from supernumerary × non-supernumerary spikelet genotypes. Theor. Appl. Genet. 2015, 128, 893–912. [Google Scholar] [CrossRef]
- Jin, H.; Wen, W.; Liu, J.; Zhai, S.; Zhang, Y.; Yan, J.; Liu, Z.; Xia, X.; He, Z. Genome-Wide QTL Mapping for Wheat Processing Quality Parameters in a Gaocheng 8901/Zhoumai 16 Recombinant Inbred Line Population. Front. Plant Sci. 2016, 7, 1032. [Google Scholar] [CrossRef] [Green Version]
- Dhakal, S.; Liu, X.; Girard, A.; Chu, C.; Yang, Y.; Wang, S.; Xue, Q.; Rudd, J.C.; Ibrahim, A.M.; Awika, J.M.; et al. Genetic dissection of end-use quality traits in two widely adapted wheat cultivars ‘TAM 111’ and ‘TAM 112’. Crop Sci. 2021, 61, 1944–1959. [Google Scholar] [CrossRef]
- Yu, S.; Assanga, S.O.; Awika, J.M.; Ibrahim, A.M.H.; Rudd, J.C.; Xue, Q.; Guttieri, M.J.; Zhang, G.; Baker, J.A.; Jessup, K.E.; et al. Genetic Mapping of Quantitative Trait Loci for End-Use Quality and Grain Minerals in Hard Red Winter Wheat. Agronomy 2021, 11, 2519. [Google Scholar] [CrossRef]
- Cao, S.; Xu, D.; Hanif, M.; Xia, X.; He, Z. Genetic architecture underpinning yield component traits in wheat. Theor. Appl. Genet. 2020, 133, 1811–1823. [Google Scholar] [CrossRef]
- Yang, Y.; Dhakal, S.; Chu, C.; Wang, S.; Xue, Q.; Rudd, J.C.; Ibrahim, A.M.H.; Jessup, K.; Baker, J.; Fuentealba, M.P.; et al. Genome wide identification of QTL associated with yield and yield components in two popular wheat cultivars TAM 111 and TAM 112. PLoS ONE 2020, 15, e0237293. [Google Scholar] [CrossRef]
- Hu, J.; Wang, X.; Zhang, G.; Jiang, P.; Chen, W.; Hao, Y.; Ma, X.; Xu, S.; Jia, J.; Kong, L.; et al. QTL mapping for yield-related traits in wheat based on four RIL populations. Theor. Appl. Genet. 2020, 133, 917–933. [Google Scholar] [CrossRef]
- Liu, H.; Searle, I.R.; Mather, D.E.; Able, A.J.; Able, J.A. Morphological, physiological and yield responses of durum wheat to pre-anthesis water-deficit stress are genotype-dependent. Crop Pasture Sci. 2015, 66, 1024–1038. [Google Scholar] [CrossRef]
- Wang, R.; Liu, Y.; Isham, K.; Zhao, W.; Wheeler, J.; Klassen, N.; Hu, Y.; Bonman, J.M.; Chen, J. QTL identification and KASP marker development for productive tiller and fertile spikelet numbers in two high-yielding hard white spring wheat cultivars. Mol. Breed. 2018, 38, 135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Gizaw, S.A.; Bossolini, E.; Hegarty, J.; Howell, T.; Carter, A.H.; Akhunov, E.; Dubcovsky, J. Identification and validation of QTL for grain yield and plant water status under contrasting water treatments in fall-sown spring wheats. Theor. Appl. Genet. 2018, 131, 1741–1759. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Iqbal, M.; Perez-Lara, E.; Yang, R.-C.; Pozniak, C.; Spaner, D. Earliness per se quantitative trait loci and their interaction with Vrn-B1 locus in a spring wheat population. Mol. Breed. 2015, 35, 182. [Google Scholar] [CrossRef]
- Mo, Y.; Howell, T.; Vasquez-Gross, H.; de Haro, L.A.; Dubcovsky, J.; Pearce, S. Mapping causal mutations by exome sequencing in a wheat TILLING population: A tall mutant case study. Mol. Genet. Genom. 2018, 293, 463–477. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Xu, S.; Ni, Z.; Xie, C.; Qin, D.; Li, J.; Lu, L.; Zhang, J.; Peng, H.; Sun, Q. Molecular dissection of plant height QTLs using recombinant inbred lines from hybrids between common wheat (Triticum aestivum L.) and spelt wheat (Triticum spelta L.). Chin. Sci. Bull. 2011, 56, 1897–1903. [Google Scholar] [CrossRef] [Green Version]
- Sourdille, P.; Snape, J.W.; Cadalen, T.; Charmet, G.; Nakata, N.; Bernard, S.; Bernard, M. Detection of QTLs for heading time and photoperiod response in wheat using a doubled-haploid population. Genome 2000, 43, 487–494. [Google Scholar] [CrossRef]
- Mondal, S.; Singh, R.; Mason, E.; Huerta-Espino, J.; Autrique, E.; Joshi, A. Grain yield, adaptation and progress in breeding for early-maturing and heat-tolerant wheat lines in South Asia. Field Crop Res. 2016, 192, 78–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhakal, S.; Liu, X.; Chu, C.; Yang, Y.; Rudd, J.C.; Ibrahim, A.M.; Xue, Q.; Devkota, R.N.; Baker, J.A.; Baker, S.A.; et al. Genome-wide QTL mapping of yield and agronomic traits in two widely adapted winter wheat cultivars from multiple mega-environments. Peerj 2021, 9, e12350. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, M.A.; Tranquilli, G.; Lewis, S.; Kippes, N.; Dubcovsky, J. Genetic and physical mapping of the earliness per se locus Eps-A m 1 in Triticum monococcum identifies EARLY FLOWERING 3 (ELF3) as a candidate gene. Funct. Integr. Genom. 2016, 16, 365–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lazar, M.D.; Worrall, W.D.; Peterson, G.L.; Fritz, A.K.; Marshall, D.; Nelson, L.R.; Rooney, L.W. Registration of ‘TAM 111’ wheat. Crop Sci. 2004, 44, 355–356. [Google Scholar] [CrossRef]
- Xue, Q.; Rudd, J.C.; Liu, S.; Jessup, K.E.; Devkota, R.N.; Mahan, J.R. Yield Determination and Water-Use Efficiency of Wheat under Water-Limited Conditions in the U.S. Southern High Plains. Crop Sci. 2014, 54, 34–47. [Google Scholar] [CrossRef]
- Reddy, S.K.; Liu, S.; Rudd, J.C.; Xue, Q.; Payton, P.; Finlayson, S.A.; Mahan, J.; Akhunova, A.; Holalu, S.V.; Lu, N. Physiology and transcriptomics of water-deficit stress responses in wheat cultivars TAM 111 and TAM 112. J. Plant Physiol. 2014, 171, 1289–1298. [Google Scholar] [CrossRef] [Green Version]
- Wheat Quality Council. Hard Winter Wheat Annual Report; Wheat Quality Council: Pierre, SD, USA, 2011. [Google Scholar]
- AACC. Method 55-31.01; Single-Kernel Characterization System for Wheat Kernel Texture. In AACC Approved Methods of Analysis, 11th ed.; Cereals & Grains Association: St. Paul, MN, USA, 2010; Approved 3 November 1999. [Google Scholar]
- AACC. Method 39-11.01. Near-Infrared Reflectance Method for Protein Determination in Wheat Flour. In AACC Approved Methods of Analysis, 11th ed.; Cereals & Grains Association: St. Paul, MN, USA, 2010; Approved 3 November 1999. [Google Scholar]
- AACC. Method 54-40.02. Mixograph Method. In AACC Approved Methods of Analysis, 11th ed.; Cereals & Grains Association: St. Paul, MN, USA, 2010; Approved 3 November 1999. [Google Scholar]
- Assanga, S.O.; Fuentealba, M.; Zhang, G.; Tan, C.; Dhakal, S.; Rudd, J.C.; Ibrahim, A.M.H.; Xue, Q.; Haley, S.; Chen, J.; et al. Mapping of quantitative trait loci for grain yield and its components in a US popular winter wheat TAM 111 using 90K SNPs. PLoS ONE 2017, 12, e0189669. [Google Scholar] [CrossRef] [Green Version]
- Whan, A.P.; Smith, A.B.; Cavanagh, C.R.; Ral, J.-P.F.; Shaw, L.M.; Howitt, C.A.; Bischof, L. GrainScan: A low cost, fast method for grain size and colour measurements. Plant Methods 2014, 10, 23. [Google Scholar] [CrossRef] [Green Version]
- SAS Institute. JMP. Version 16; SAS Institute Inc.: Cary, NC, USA, 1989–2021.
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis, 2nd ed.; Springer-Verlag: New York, NY, USA, 2016. [Google Scholar]
- Liu, S.; Griffey, C.A.; Hall, M.D.; McKendry, A.L.; Chen, J.; Brooks, W.S.; Brown-Guedira, G.; Van Sanford, D.; Schmale, D.G. Molecular characterization of field resistance to Fusarium head blight in two US soft red winter wheat cultivars. Theor. Appl. Genet. 2013, 126, 2485–2498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poland, J.A.; Brown, P.J.; Sorrells, M.E.; Jannink, J.L. Development of High-Density Genetic Maps for Barley and Wheat Using a Novel Two-Enzyme Genotyping-by-Sequencing Approach. PLoS ONE 2012, 7, e32253. [Google Scholar] [CrossRef] [Green Version]
- International Wheat Genome Sequencing Consortium (IWGSC); Mayer, K.F.; Rogers, J.; Doležel, J.; Pozniak, C.; Eversole, K.; Feuillet, C.; Gill, B.; Friebe, B.; Lukaszewski, A.J.; et al. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 2014, 345, 1251788. [Google Scholar]
- Van Ooijen, J. JoinMap® 4, Software for the calculation of genetic linkage maps in experimental populations. Kyazma BV Wagening. 2006, 33, 10.1371. [Google Scholar]
- Meng, L.; Li, H.; Zhang, L.; Wang, J. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J. 2015, 3, 269–283. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Guan, P.; Xin, M.; Wang, Y.; Chen, X.; Zhao, A.; Liu, M.; Li, H.; Zhang, M.; Lu, L.; et al. Genome-wide association study identifies QTL for thousand grain weight in winter wheat under normal- and late-sown stressed environments. Theor. Appl. Genet. 2021, 134, 143–157. [Google Scholar] [CrossRef] [PubMed]
- Hallauer, A.; Russell, W.A.; Lamkey, K. Corn breeding. Corn Corn Improv. 1988, 18, 463–564. [Google Scholar]
- Boehm, J.D.; Ibba, M.I.; Kiszonas, A.M.; See, D.R.; Skinner, D.Z.; Morris, C.F. Genetic analysis of kernel texture (grain hardness) in a hard red spring wheat (Triticum aestivum L.) bi-parental population. J. Cereal Sci. 2018, 79, 57–65. [Google Scholar] [CrossRef]
- Boehm, J.D.; Ibba, M.I.; Kiszonas, A.M.; See, D.R.; Skinner, D.Z.; Morris, C.F. Identification of genotyping-by-sequencing sequence tags associated with milling performance and end-use quality traits in hard red spring wheat (Triticum aestivum L.). J. Cereal Sci. 2017, 77, 73–83. [Google Scholar] [CrossRef]
- Mergoum, M.; Harilal, V.E.; Simsek, S.; Alamri, M.S.; Schatz, B.G.; Kianian, S.F.; Elias, E.; Kumar, A.; Bassi, F.M. Agronomic and quality QTL mapping in spring wheat. J. Plant Breed. Genet. 2013, 01, 19–33. [Google Scholar]
- Carter, A.H.; Garland-Campbell, K.; Morris, C.F.; Kidwell, K.K. Chromosomes 3B and 4D are associated with several milling and baking quality traits in a soft white spring wheat (Triticum aestivum L.) population. Theor. Appl. Genet. 2012, 124, 1079–1096. [Google Scholar] [CrossRef]
- Prashant, R.; Mani, E.; Rai, R.; Gupta, R.K.; Tiwari, R.; Dholakia, B.; Oak, M.; Röder, M.; Kadoo, N.; Gupta, V. Genotype× environment interactions and QTL clusters underlying dough rheology traits in Triticum aestivum L. J. Cereal Sci. 2015, 64, 82–91. [Google Scholar] [CrossRef]
- Naraghi, S.M.; Simsek, S.; Kumar, A.; Al Rabbi, S.M.H.; Alamri, M.S.; Elias, E.M.; Mergoum, M. Deciphering the Genetics of Major End-Use Quality Traits in Wheat. G3 Genes Genomes Genet. 2019, 9, 1405–1427. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Dhakal, S.; Cerit, M.; Wang, S.; Rauf, Y.; Yu, S.; Maulana, F.; Huang, W.; Anderson, J.D.; Ma, X.-F.; et al. QTL mapping of yield components and kernel traits in wheat cultivars TAM 112 and Duster. Front. Plant Sci. 2022, 13, 1057701. [Google Scholar] [CrossRef]
- Carter, A.H.; Garland-Campbell, K.; Kidwell, K. Genetic Mapping of Quantitative Trait Loci Associated with Important Agronomic Traits in the Spring Wheat (Triticum aestivum L.) Cross ‘Louise’ × ‘Penawawa’. Crop Sci. 2011, 51, 84–95. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.I.N.; Cui, F.A.; Wang, J.; Jun, L.I.; Ding, A.; Zhao, C.; Li, X.; Feng, D.; Gao, J.; Wang, H. Conditional QTL mapping of protein content in wheat with respect to grain yield and its components. J. Genet. 2012, 91, 303–312. [Google Scholar] [CrossRef] [PubMed]
- McCartney, C.A.; Somers, D.J.; Humphreys, D.G.; Lukow, O.; Ames, N.; Noll, J.; Cloutier, S.; McCallum, B.D. Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452 × ‘AC Domain’. Genome 2005, 48, 870–883. [Google Scholar] [CrossRef] [PubMed]
- Groos, C.; Bervas, E.; Charmet, G. Genetic analysis of grain protein content, grain hardness and dough rheology in a hard × hard bread wheat progeny. J. Cereal Sci. 2004, 40, 93–100. [Google Scholar] [CrossRef]
- Kumar, N.; Orenday-Ortiz, J.M.; Kiszonas, A.; Boehm, J.D.; Morris, C.F. Genetic analysis of a unique ‘super soft’ kernel texture phenotype in soft white spring wheat. J. Cereal Sci. 2019, 85, 162–167. [Google Scholar] [CrossRef]
- Aoun, M.; Carter, A.H.; Morris, C.F.; Kiszonas, A.M. Genetic architecture of end-use quality traits in soft white winter wheat. BMC Genom. 2022, 23, 440. [Google Scholar] [CrossRef]
- Juliana, P.; Poland, J.; Huerta-Espino, J.; Shrestha, S.; Crossa, J.; Crespo-Herrera, L.; Toledo, F.H.; Govindan, V.; Mondal, S.; Kumar, U.; et al. Improving grain yield, stress resilience and quality of bread wheat using large-scale genomics. Nat. Genet. 2019, 51, 1530–1539. [Google Scholar] [CrossRef] [PubMed]
- Raman, R.; Allen, H.; Diffey, S.; Raman, H.; Martin, P.; McKelvie, K. Localisation of quantitative trait loci for quality attributes in a doubled haploid population of wheat (Triticum aestivum L.). Genome 2009, 52, 701–715. [Google Scholar] [CrossRef]
- Beasley, H.L.; Uthayakumaran, S.; Stoddard, F.L.; Partridge, S.J.; Daqiq, L.; Chong, P.; Békés, F. Synergistic and Additive Effects of Three High Molecular Weight Glutenin Subunit Loci. II. Effects on Wheat Dough Functionality and End-Use Quality. Cereal Chem. 2002, 79, 301–307. [Google Scholar] [CrossRef]
- Liu, L.; He, Z.; Yan, J.; Zhang, Y.; Xia, X.; Peña, R.J. Allelic variation at the Glu-1 and Glu-3 loci, presence of the 1B.1R translocation, and their effects on mixographic properties in Chinese bread wheats. Euphytica 2005, 142, 197–204. [Google Scholar] [CrossRef]
- Liu, H.; Mullan, D.; Zhang, C.; Zhao, S.; Li, X.; Zhang, A.; Lu, Z.; Wang, Y.; Yan, G. Major genomic regions responsible for wheat yield and its components as revealed by meta-QTL and genotype–phenotype association analyses. Planta 2020, 252, 65. [Google Scholar] [CrossRef]
- Nelson, J.C.; Andreescu, C.; Breseghello, F.; Finney, P.L.; Gualberto, D.G.; Bergman, C.J.; Peña, R.J.; Perretant, M.R.; Leroy, P.; Qualset, C.O.; et al. Quantitative trait locus analysis of wheat quality traits. Euphytica 2006, 149, 145–159. [Google Scholar] [CrossRef]
- Rasheed, A.; Wen, W.; Gao, F.; Zhai, S.; Jin, H.; Liu, J.; Guo, Q.; Zhang, Y.; Dreisigacker, S.; Xia, X.; et al. Development and validation of KASP assays for genes underpinning key economic traits in bread wheat. Theor. Appl. Genet. 2016, 129, 1843–1860. [Google Scholar] [CrossRef]
- Kato, K.; Miura, H.; Sawada, S. Mapping QTLs controlling grain yield and its components on chromosome 5A of wheat. Theor. Appl. Genet. 2000, 101, 1114–1121. [Google Scholar] [CrossRef]
- Sukumaran, S.; Lopes, M.; Dreisigacker, S.; Reynolds, M. Genetic analysis of multi-environmental spring wheat trials identifies genomic regions for locus-specific trade-offs for grain weight and grain number. Theor. Appl. Genet. 2017, 131, 985–998. [Google Scholar] [CrossRef]
- Al Rabbi, S.M.H.; Kumar, A.; Naraghi, S.M.; Sapkota, S.; Alamri, M.S.; Elias, E.M.; Kianian, S.; Seetan, R.; Missaoui, A.; Solanki, S.; et al. Identification of Main-Effect and Environmental Interaction QTL and Their Candidate Genes for Drought Tolerance in a Wheat RIL Population Between Two Elite Spring Cultivars. Front. Genet. 2021, 12, 656037. [Google Scholar] [CrossRef]
- Bhatta, M.; Morgounov, A.; Belamkar, V.; Baenziger, P.S. Genome-Wide Association Study Reveals Novel Genomic Regions for Grain Yield and Yield-Related Traits in Drought-Stressed Synthetic Hexaploid Wheat. Int. J. Mol. Sci. 2018, 19, 3011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, F.; Wen, W.; Liu, J.; Rasheed, A.; Yin, G.; Xia, X.; Wu, X.; He, Z. Genome-Wide Linkage Mapping of QTL for Yield Components, Plant Height and Yield-Related Physiological Traits in the Chinese Wheat Cross Zhou 8425B/Chinese Spring. Front. Plant Sci. 2015, 6, 1099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guan, P.; Lu, L.; Jia, L.; Kabir, M.R.; Zhang, J.; Lan, T.; Zhao, Y.; Xin, M.; Hu, Z.; Yao, Y.; et al. Global QTL Analysis Identifies Genomic Regions on Chromosomes 4A and 4B Harboring Stable Loci for Yield-Related Traits Across Different Environments in Wheat (Triticum aestivum L.). Front. Plant Sci. 2018, 9, 529. [Google Scholar] [CrossRef] [Green Version]
- Afzal, F.; Li, H.; Gul, A.; Subhani, A.; Ali, A.; Mujeeb-Kazi, A.; Ogbonnaya, F.; Trethowan, R.; Xia, X.; He, Z.; et al. Genome-Wide Analyses Reveal Footprints of Divergent Selection and Drought Adaptive Traits in Synthetic-Derived Wheats. G3 Genes Genomes Genet. 2019, 9, 1957–1973. [Google Scholar]
- Jiang, Y.; Jiang, Q.; Hao, C.; Hou, J.; Wang, L.; Zhang, H.; Zhang, S.; Chen, X.; Zhang, X. A yield-associated gene TaCWI, in wheat: Its function, selection and evolution in global breeding revealed by haplotype analysis. Theor. Appl. Genet. 2015, 128, 131–143. [Google Scholar] [CrossRef]
- Campbell, K.G.; Bergman, C.J.; Gualberto, D.G.; Anderson, J.A.; Giroux, M.J.; Hareland, G.; Fulcher, R.G.; Sorrells, M.E.; Finney, P.L. Quantitative Trait Loci Associated with Kernel Traits in a Soft × Hard Wheat Cross. Crop Sci. 1999, 39, 1184–1195. [Google Scholar] [CrossRef]
- Ren, T.; Fan, T.; Chen, S.; Li, C.; Chen, Y.; Ou, X.; Jiang, Q.; Ren, Z.; Tan, F.; Luo, P.; et al. Utilization of a Wheat55K SNP array-derived high-density genetic map for high-resolution mapping of quantitative trait loci for important kernel-related traits in common wheat. Theor. Appl. Genet. 2021, 134, 807–821. [Google Scholar]
- Pang, Y.; Liu, C.; Wang, D.; Amand, P.S.; Bernardo, A.; Li, W.; He, F.; Li, L.; Wang, L.; Yuan, X.; et al. High-Resolution Genome-wide Association Study Identifies Genomic Regions and Candidate Genes for Important Agronomic Traits in Wheat. Mol. Plant 2020, 13, 1311–1327. [Google Scholar]
- Ward, B.P.; Brown-Guedira, G.; Kolb, F.L.; Van Sanford, D.A.; Tyagi, P.; Sneller, C.H.; Griffey, C.A. Genome-wide association studies for yield-related traits in soft red winter wheat grown in Virginia. PLoS ONE 2019, 14, e0208217. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Wen, W.; Liu, J.; Zhang, Y.; Cao, S.; He, Z.; Rasheed, A.; Jin, H.; Zhang, C.; Yan, J.; et al. Genetic architecture of grain yield in bread wheat based on genome-wide association studies. BMC Plant Biol. 2019, 19, 168. [Google Scholar]
- Liu, H.; Zhang, X.; Xu, Y.; Ma, F.; Zhang, J.; Cao, Y.; Li, L.; An, D. Identification and validation of quantitative trait loci for kernel traits in common wheat (Triticum aestivum L.). BMC Plant Biol. 2020, 20, 529. [Google Scholar]
QTL Name | Chr a | Position b (Mb) | Trait c | Trait | Environment d | LOD Threshold | LOD e | LOD (A) | LOD (A*E) | PVE f (%) | PVE (A) (%) | PVE (A*E) (%) | ADD g | SNP Alleles Increase Traits | 25LGs h | Peak Position i (cM) | QTL CI (cM) j | Consistent QTL k | Pleiotropic QTL k | Known Genes | Novel Genes |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Qhard.tamu.1A.565 | 1A | 565.06 | HARD | Quality | 18BSP100 | 3.2 | 3.26 | - | - | 9.15 | - | - | 0.92 | TAM 111 | 2 | 62 | 60.5–62.5 | y | |||
Qkperi.tamu.1A.569 | 1A | 568.95 | KPERI | Kernel | 18BSP100, MET | 3.20–3.99 | 3.55–4.50 | 4.13 | 0.37 | 4.66–6.49 | 4.26 | 0.4 | 0.11–0.15 | TAM 111 | 2 | 65 | 62.5–66.5 | y | y | ||
Qmltw.tamu.1B.616 | 1B | 615.8 | MLTW | Quality | 18DMS, MET | 3.39–4.46 | 5.22–5.56 | 2.77 | 2.79 | 7.89–8.35 | 6.56 | 1.79 | 0.54–0.97 | TAM 111 | 4 | 46 | 45.5–49.5 | y | |||
Qklen.tamu.1B.640 | 1B | 639.91 | KLEN | Kernel | 18BSP100, MET | 3.20–3.94 | 5.31–5.33 | 2.28 | 3.05 | 9.71–9.76 | 4.32 | 5.38 | 0.03–0.07 | TAM 111 | 4 | 63 | 62.5–63.5 | y | |||
Qdiam.tamu.1B.687 | 1B | 686.64 | DIAM | Quality | MET | 5.01 | 5.04 | 2.94 | 2.1 | 7.94 | 3.85 | 4.09 | 0.01 | TAM 111 | 5 | 31 | 28.5–31 | y | |||
Qmlpw.tamu.1D.325 | 1D | 324.51 | MLPV | Quality | 18MCG | 3.36 | 5.44 | - | - | 1.16 | - | - | −1.34 | TX05A001822 | 6 | 66 | 63.5–66.5 | ||||
Qmltw.tamu.1D.412 | 1D | 412.19 | MLTW | Quality | 18MCG | 3.36 | 8.59 | - | - | 20.03 | - | - | −1.72 | TX05A001822 | 6 | 75 | 74.5–75.5 | Glu-D1 | |||
Qmlrs.tamu.1D.422 | 1D | 422.23 | MLRS | Quality | 17CH | 3.31 | 3.61 | - | - | 8.06 | - | - | −0.3 | TX05A001822 | 6 | 77 | 76.5–77 | y | Glu-D1 | ||
Qmltw.tamu.1D.422 | 1D | 422.23 | MLTW | Quality | 18DMS, MET | 3.39–4.46 | 11.58–11.79 | 1.79 | 9.79 | 16.71–18.93 | 4.31 | 12.41 | (−0.43)–(−1.50) | TX05A001822 | 6 | 77 | 76.5–77 | y | y | Glu-D1 | |
Qmltxt.tamu.1D.422 | 1D | 422.23 | MLTXT | Quality | COMB | 3.29 | 13.86 | - | - | 31.34 | - | - | −0.16 | TX05A001822 | 6 | 77 | 75.5–77 | y | Glu-D1 | ||
Qmltxw.tamu.1D.422 | 1D | 422.23 | MLTXW | Quality | 17CH, COMB | 3.29–3.31 | 3.4–4.37 | - | - | 9.17–9.51 | - | - | (−0.85)–(−1.22) | TX05A001822 | 6 | 77 | 75.5–77 | y | y | Glu-D1 | |
Qhd.tamu.2B.707 | 2B | 707.07 | HD | Agronomy | 18BSP100, MET | 3.2–5.12 | 5.56–7.33 | 5.72 | 1.61 | 6.84–9.30 | 4.76 | 2.07 | 0.30–0.66 | TAM 111 | 9 | 159 | 157.5–159.5 | y | |||
Qph.tamu.2D.16 | 2D | 15.97 | PH | Agronomy | MET | 5.05 | 5.43 | 5.1 | 0.32 | 2.97 | 2.84 | 0.14 | −0.65 | TX05A001822 | 11 | 0 | 0–2.5 | ||||
Qbm.tamu.3A.628 | 3A | 627.54 | BM | Yield | COMB | 3.29 | 3.93 | - | - | 10.68 | - | - | −0.44 | TX05A001822 | 14 | 14 | 13.5–14.5 | ||||
Qfyld.tamu.3A.654 | 3A | 653.79 | FYLD | Quality | 17CH, MET | 3.31–4.52 | 37.82–38.40 | 18.26 | 20.14 | 11.09–13.39 | 4.62 | 6.47 | (−0.79)–(−2.12) | TX05A001822 | 14 | 25 | 24.5–25.5 | y | |||
Qkwid.tamu.3B.567 | 3B | 566.6 | KWID | Kernel | COMB | 3.2 | 3.38 | - | - | 9.72 | - | - | 0.01 | TAM 111 | 15 | 41 | 40.5–41.5 | ||||
Qkwid.tamu.3B.578 | 3B | 577.61 | KWID | Kernel | DMS, MET | 3.25–4.00 | 3.81–5.00 | 4.72 | 0.29 | 8.14–9.32 | 7.34 | 0.8 | 0.01–0.02 | TAM 111 | 15 | 44 | 42.5–44.5 | y | y | ||
Qkps.tamu.3D.24 | 3D | 23.52 | KPS | Yield | MET | 4.49 | 4.52 | 3.63 | 0.89 | 3.65 | 3.36 | 0.29 | −0.52 | TX05A001822 | 16 | 0 | 0–6.5 | y | |||
Qskw.tamu.3D.517 | 3D | 517.11 | SKW | Yield | MET | 5.09 | 5.21 | 4.51 | 0.7 | 3.81 | 3.75 | 0.06 | 0.29 | TAM 111 | 16 | 46 | 41.5–54.5 | ||||
Qklen.tamu.4A.29 | 4A | 29.27 | KLEN | Agronomy | 18BSP100, MET | 3.20–3.94 | 3.78–4.99 | 4.58 | 0.42 | 6.89–9.17 | 8.64 | 0.53 | (−0.05)–(−0.06) | TX05A001822 | 17 | 12 | 10.5–12.5 | y | y | ||
Qph.tamu.4A.29 | 4A | 29.27 | PH | Kernel | MET | 5.05 | 6.61 | 5.72 | 0.89 | 3.51 | 3.22 | 0.29 | −0.69 | TX05A001822 | 17 | 12 | 10.5–12.5 | y | |||
Qhd.tamu.4A.619 | 4A | 618.93 | HD | Agronomy | 17BSP100, MET | 3.31–5.12 | 3.76–7.25 | 5.66 | 1.6 | 5.62–11.27 | 4.7 | 0.92 | (−0.30)–(−0.50) | TX05A001822 | 18 | 14 | 12.5–14.5 | y | y | TaCWI-4A | |
Qtkw.tamu.4A.619 | 4A | 618.93 | TKW | Yield | 17BSP67, 17BSP100, COMB, MET | 3.20–4.52 | 3.41–8.47 | 7.49 | 0.98 | 8.84–12.31 | 8.51 | 2.87 | 0.45–0.93 | TAM 111 | 18 | 14 | 12.5–14.5 | y | y | TaCWI-4A | |
Qhi.tamu.4A.621 | 4A | 621.09 | HI | Yield | COMB | 3.29 | 3.33 | - | - | 7.09 | - | - | 0 | TAM 111 | 18 | 11 | 8.5–11.5 | TaCWI-4A | |||
Qhard.tamu.4A.655 | 4A | 655.24 | HARD | Quality | 17CH | 3.31 | 3.39 | - | - | 8.49 | - | - | −1.25 | TX05A001822 | 18 | 33 | 29.5–33 | y | |||
Qmlpt.tamu.5A.415 | 5A | 415.44 | MLPT | Quality | MET, COMB | 3.29–4.63 | 3.37–5.76 | 5.62 | 0.13 | 6.00–8.05 | 5.87 | 0.13 | (−0.17)–(−0.21) | TX05A001822 | 21 | 60 | 59.5–60.5 | y | y | ||
Qmltw.tamu.5A.415 | 5A | 415.44 | MLTW | Quality | MET | 4.46 | 4.82 | 4.47 | 0.36 | 11.39 | 10.67 | 0.72 | −0.69 | TX05A001822 | 21 | 60 | 59.5–60.5 | y | |||
Qph.tamu.5A.495 | 5A | 495.04 | PH | Agronomy | MET | 5.05 | 7.1 | 6.65 | 0.45 | 3.79 | 3.7 | 0.08 | −0.74 | TX05A001822 | 21 | 96 | 95.5–96.5 | ||||
Qyld.tamu.5A.532 | 5A | 531.52 | YLD | Yield | 18DMS | 3.39 | 3.88 | - | - | 6.98 | - | - | 1.72 | TAM 111 | 21 | 106 | 98.5–107.5 | ||||
Qph.tamu.5B.381 | 5B | 381.05 | PH | Agronomy | MET | 5.05 | 6.96 | 6.24 | 0.71 | 3.7 | 3.46 | 0.24 | −0.71 | TX05A001822 | 23 | 68 | 64.5–68.5 | y | |||
Qklen.tamu.5D.560 | 5D | 559.65 | KLEN | Kernel | COMB | 3.2 | 4.01 | - | - | 8.31 | - | - | −0.05 | TX05A001822 | 25 | 13 | 8.5–14 | y | TaCWI-5D | ||
Qkarea.tamu.5D.560 | 5D | 560.11 | KAREA | Kernel | MET, COMB | 3.20–3.92 | 3.20–4.65 | 4.64 | 0 | 5.74–7.86 | 5.71 | 0.02 | (−0.10)–(−0.13) | TX05A001822 | 25 | 13 | 7.5–14 | y | y | TaCWI-5D | |
Qkperi.tamu.5D.560 | 5D | 560.11 | KPERI | Kernel | 18BSP100, MET, COMB | 3.20–3.99 | 3.44–6.72 | 6.67 | 0.05 | 6.95–8.50 | 7.21 | 0.04 | (−0.12)–(−0.16) | TX05A001822 | 25 | 14 | 7.5–14 | y | y | TaCWI-5D | |
Qskw.tamu.5D.560 | 5D | 560.11 | SKW | Yield | COMB, MET | 3.29–5.09 | 3.90–5.99 | 5.92 | 0.07 | 5.24–10.13 | 4.94 | 0.3 | (−0.28)–(−0.33) | TX05A001822 | 25 | 14 | 10.5–14 | y | y | TaCWI-5D | |
Qskw.tamu.6D.26 | 6D | 26.44 | SKW | Yield | MET | 5.09 | 5.93 | 3.82 | 2.11 | 6.5 | 3.23 | 3.27 | −0.27 | TX05A001822 | 29 | 24 | 20.5–29.5 | ||||
Qph.tamu.6D.28 | 6D | 27.71 | PH | Agronomy | 17BSP100, MET | 3.31–5.05 | 4.42–5.55 | 3.8 | 1.75 | 10.94–2.89 | 2.08 | 0.81 | (−0.55)–(−1.23) | TX05A001822 | 29 | 25 | 18.5–32.5 | y | y | ||
Qskw.tamu.6D.28 | 6D | 27.71 | SKW | Yield | 18MCG | 3.36 | 4.29 | - | - | 7.27 | - | - | −0.71 | TX05A001822 | 29 | 25 | 19.5–32.5 | y | |||
Qph.tamu.6D.308 | 6D | 307.97 | PH | Agronomy | MET, COMB | 3.29–5.05 | 3.81–7.44 | 7.3 | 0.14 | 3.97–11.06 | 3.96 | 0.01 | (−0.61)–(−0.76) | TX05A001822 | 29 | 59 | 48.5–60 | y | y | ||
Qhd.tamu.7A.30 | 7A | 29.89 | HD | Agronomy | 18BSP100, MET | 3.2–5.12 | 3.41–5.66 | 4.31 | 1.35 | 4.77–5.65 | 3.53 | 1.24 | 0.26–0.52 | TAM 111 | 31 | 25 | 20.5–25.5 | y | |||
Qshgw.tamu.7A.577 | 7A | 576.39 | SHGW | Yield | 17BSP100 | 3.2 | 3.41 | - | - | 7.54 | - | - | −0.03 | TX05A001822 | 32 | 18 | 16.5–22.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dogan, M.; Wang, Z.; Cerit, M.; Valenzuela-Antelo, J.L.; Dhakal, S.; Chu, C.; Xue, Q.; Ibrahim, A.M.H.; Rudd, J.C.; Bernardo, A.; et al. QTL Analysis of Yield and End-Use Quality Traits in Texas Hard Red Winter Wheat. Agronomy 2023, 13, 689. https://doi.org/10.3390/agronomy13030689
Dogan M, Wang Z, Cerit M, Valenzuela-Antelo JL, Dhakal S, Chu C, Xue Q, Ibrahim AMH, Rudd JC, Bernardo A, et al. QTL Analysis of Yield and End-Use Quality Traits in Texas Hard Red Winter Wheat. Agronomy. 2023; 13(3):689. https://doi.org/10.3390/agronomy13030689
Chicago/Turabian StyleDogan, Mehmet, Zhen Wang, Mustafa Cerit, Jorge L. Valenzuela-Antelo, Smit Dhakal, Chenggen Chu, Qingwu Xue, Amir M. H. Ibrahim, Jackie C. Rudd, Amy Bernardo, and et al. 2023. "QTL Analysis of Yield and End-Use Quality Traits in Texas Hard Red Winter Wheat" Agronomy 13, no. 3: 689. https://doi.org/10.3390/agronomy13030689
APA StyleDogan, M., Wang, Z., Cerit, M., Valenzuela-Antelo, J. L., Dhakal, S., Chu, C., Xue, Q., Ibrahim, A. M. H., Rudd, J. C., Bernardo, A., St. Amand, P., Bai, G., Zhang, H., & Liu, S. (2023). QTL Analysis of Yield and End-Use Quality Traits in Texas Hard Red Winter Wheat. Agronomy, 13(3), 689. https://doi.org/10.3390/agronomy13030689