Effect of Quebracho Tannin (Schinopsis quebracho-colorado (Schltdl.) F.A. Barkley and T. Meyer) on Silage Nutritive Value, Ergovaline Concentration, and Fermentation Parameters of Tall Fescue (Schedonorus arundinaceus (Shreb.) Dumort) with Two Dry-Matter Levels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Forage Harvest, Silage Making, and Storage
2.2. Chemical Analysis
2.3. Statistical Analysis
3. Results
3.1. Pre- and Post-Ensiled Forage
3.2. Changes in Chemical Components
3.3. Fermentation Parameters
4. Discussion
4.1. Chemical Components
4.2. Pre- and Post-Ensiled Forage
4.3. Changes in Forage Chemical Components
4.4. Fermentation Parameters
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Stuedemann, J.A.; Hoveland, C.S. Fescue endophyte: History and impact on animal agriculture. J. Prod. Agric. 1988, 1, 39–44. [Google Scholar] [CrossRef]
- Shinners, K.J. Engineering principles of silage harvesting equipment. Silage Sci. Technol. 2003, 42, 361–403. [Google Scholar]
- Young, C.; Hume, D.; McCulley, R. Forages and pastures symposium: Fungal endophytes of tall fescue and perennial ryegrass: Pasture friend or foe? J. Anim. Sci. 2013, 91, 2379–2394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rottinghaus, G.E.; Garner, G.B.; Cornell, C.N.; Ellis, J.L. HPLC method for quantitating ergovaline in endophyte-infested tall fescue: Seasonal variation of ergovaline levels in stems with leaf sheaths, leaf blades, and seed heads. J. Agric. Food Chem. 1991, 39, 112–115. [Google Scholar] [CrossRef]
- Roberts, C.A.; Davis, D.K.; Looper, M.L.; Kallenbach, R.L.; Rottinghaus, G.E.; Hill, N.S. Ergot Alkaloid Concentrations in High-and Low-Moisture Tall Fescue Silage. Crop Sci. 2014, 54, 1887–1892. [Google Scholar] [CrossRef]
- Grote, A.J.; Nieman, C.C.; Morgan, A.R.; Coffey, K.P.; Philipp, D.; Kegley, E.B.; Edwards, J.L. Using supplemental condensed tannin to mitigate tall fescue toxicosis in non-pregnant, non-lactating ewes consuming tall fescue silage. Anim. Feed Sci. Technol. 2023, 295, 115516. [Google Scholar] [CrossRef]
- Villalba, J.J.; Spackman, C.; Goff, B.; Klotz, J.; Griggs, T.; MacAdam, J.W. Interaction between a tannin-containing legume and endophyte-infected tall fescue seed on lambs’ feeding behavior and physiology. J. Anim. Sci. 2016, 94, 845–857. [Google Scholar] [CrossRef] [Green Version]
- Tharayil, N.; Suseela, V.; Triebwasser, D.J.; Preston, C.M.; Gerard, P.D.; Dukes, J.S. Changes in the structural composition and reactivity of Acer rubrum leaf litter tannins exposed to warming and altered precipitation: Climatic stress-induced tannins are more reactive. New Phytol. 2011, 191, 132–145. [Google Scholar] [CrossRef]
- Feeny, P.; Bostock, H. Seasonal changes in the tannin content of oak leaves. Phytochemistry 1968, 7, 871–880. [Google Scholar] [CrossRef]
- Hagerman, A.E.; Butler, L.G. The specificity of proanthocyanidin-protein interactions. J. Biol. Chem. 1981, 256, 4494–4497. [Google Scholar] [CrossRef]
- Makkar, H. Effects and fate of tannins in ruminant animals, adaptation to tannins, and strategies to overcome detrimental effects of feeding tannin-rich feeds. Small Rumin. Res. 2003, 49, 241–256. [Google Scholar] [CrossRef]
- MacAdam, J.W.; Villalba, J.J. Beneficial effects of temperate forage legumes that contain condensed tannins. Agriculture 2015, 5, 475–491. [Google Scholar] [CrossRef] [Green Version]
- Jayanegara, A.; Sujarnoko, T.U.; Ridla, M.; Kondo, M.; Kreuzer, M. Silage quality as influenced by concentration and type of tannins present in the material ensiled: A meta-analysis. J. Anim. Physiol. Anim. Nutr. 2019, 103, 456–465. [Google Scholar] [CrossRef]
- Vogel, K.P.; Pedersen, J.F.; Masterson, S.D.; Toy, J.J. Evaluation of a filter bag system for NDF, ADF, and IVDMD forage analysis. Crop Sci. 1999, 39, 276–279. [Google Scholar] [CrossRef]
- Horwitz, W. Official Methods of Analyses, 17th ed.; AOAC: Gaithersburg, MD, USA, 2000. [Google Scholar]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Wolfe, R.M.; Terrill, T.H.; Muir, J.P. Drying method and origin of standard affect condensed tannin (CT) concentrations in perennial herbaceous legumes using simplified butanol-HCl CT analysis. J. Sci. Food Agric. 2008, 88, 1060–1067. [Google Scholar] [CrossRef]
- Hagerman, A.E.; Butler, L.G. Protein precipitation method for the quantitative determination of tannins. J. Agric. Food Chem. 1978, 26, 809–812. [Google Scholar] [CrossRef]
- Naumann, H.D.; Hagerman, A.E.; Lambert, B.D.; Muir, J.P.; Tedeschi, L.O.; Kothmann, M.M. Molecular weight and protein-precipitating ability of condensed tannins from warm-season perennial legumes. J. Plant Interact. 2014, 9, 212–219. [Google Scholar] [CrossRef]
- Terrill, T.H.; Rowan, A.M.; Douglas, G.B.; Barry, T.N. Determination of extractable and bound condensed tannin concentrations in forage plants, protein concentrate meals, and cereal grains. J. Sci. Food Agric. 1992, 58, 321–329. [Google Scholar] [CrossRef]
- Carter, J.M.; Aiken, G.E.; Dougherty, C.T.; Schrick, F.N. Steer responses to feeding soybean hulls and steroid hormone implantation on toxic tall fescue pasture. J. Anim. Sci. 2010, 88, 3759–3766. [Google Scholar] [CrossRef] [Green Version]
- Klotz, J.L.; Aiken, G.E.; Egert-McLean, A.M.; Schrick, F.N.; Chattopadhyay, N.; Harmon, D.L. Effects of grazing different ergovaline concentrations on vasoactivity of bovine lateral saphenous vein. J. Anim. Sci. 2018, 96, 3022–3030. [Google Scholar] [CrossRef] [Green Version]
- Carlson, R.M. Automated separation and conductimetric determination of ammonia and dissolved carbon dioxide. Anal. Chem. 1978, 50, 1528–1531. [Google Scholar] [CrossRef]
- Salawu, M.B.; Acamovic, T.; Stewart, C.S.; Hvelplund, T.; Weisbjerg, M.R. The use of tannins as silage additives: Effects on silage composition and mobile bag disappearance of dry matter and protein. Anim. Feed Sci. Technol. 1999, 82, 243–259. [Google Scholar] [CrossRef]
- Salawu, M.B.; Warren, E.H.; Adesogan, A.T. Fermentation characteristics, aerobic stability and ruminal degradation of ensiled pea/wheat bi-crop forages treated with 2 microbial inoculants, formic acid or quebracho tannins. J. Sci. Food Agric. 2001, 81, 1263–1268. [Google Scholar] [CrossRef]
- Adesogan, A.T.; Salawu, M.B. The Effect of Different Additives on the Fermentation Quality, Aerobic Stability and In Vitro Digestibility of Pea/Wheat Bi-crop Silages Containing Contrasting Pea to Wheat Ratios. Grass Forage Sci. 2002, 57, 25–32. [Google Scholar] [CrossRef]
- Norris, A.B.; Tedeschi, L.O.; Foster, J.L.; Muir, J.P.; Pinchak, W.E.; Fonseca, M.A. AFST: Influence of quebracho tannin extract fed at differing rates within a high-roughage diet on the apparent digestibility of dry matter and fiber, nitrogen balance and fecal gas flux. Anim. Feed Sci. Technol. 2020, 260, 114365. [Google Scholar] [CrossRef]
- Benchaar, C.; McAllister, T.A.; Chouinard, P.Y. Digestion, ruminal fermentation, ciliate protozoal populations, and milk production from dairy cows fed cinnamaldehyde, quebracho condensed tannin, or Yucca schidigera saponin extracts. J. Dairy Sci. 2008, 91, 4765–4777. [Google Scholar] [CrossRef] [Green Version]
- Beauchemin, K.A.; McGinn, S.M.; Martinez, T.F.; McAllister, T.A. Use of condensed tannin extract from quebracho trees to reduce methane emissions from cattle. J. Anim. Sci. 2007, 85, 1990–1996. [Google Scholar] [CrossRef] [Green Version]
- McDonald, P.; Henderson, A.R.; Heron, S.J.E. The Biochemistry of Silage; Chalcombe Publications: Marlow, UK, 1991. [Google Scholar]
- Nieman, C.C.; Coblentz, W.K.; Coffey, K.P. Application of poultry litter and moisture effects on rye–ryegrass–fescue baleage. Crop Forage Turfgrass Manag. 2021, 7, e20118. [Google Scholar] [CrossRef]
- Muck, R.E. Factors influencing silage quality and their implications for management. J. Dairy Sci. 1988, 71, 2992–3002. [Google Scholar] [CrossRef]
- Coblentz, W.K.; Ogden, R.K.; Akins, M.S.; Chow, E.A. Nutritive value and fermentation characteristics of alfalfa–mixed grass forage wrapped with minimal stretch film layers and stored for different lengths of time. J. Dairy Sci. 2017, 100, 5293–5304. [Google Scholar] [CrossRef] [Green Version]
- Jones, W.T.; Mangan, J.L. Complexes of the condensed tannins of sainfoin (Onobrychis viciifolia Scop.) with fraction 1 leaf protein and with submaxillary mucoprotein, and their reversal by polyethylene glycol and pH. J. Sci. Food Agric. 1977, 28, 126–136. [Google Scholar] [CrossRef]
- Calderon, P.; Van Buren, J.; Robinson, W.B. Factors influencing the formation of precipitates and hazes by gelatin and condensed and hydrolyzable tannins. J. Agric. Food Chem. 1968, 16, 479–482. [Google Scholar] [CrossRef]
- Coblentz, W.K.; Akins, M.S. Nutritive value and fermentation characteristics of round-baled alfalfa–orchardgrass forages ensiled at various moisture concentrations with or without baler cutting engagement. Appl. Anim. Sci. 2019, 35, 135–145. [Google Scholar] [CrossRef]
- Coblentz, W.K.; Akins, M.S.; Cavadini, J.S. Nutritive value, silage fermentation characteristics, and aerobic stability of 3 round-baled, perennial-grass forages ensiled with or without a propionic-acid-based preservative. Appl. Anim. Sci. 2021, 37, 239–255. [Google Scholar] [CrossRef]
- Turner, K.E.; West, C.P.; Piper, E.L.; Mashburn, S.A.; Moubarak, A.S. Quality and ergovaline content of tall fescue silage as affected by harvest stage and addition of poultry litter and inoculum. J. Prod. Agric. 1993, 6, 423–427. [Google Scholar] [CrossRef]
- Garner, G.B.; Rottinghaus, G.E.; Cornell, C.N.; Testereci, H. Chemistry of compounds associated with endophyte/grass interaction: Ergovaline- and ergopeptine-related alkaloids. Agric. Ecosyst. Environ. 1993, 44, 65–80. [Google Scholar] [CrossRef]
- Roberts, C.; Kallenbach, R.; Hill, N.; Rottinghaus, G.; Evans, T. Ergot alkaloid concentrations in tall fescue hay during production and storage. Crop Sci. 2009, 49, 1496–1502. [Google Scholar] [CrossRef]
- Muck, R.E.; Kung, L., Jr. Silage production. In Forages, Vol. II: The Science of Grassland Agriculture, 6th ed.; Barnes, R.F., Nelson, C.J., Moore, K.J., Collins, M., Eds.; Blackwell Publishing: Hoboken, NJ, USA, 2007; pp. 618–633. [Google Scholar]
- Kung, L., Jr.; Shaver, R.; Grant, R.; Schmidt, R. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. J. Dairy Sci. 2018, 101, 4020–4033. [Google Scholar] [CrossRef]
- Driehuis, F.; Oude Elferink, S.J.W.H.; Van Wikselaar, P.G. Fermentation characteristics and aerobic stability of grass silage inoculated with Lactobacillus buchneri, with or without homofermentative lactic acid bacteria. Grass Forage Sci. 2001, 56, 330–343. [Google Scholar] [CrossRef]
- McSweeney, C.S.; Palmer, B.; Bunch, R.; Krause, D.O. Isolation and characterization of proteolytic ruminal bacteria from sheep and goats fed the tannin-containing shrub legume Calliandra calothyrsus. Appl. Environ. Microbiol. 1999, 65, 3075–3083. [Google Scholar] [CrossRef] [Green Version]
Forage Treatment Combinations 1 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Item | High | Low | Effect p-Values | |||||||
Pre-Ensiled 2 | 0QT | 10QT | 20QT | 0QT | 10QT | 20QT | SEM 3 | Moisture | Tannin | Moisture |
× | ||||||||||
Tannin | ||||||||||
NDF, g/kg DM | 612 | 616 | 608 | 612 | 614 | 598 | 5.2 | 0.38 | 0.07 4 | 0.64 |
ADF, g/kg DM | 339 b | 337 b | 339 b | 339 b | 355 a | 334 b | 3.4 | 0.17 | 0.03 5 | 0.01 |
Hemicellulose, g/kg DM | 272 | 279 | 268 | 272 | 259 | 265 | 5.2 | 0.08 | 0.58 | 0.17 |
ADL, g/kg DM | 33 | 36 | 35 | 34 | 38 | 35 | 1.4 | 0.52 | 0.13 | 0.80 |
OM, g/kg DM | 929 a | 923 ab | 898 c | 916 b | 911 b | 914 b | 4.2 | 0.45 | <0.01 6 | 0.01 |
N, g/kg DM | 17 | 17 | 16 | 17 | 17 | 16 | 0.4 | 0.96 | 0.13 | 0.57 |
WSC, g/kg DM | 149 | 149 | 121 | 128 | 127 | 119 | 10.5 | 0.09 | 0.16 | 0.56 |
Ergovaline, ppb | 203 | 191 | 229 | 193 | 235 | 233 | 12.6 | 0.23 | 0.06 7 | 0.11 |
Post-ensiled | ||||||||||
NDF, g/kg DM | 616 x | 626 xy | 630 y | 628 xy | 627 xy | 617 x | 5 | 0.93 | 0.66 | 0.07 |
ADF, g/kg DM | 364 | 364 | 368 | 365 | 367 | 355 | 4.3 | 0.38 | 0.62 | 0.15 |
Hemicellulose, g/kg DM | 253 y | 262 x | 262x | 263 x | 260 xy | 262 x | 2.8 | 0.24 | 0.27 | 0.09 |
ADL, g/kg DM | 38 | 39 | 37 | 37 | 42 | 38 | 2.5 | 0.61 | 0.33 | 0.69 |
OM, g/kg DM | 918 a | 914 ab | 889d | 914 ab | 905 bc | 899 cd | 3.8 | 0.70 | <0.01 6 | 0.05 |
N, g/kg DM | 18 a | 17 b | 17b | 17 b | 17 b | 17 b | 0.2 | 0.23 | 0.027 | 0.04 |
WSC, g/kg DM | 67 | 57 | 44 | 88 | 87 | 85 | 6.5 | <0.01 8 | 0.14 | 0.35 |
Ergovaline, ppb | 212 | 230 | 236 | 224 | 242 | 201 | 14.3 | 0.75 | 0.38 | 0.19 |
Forage Treatment Combinations 1 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
HM | LM | Effect p-Values | ||||||||
Item 2 | 0QT | 10QT | 20QT | 0QT | 10QT | 20QT | SEM 3 | Moisture | Tannin | Moisture |
× Tannin | ||||||||||
NDF, g/kg DM | 4.4 | 10 | 22.5 * | 15.8 | 13 | 18.3 * | 8.2 | 0.61 | 0.41 | 0.64 |
ADF, g/kg DM | 23.9 * | 26.9 * | 28.9 * | 22.5 * | 12 | 21.2 * | 5.7 | 0.15 | 0.57 | 0.39 |
Hemicellulose, g/kg DM | −19.5 * | −16.9 * | −6.4 | −9.3 | 1 | −2.9 | 6.4 | 0.06 | 0.32 | 0.55 |
ADL, g/kg DM | 5.1 | 3.3 | 1.2 | 2.6 | 0 | 3.1 | 2.9 | 0.89 | 0.76 | 0.70 |
OM, g/kg DM | −10.7 * | −8 | −8.5 | −1.9 | −6.4 | −14.5 * | 4.3 | 0.69 | 0.46 | 0.26 |
N, g/kg DM | 1.5 * | 0.4 | 1.1 * | 0.6 | 0.7 | 0.9 | 0.4 | 0.49 | 0.54 | 0.44 |
WSC, g/kg DM | −82.3 * | −92.4 * | −77.0 * | −39.8 * | −40.2 * | −34.7 * | 9.65 | <0.01 | 0.56 | 0.84 |
Ergovaline, ppb | 8.7 | 39.1 * | 7.4 | 30.5 | 6.8 | −31.8 | 17.6 | 0.26 | 0.12 | 0.19 |
Forage Treatment Combinations 1 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
HM | LM | Effects p-Values | ||||||||
Item 2 | 0QT | 10QT | 20QT | 0QT | 10QT | 20QT | SEM 3 | Moisture | Tannin | Moisture × |
Tannin | ||||||||||
Moisture, % | 71.7 x | 72.8 x | 72.2 x | 55.0 z | 58.7 y | 61.1 y | 1.17 | <0.01 | 0.03 4 | 0.08 |
pH | 4.2 c | 4.2 c | 4.4 b | 4.6 a | 4.6 a | 4.5 ab | 0.05 | <0.01 | 0.88 | 0.02 |
Ammonia, g/kg DM | 8.3 a | 7.0 b | 7.3 b | 7.6 ab | 7.6 ab | 7.1 b | 0.30 | 0.52 | 0.03 5 | 0.05 |
AmmN, g/kg N | 67 | 60 | 65 | 60 | 60 | 60 | 2.80 | 0.09 | 0.42 | 0.41 |
Lactic Acid, g/kg DM | 63.8 | 58.2 | 59.4 | 62.8 | 58.4 | 55.0 | 2.40 | 0.38 | 0.05 6 | 0.61 |
Acetic Acid, g/kg DM | 6.4 a | 5.2 ab | 6.5 a | 5.1 ab | 6.1 ab | 4.7 b | 0.50 | 0.07 | 0.95 | 0.02 |
Lactic/Acetic Ratio | 10.4 abc | 11.2 abc | 9.1c | 12.3 a | 9.6bc | 11.7 ab | 0.78 | 0.14 | 0.40 | 0.03 |
Propionate, g/kg DM | 0.0 y | 0.3 x | 0.0 y | 0.0 y | 0.0 y | 0.0 y | 0.10 | 0.11 | 0.09 7 | 0.08 |
Butyrate, g/kg DM | 7.2 y | 10.4 y | 15.2 x | 1.0 z | 2.0 z | 3.4 z | 1.20 | <0.01 | <0.01 8 | 0.10 |
Total Acids, g/kg DM | 78 | 74 | 81 | 68 | 66 | 63 | 2.80 | <0.01 | 0.54 | 0.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grote, A.J.; Nieman, C.C.; Thomas Jr., I.R.; Coffey, K.P.; Muir, J.P.; Klotz, J.L. Effect of Quebracho Tannin (Schinopsis quebracho-colorado (Schltdl.) F.A. Barkley and T. Meyer) on Silage Nutritive Value, Ergovaline Concentration, and Fermentation Parameters of Tall Fescue (Schedonorus arundinaceus (Shreb.) Dumort) with Two Dry-Matter Levels. Agronomy 2023, 13, 694. https://doi.org/10.3390/agronomy13030694
Grote AJ, Nieman CC, Thomas Jr. IR, Coffey KP, Muir JP, Klotz JL. Effect of Quebracho Tannin (Schinopsis quebracho-colorado (Schltdl.) F.A. Barkley and T. Meyer) on Silage Nutritive Value, Ergovaline Concentration, and Fermentation Parameters of Tall Fescue (Schedonorus arundinaceus (Shreb.) Dumort) with Two Dry-Matter Levels. Agronomy. 2023; 13(3):694. https://doi.org/10.3390/agronomy13030694
Chicago/Turabian StyleGrote, Ally J., Christine C. Nieman, Ivan R. Thomas Jr., Kenneth P. Coffey, James P. Muir, and James L. Klotz. 2023. "Effect of Quebracho Tannin (Schinopsis quebracho-colorado (Schltdl.) F.A. Barkley and T. Meyer) on Silage Nutritive Value, Ergovaline Concentration, and Fermentation Parameters of Tall Fescue (Schedonorus arundinaceus (Shreb.) Dumort) with Two Dry-Matter Levels" Agronomy 13, no. 3: 694. https://doi.org/10.3390/agronomy13030694
APA StyleGrote, A. J., Nieman, C. C., Thomas Jr., I. R., Coffey, K. P., Muir, J. P., & Klotz, J. L. (2023). Effect of Quebracho Tannin (Schinopsis quebracho-colorado (Schltdl.) F.A. Barkley and T. Meyer) on Silage Nutritive Value, Ergovaline Concentration, and Fermentation Parameters of Tall Fescue (Schedonorus arundinaceus (Shreb.) Dumort) with Two Dry-Matter Levels. Agronomy, 13(3), 694. https://doi.org/10.3390/agronomy13030694