Improving Soil Fertility and Wheat Yield by Tillage and Nitrogen Management in Winter Wheat–Summer Maize Cropping System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Sampling
2.4. Measurement
2.5. Statistical Analysis
3. Results
3.1. Cumulative Straw Inputs
3.2. Soil Organic Carbon
3.3. Soil Nutrient
3.4. Soil Enzyme Activities
3.5. Soil Microorganism
3.6. Correlation Analysis
3.7. Grain Yield
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, L.; Cui, H.; Li, B.; Zhang, J.; Dong, S.; Liu, P. Effects of integrated agronomic management practices on yield and nitrogen efficiency of summer maize in North China. Field Crop. Res. 2012, 134, 30–35. [Google Scholar] [CrossRef]
- Chen, X.; Cui, Z.; Fan, M.; Vitousek, P.; Zhao, M.; Ma, W.; Wang, Z.; Zhang, W.; Yan, X.; Yang, J.; et al. Producing more grain with lower environmental costs. Nature 2014, 537, 671–674. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.-P.; Cui, Z.-L.; Vitousek, P.M.; Cassman, K.G.; Matson, P.A.; Bai, J.-S.; Meng, Q.-F.; Hou, P.; Yue, S.-C.; Römheld, V.; et al. Integrated soil-crop system management for food security. Proc. Natl. Acad. Sci. USA 2011, 108, 6399–6404. [Google Scholar] [CrossRef] [Green Version]
- Cui, Z.; Zhang, H.; Chen, X.; Zhang, C.; Ma, W.; Huang, C.; Zhang, W.; Mi, G.; Miao, Y.; Li, X.; et al. Pursuing sustainable productivity with millions of smallholder farmers. Nature 2018, 555, 363–366. [Google Scholar] [CrossRef]
- Yin, H.J.; Zhao, W.Q.; Li, T.; Cheng, X.Y.; Liu, Q. Balancing straw returning and chemical fertilizers in China: Role of straw nutrient resources. Renew. Sust. Energ. Rev. 2018, 81, 2695–2702. [Google Scholar] [CrossRef]
- Zhou, D.X.; Su, Y.; Ning, Y.C.; Rong, G.H.; Wang, G.D.; Liu, D.; Liu, L.Y. Estimation of the effects of maize straw return on soil carbon and nutrients using response surface methodology. Pedosphere 2018, 28, 411–421. [Google Scholar] [CrossRef]
- Chen, X.; Liu, M.; Kuzyakov, Y.; Li, W.; Liu, J.; Jiang, C.; Wu, M.; Li, Z. Incorporation of rice straw carbon into dissolved organic matter and microbial biomass along a 100-year paddy soil chrono sequence. Appl. Soil Ecol. 2018, 130, 84–90. [Google Scholar] [CrossRef]
- Cui, H.X.; Luo, Y.L.; Chen, J.; Jin, M.; Li, Y.; Wang, Z.L. Straw return strategies to improve soil properties and crop productivity in a winter wheat-summer maize cropping system. Eur. J. Agron. 2022, 133, 126436. [Google Scholar] [CrossRef]
- Ghimire, R.; Adhikari, K.R.; Chen, Z.S.; Shah, S.C.; Dahal, K.R. Soil organic carbon sequestration as affected by tillage, crop residue, and nitrogen application in rice-wheat rotation system. Paddy Water Environ. 2012, 10, 95–102. [Google Scholar] [CrossRef]
- Johnson, J.M.; Novak, J.M.; Varvel, G.E.; Stott, D.E.; Osborne, S.L.; Karlen, D.L.; Lamb, J.A.; Baker, J.; Adler, P.R. Crop residue mass needed to maintain soil organic carbon levels: Can it be determined? BioEnerg. Res. 2014, 7, 481–490. [Google Scholar] [CrossRef]
- Akkal-Corfini, N.; Morvan, T.; Menasseri-Aubry, S.; Bissuel-Bélaygue, C.; Poulain, D.; Orsini, F.; Leterme, P. Nitrogen mineralization, plant uptake and nitrate leaching following the incorporation of (15N)-labeled cauliflower crop residues (Brassica oleracea) into the soil: A 3-year lysimeter study. Plant Soil 2010, 328, 17–26. [Google Scholar] [CrossRef]
- Shan, J.; Yan, X.Y. Effects of crop residue returning on nitrous oxide emissions in agricultural soils. Atmos. Environ. 2013, 71, 170–175. [Google Scholar] [CrossRef]
- Kong, L.A. Maize residues, soil quality, and wheat growth in China. Agron. Sustain. Dev. 2014, 34, 405–416. [Google Scholar] [CrossRef] [Green Version]
- Cai, A.D.; Liang, G.P.; Zhang, X.B.; Zhang, W.J.; Li, L.; Rui, Y.C.; Xu, M.G.; Luo, Y.Q. Long-term straw decomposition in agro-ecosystems described by a unified three-exponentiation equation with thermal time. Sci. Total Environ. 2018, 636, 699–708. [Google Scholar] [CrossRef]
- Xu, J.; Han, H.F.; Ning, T.Y.; Li, Z.J.; Lal, R. Long-term effects of tillage and straw management on soil organic carbon, crop yield, and yield stability in a wheat-maize system. Field Crop. Res. 2019, 233, 33–40. [Google Scholar] [CrossRef]
- Huang, R.; Tian, D.; Liu, J.; Lv, S.; He, X.H.; Gao, M. Responses of soil carbon pool and soil aggregates associated organic carbon to straw and straw-derived biochar addition in a dryland cropping mesocosm system. Agric. Ecosyst. Environ. 2018, 265, 576–586. [Google Scholar] [CrossRef]
- Stockmann, U.; Padarian, J.; McBratney, A.; Minasny, B.; De Brogniez, D.; Montanarella, L.; Suk, Y.H.; Rawlins, B.G.; Field, D.J. Global soil organic carbon assessment. Glob. Food Secur. 2015, 6, 9–16. [Google Scholar] [CrossRef]
- Shrestha, P.; Gautam, R.; Ashwath, N. Effects of agronomic treatments on functional diversity of soil microbial community and microbial activity in a revegetated coal mine spoil. Geoderma 2019, 338, 40–47. [Google Scholar] [CrossRef]
- Wei, T.; Zhang, P.; Wang, K.; Ding, R.X.; Yang, B.P.; Nie, J.F.; Jia, Z.K.; Han, Q.F. Effects of Wheat Straw Incorporation on the Availability of Soil Nutrients and Enzyme Activities in Semiarid Areas. PLoS ONE 2015, 10, e0120994. [Google Scholar] [CrossRef] [Green Version]
- Lou, Y.; Xu, M.; Wang, W.; Sun, X.; Zhao, K. Return rate of straw residue affects soil organic C sequestration by chemical fertilization. Soil Till. Res. 2011, 113, 70–73. [Google Scholar] [CrossRef]
- Li, C.F.; Yue, L.X.; Kou, Z.K.; Zhang, Z.S.; Wang, J.P.; Cao, C.G. Short-term effects of conservation management practices on soil labile organic carbon fractions under a rape-rice rotation in central China. Soil Till. Res. 2012, 119, 31–37. [Google Scholar] [CrossRef]
- Cui, H.X.; Wang, Y.Y.; Luo, Y.L.; Jin, M.; Chen, J.; Pang, D.W.; Li, Y.; Wang, Z.L. Tillage strategies optimize SOC distribution to reduce carbon footprint. Soil Till. Res. 2022, 223, 105499. [Google Scholar] [CrossRef]
- Zhang, P.; Chen, X.L.; Wei, T.; Yang, Z.; Jia, Z.K.; Yang, B.P. Effects of straw incorporation on the soil nutrient contents, enzyme activities, and crop yield in a semiarid region of China. Soil Till. Res. 2016, 160, 65–72. [Google Scholar] [CrossRef]
- Jiang, Y.J.; Sun, B.; Jin, C.; Wang, F. Soil aggregate stratification of nematodes and microbial communities affects the metabolic quotient in an acid soil. Soil Biol. Biochem. 2013, 60, 1–9. [Google Scholar] [CrossRef]
- Ning, X.L.; Wang, X.H.; Guan, Z.Y.; Gu, Y.; Wu, C.S.; Hu, W.H. Effects of different patterns of maize-straw application on soil microorganisms, enzyme activities, and grain yield. Bioengineered 2021, 12, 3684–3698. [Google Scholar] [CrossRef]
- Shi, Y.; Yu, Z.W.; Man, J.G.; Ma, S.Y.; Gao, Z.Q.; Zhang, Y.L. Tillage practice affect dry matter accumulation and grain yield in winter wheat in the North China Plain. Soil Till. Res. 2016, 160, 73–81. [Google Scholar] [CrossRef]
- Václav, S.; Radek, V.; Jana, C.; Helena, K.; Pavel, R. Winter wheat yield and quality related to tillage practice: Input level and environmental conditions. Soil Till. Res. 2013, 132, 77–85. [Google Scholar] [CrossRef]
- Guan, D.H.; Al-Kaisi, M.M.; Zhang, Y.S.; Duan, L.S.; Tan, W.M.; Zhang, M.C.; Li, Z.H. Tillage practices affect biomass and grain yield through regulating root growth, root-bleeding sap and nutrients uptake in summer maize. Field Crops. Res. 2014, 157, 89–97. [Google Scholar] [CrossRef]
- Wang, X.B.; Cai, D.X.; Hoogmoed, W.B.; Oenema, O.; Perdok, U.D. Potential effect of conservation tillage on sustainable land use: A review of global long-term studies. Pedosphere 2006, 16, 587–595. [Google Scholar] [CrossRef]
- Zhu, L.Q.; Hu, N.J.; Yang, M.F.; Zhan, X.H.; Zhang, Z.W. Effects of different tillage and straw return on soil organic carbon in a rice-wheat rotation system. PLoS ONE 2014, 9, e88900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, Y.B.; Liu, Y.J.; Li, J.Y.; Cao, M.F.; Wang, Z.H.; Li, J.; Meng, D.L.; Cao, P.J.; Duan, S.H.; Zhang, M.F.; et al. Mechanism of intermittent deep tillage and different depths improving crop growth from the perspective of rhizosphere soil nutrients, root system architectures, bacterial communities, and functional profiles. Front. Microbiol. 2021, 12, 759374. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.Q.; Hu, N.J.; Zhang, Z.W.; Xu, J.L.; Tao, B.R.; Meng, Y.L. Short-term responses of soil organic carbon and carbon pool management index to different annual straw return rates in a rice-wheat cropping system. Catena 2015, 135, 283–289. [Google Scholar] [CrossRef]
- Tabatabai, M. Methods of Soil Analysis: Part 2. Microbiological and Biochemical Properties; Soil Enzymes Soil Science Society of America: Madison, WI, USA, 1994; pp. 775–833. [Google Scholar]
- Tian, S.Z.; Wang, Y.; Ning, T.Y.; Li, N.; Zhao, H.X.; Wang, B.W.; Chi, S.Y.; Li, Z.J. Continued no-till and subsoiling improved soil organic carbon and soil aggregation levels. Agron. J. 2014, 106, 212–218. [Google Scholar] [CrossRef]
- Kou, T.J.; Zhu, P.; Huang, S.; Peng, X.X.; Song, Z.W.; Deng, A.X.; Gao, H.J.; Peng, C.; Zhang, W.J. Effects of long-term cropping regimes on soil carbon sequestration and aggregate composition in rainfed farmland of Northest China. Soil Till. Res. 2012, 118, 132–138. [Google Scholar] [CrossRef]
- Zhao, H.L.; Shar, A.G.; Li, S.; Chen, Y.L.; Shi, J.L.; Zhang, X.Y.; Tian, X.H. Effect of straw return mode on soil aggregation and aggregate carbon content in an annual maize-wheat double cropping system. Soil Till. Res. 2018, 175, 178–186. [Google Scholar] [CrossRef]
- Guo, S.L.; Gao, H.Y.; Dang, T.H. Effects of nitrogen application rates on grain yield, soil organic carbon and nitrogen under a rainfed cropping system in the loess tablelands of China. Plant Nutr. Fertil. Sci. 2009, 15, 808–814. (In Chinese) [Google Scholar]
- Xu, X.; Pang, D.W.; Chen, J.; Luo, Y.L.; Zheng, M.J.; Yin, Y.P.; Li, Y.X.; Li, Y.; Wang, Z.L. Straw return accompany with low nitrogen moderately promoted deep root. Field Crop. Res. 2018, 221, 71–80. [Google Scholar] [CrossRef]
- Tong, X.; Xu, M.; Wang, X.; Bhattacharyya, R.; Zhang, W.; Cong, R. Long-term fertilization effects on organic carbon fractions in a red soil of China. Catena 2014, 113, 251–259. [Google Scholar] [CrossRef]
- Yadav, G.S.; Das, A.; Babu, S.; Mohapatra, K.P.; Lal, R.; Rajkhowa, D. Potential of conservation tillage and altered land configuration to improve soil properties, carbon sequestration and productivity of maize based cropping system in eastern Himalayas, India. Int. Soil Water Conserv. Res. 2021, 9, 279–290. [Google Scholar] [CrossRef]
- Liu, J.; Calderón, F.J.; Fonte, S.J. Compost inputs, cropping system, and rotation phase drive aggregate-associated carbon. Soil Sci. Soc. Am. J. 2021, 85, 829–846. [Google Scholar] [CrossRef]
- He, L.Y.; Lu, S.X.; Wang, C.G.; Mu, J.; Zhang, Y.L.; Wang, X.D. Changes in soil organic carbon fractions and enzyme activities in response to tillage practices in the Loess Plateau of China. Soil Till. Res. 2021, 209, 104940. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Tan, C.J.; Wang, R.; Li, J.; Wang, X.L. Conservation tillage rotation enhanced soil structure and soil nutrients in long-term dryland agriculture. Eur. J. Agron. 2021, 131, 126379. [Google Scholar] [CrossRef]
- Zhang, X.F.; Xin, X.L.; Zhu, A.N.; Yang, W.L.; Zhang, J.B.; Ding, S.J.; Mu, L.; Shao, L.L. Linking macroaggregation to soil microbial community and organic carbon accumulation under different tillage and residue managements. Soil Till. Res. 2018, 178, 99–107. [Google Scholar] [CrossRef]
- Gude, A.; Kandeler, E.; Gleixner, G. Input related microbial carbon dynamic of soil organic matter in particle size fractions. Soil Biol. Biochem. 2012, 47, 209–219. [Google Scholar] [CrossRef]
- Zhao, S.C.; Li, K.J.; Zhou, W.; Qiu, S.J.; Huang, S.W.; He, P. Changes in soil microbial community, enzyme activities and organic matter fractions under long-term straw return in north-central China. Agric. Ecosyst. Environ. 2016, 216, 82–88. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, P.; Li, J.; Chen, Y.; Ying, X.; Liu, S. The effects of two organic manures on soil properties and crop yields on a temperate calcareous soil under a wheat-maize cropping system. Eur. J. Agron. 2009, 31, 36–42. [Google Scholar] [CrossRef]
- Li, Y.; Nie, C.; Liu, Y.H.; Du, W.; He, P. Soil microbial community composition closely associates with specific enzyme activities and soil carbon chemistry in a long-term nitrogen fertilized grassland. Sci. Total Environ. 2019, 654, 264–274. [Google Scholar] [CrossRef]
- Si, G.H.; Yuan, J.F.; Xu, X.Y.; Zhao, S.J.; Peng, C.L.; Wu, J.S.; Zhou, Z.Q. Effects of an integrated rice-crayfish farming system on soil organic carbon, enzyme activity, and microbial diversity in waterlogged paddy soil. Acta Ecol. Sin. 2018, 38, 29–35. [Google Scholar] [CrossRef]
- Guo, T.C.; Song, X.; Ma, D.Y.; Wang, Y.H.; Xie, Y.X.; Yue, Y.J. Effects of nitrogen application rate on soil enzyme activities in wheat rhizosphere. China J. App. Ecol. 2008, 19, 110–114, (In Chinese with English abstract). [Google Scholar]
- Xu, Y.Z.; Nie, L.X.; Buresh, R.J.; Huang, J.L.; Cui, K.H.; Xu, B.; Gong, W.H.; Peng, S.B. Agronomic performance of late-season rice under different tillage, straw, and nitrogen management. Field Crop. Res. 2010, 115, 79–84. [Google Scholar] [CrossRef]
- Luo, Z.K.; Wang, E.L.; Sun, O.J. Can no-till stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments. Agric. Ecosyst. Environ. 2010, 139, 224–231. [Google Scholar] [CrossRef]
- Kabiri, V.; Raiesi, F.; Ghazavi, M.A. Tillage effects on soil microbial biomass, SOM mineralization and enzyme activity in a semi-arid Calcixerepts. Agric. Ecosyst. Environ. 2016, 232, 73–84. [Google Scholar] [CrossRef]
- López-Garrido, R.; Madejón, E.; León-Camacho, M.; Girón, I.; Moreno, F.; Murillo, J. Reduced tillage as an alternative to no-tillage under Mediterranean conditions: A case study. Soil Till. Res. 2014, 140, 40–47. [Google Scholar] [CrossRef]
- Chen, J.; Zheng, M.J.; Pang, D.W.; Yin, Y.P.; Han, M.M.; Li, Y.X.; Luo, Y.L.; Xu, X.; Li, Y.; Wang, Z.L. Straw return and appropriate tillage method improve grain yield and nitrogen efficiency of winter wheat. J. Integr. Agric. 2017, 16, 1708–1719. [Google Scholar] [CrossRef] [Green Version]
- Alidad, K.; Mehdi, H.; Sadegh, A.; Hassan, R.; Sanaz, B. Organic resource management: Impacts on soil aggregate stability and other soil physico-chemical properties. Agric. Ecosyst. Environ. 2012, 148, 22–28. [Google Scholar] [CrossRef]
- Wang, X.H.; Yang, H.S.; Liu, J.; Wu, J.S.; Chen, W.P.; Wu, J.; Zhu, L.Q.; Bian, X.M. Effects of ditch-buried straw return on soil organic carbon and rice yields in a rice-wheat rotation system. Catena 2015, 127, 56–63. [Google Scholar] [CrossRef]
- Liu, Z.; Gao, J.; Gao, F.; Dong, S.T.; Liu, P.; Zhao, B.; Zhang, J.W. Integrated agronomic practices management improve yield and nitrogen balance in double cropping of winter wheat-summer maize. Field Crop. Res. 2018, 221, 196–206. [Google Scholar] [CrossRef]
- Wang, X.J.; Jia, Z.K.; Liang, L.Y.; Zhao, Y.F.; Yang, B.P.; Ding, R.X.; Wang, J.P.; Nie, J.F. Changes in soil characteristics and maize yield under straw returning system in dryland farming. Field Crop. Res. 2018, 218, 11–17. [Google Scholar] [CrossRef]
- Fu, X.; Wang, J.; Sainju, U.M.; Liu, W.Z. Soil nitrogen fractions under long-term crop rotation in the Loess Plateau of China. Soil Till. Res. 2019, 186, 42–51. [Google Scholar] [CrossRef]
- He, J.N.; Shi, Y.; Yu, Z.W. Subsoiling improves soil physical and microbial properties, and increases yield of winter wheat in the Huang-Huai-Hai Plain of China. Soil Till. Res. 2019, 187, 182–193. [Google Scholar] [CrossRef]
- Mairghany, M.; Yahya, A.; Adam, N.M.; Su, A.S.M.; Aimrun, W.; Elsoragaby, S. Rotary tillage effects on some selected physical properties of fine textured soil in wetland rice cultivation in Malaysia. Soil. Tillage Res. 2019, 194, 104318. [Google Scholar] [CrossRef]
- Zhai, L.C.; Wang, Z.B.; Song, S.J.; Zhang, L.H.; Zhang, Z.B.; Jia, X.L. Tillage practices affects the grain filling of inferior kernel of summer maize by regulating soil water content and photosynthetic capacity. Agric. Water Manag. 2021, 245, 106600. [Google Scholar] [CrossRef]
- Hernández, T.D.B.; Slater, B.K.; Corbalá, R.T.; Shaffer, J.M. Assessment of long-term tillage practices on physical properties of two Ohio soils. Soil. Till. Res. 2019, 186, 270–279. [Google Scholar] [CrossRef]
- Schneider, F.; Don, A.; Hennings, I.; Schmittmann, O.; Seidel, S.J. The effect of deep tillage on crop yield—What do we really know? Soil. Till. Res. 2017, 174, 193–204. [Google Scholar] [CrossRef]
Depth (cm) | SOC (g kg−1) | LOC (g kg−1) | IN (mg kg−1) | AP (mg kg−1) | AK (mg kg−1) |
---|---|---|---|---|---|
0–10 | 8.53 | 2.75 | 24.96 | 20.53 | 101.24 |
10–20 | 7.73 | 2.38 | 22.58 | 16.89 | 84.38 |
20–30 | 6.92 | 1.94 | 19.88 | 13.65 | 67.19 |
Tillage | Operation Procedure |
---|---|
RT | Total maize straw removed from the field → Basal fertilizer spreading → Rotary cultivating two times with IGQN-200K-QY rotary cultivator a (working depth was about 10–12 cm) → Forming the border-check → seeding with common seeder |
RS | Total maize straw returned to the field → Basal fertilizer spreading → Rotary cultivating two times with IGQN-200K-QY rotary cultivator (working depth was about 10–12 cm) → Forming the border-check → seeding with common seeder |
DS | Total maize straw returned to the field → Basal fertilizer spreading → Mouldboard plowing once with ILFQ330 turnover plow b (working depth was about 25–30 cm) → Harrowing 2 times with 1BZ-3.0 disk harrow c → Forming the border-check → seeding with common seeder |
RS/DS | The same to RS in the first two years → the same to DS in the 3rd season (two cycles in six years) |
Depth (cm) | HN | MN | LN | ||||||
---|---|---|---|---|---|---|---|---|---|
RS | DS | RS/DS | RS | DS | RS/DS | RS | DS | RS/DS | |
0–10 | 50.04 a | 29.90 c | 45.19 b | 49.72 a | 29.46 c | 44.30 b | 47.47 a | 27.74 c | 42.22 b |
10–20 | 4.95 c | 22.28 a | 10.90 b | 4.92 c | 21.95 a | 10.66 b | 4.69 c | 20.67 a | 10.05 b |
20–30 | 0.00 c | 6.45 a | 2.14 b | 0.00 c | 6.35 a | 2.10 b | 0.00 c | 5.98 a | 1.96 b |
Depth (cm) | Difference Source | SOC | LOC | IN | AP | AK | Inv | Ure | Alp |
---|---|---|---|---|---|---|---|---|---|
0–10 | Nitrogen (N) | 23.15 ** | 1.92 ns | 60.28 ** | 11.52 ** | 8.60 * | 56.33 ** | 18.19 ** | 84.66 ** |
Tillage (T) | 73.28 ** | 1102.07 ** | 22.95 ** | 139.49 ** | 14.92 ** | 10.51 ** | 6.91 * | 33.65 ** | |
N × T | 0.67 ns | 0.20 ns | 2.93 * | 2.25 ns | 2.78 ns | 4.81 ** | 11.60 ** | 1.99 ns | |
10–20 | Nitrogen (N) | 19.93 ** | 0.39 ns | 36.41 ** | 9.02 * | 7.74 * | 33.55 ** | 18.37 ** | 39.78 ** |
Tillage (T) | 79.87 ** | 126.87 ** | 32.58 ** | 129.81 ** | 27.73 ** | 27.00 ** | 18.70 ** | 33.84 ** | |
N × T | 0.78 ns | 0.73 ns | 1.68 ns | 1.62 ns | 1.19 ns | 6.30 ** | 4.22 ** | 3.83 ** | |
20–30 | Nitrogen (N) | 6.43 ** | 0.01 ns | 29.66 ** | 6.87 * | 7.74 * | 13.12 ** | 57.71 ** | 64.30 ** |
Tillage (T) | 22.65 ** | 204.28 ** | 42.22 ** | 88.65 ** | 27.73 ** | 8.15 * | 40.32 ** | 51.85 ** | |
N × T | 2.77 * | 0.55 ns | 1.27 ns | 3.98 * | 1.19 ns | 35.67 ** | 2.00 ns | 3.11 * |
Factors | 0–10 cm | 10–20 cm | 20–30 cm | |||
---|---|---|---|---|---|---|
Regression Model | R2 | Regression Model | R2 | Regression Model | R2 | |
SOC | y = 0.03 x + 8.03 | 0.83 ** | y = 0.07 x + 7.72 | 0.60 * | y = 0.20 x + 7.11 | 0.46 * |
LOC | y = 0.03 x + 2.42 | 0.98 ** | y = 0.05 x + 2.30 | 0.66 ** | y = 0.15 x + 2.13 | 0.43 * |
IN | y = 0.20 x + 24.03 | 0.55 ** | y = 0.35 x + 23.01 | 0.39 * | y = 1.26 x + 21.57 | 0.36 * |
AP | y = 0.16 x + 19.17 | 0.91 ** | y = 0.29 x + 16.95 | 0.59 ** | y = 0.67 x + 14.55 | 0.42 * |
AK | y = 0.74 x + 98.79 | 0.68 ** | y = 1.22 x + 86.35 | 0.58 ** | y = 3.07 x + 75.36 | 0.37 * |
Inv | y = 0.03 x + 3.89 | 0.68 ** | y = 0.05 x + 3.69 | 0.46 * | y = 0.14 x + 3.39 | 0.38 * |
Ure | y = 0.04 x + 5.78 | 0.66 ** | y = 0.08 x + 5.17 | 0.43 * | y = 0.18 x + 4.41 | 0.25 ns |
Alp | y = 0.02 x + 2.61 | 0.43 * | y = 0.03 x + 2.41 | 0.38 * | y = 0.09 x + 2.17 | 0.28 ns |
Nitrogen Rate | Tillage Method | Grain Yield (Mg ha−1) | |||||
---|---|---|---|---|---|---|---|
2015/2016 | 2016/2017 | 2017/2018 | 2018/2019 | 2019/2020 | 2020/2021 | ||
HN | RT | 7.91 b | 8.07 b | 7.62 c | 7.53 c | 7.48 b | 7.36 b |
RS | 8.53 a | 8.55 a | 8.09 b | 7.98 b | 7.83 b | 7.71 b | |
DS | 8.33 a | 8.61 a | 8.70 a | 8.82 a | 8.99 a | 9.08 a | |
RS/DS | 8.66 a | 8.56 a | 8.67 a | 8.76 a | 8.72 a | 8.91 a | |
MN | RT | 7.86 b | 7.94 b | 7.53 c | 7.48 c | 7.26 c | 7.17 b |
RS | 8.39 a | 8.39 a | 7.99 b | 7.94 b | 7.76 b | 7.48 b | |
DS | 8.43 a | 8.53 a | 8.57 a | 8.74 a | 9.06 a | 8.95 a | |
RS/DS | 8.46 a | 8.45 a | 8.71 a | 8.85 a | 8.96 a | 8.83 a | |
LN | RT | 7.38 b | 7.31 b | 7.09 c | 7.02 c | 6.85 c | 6.61 c |
RS | 7.75 a | 7.84 a | 7.77 b | 7.72 b | 7.56 b | 7.28 b | |
DS | 7.91 a | 7.96 a | 8.30 a | 8.35 a | 8.41 a | 8.39 a | |
RS/DS | 7.92 a | 7.99 a | 8.21 a | 8.29 a | 8.33 a | 8.35 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, H.; Luo, Y.; Li, C.; Chang, Y.; Jin, M.; Li, Y.; Wang, Z. Improving Soil Fertility and Wheat Yield by Tillage and Nitrogen Management in Winter Wheat–Summer Maize Cropping System. Agronomy 2023, 13, 740. https://doi.org/10.3390/agronomy13030740
Cui H, Luo Y, Li C, Chang Y, Jin M, Li Y, Wang Z. Improving Soil Fertility and Wheat Yield by Tillage and Nitrogen Management in Winter Wheat–Summer Maize Cropping System. Agronomy. 2023; 13(3):740. https://doi.org/10.3390/agronomy13030740
Chicago/Turabian StyleCui, Haixing, Yongli Luo, Chunhui Li, Yonglan Chang, Min Jin, Yong Li, and Zhenlin Wang. 2023. "Improving Soil Fertility and Wheat Yield by Tillage and Nitrogen Management in Winter Wheat–Summer Maize Cropping System" Agronomy 13, no. 3: 740. https://doi.org/10.3390/agronomy13030740
APA StyleCui, H., Luo, Y., Li, C., Chang, Y., Jin, M., Li, Y., & Wang, Z. (2023). Improving Soil Fertility and Wheat Yield by Tillage and Nitrogen Management in Winter Wheat–Summer Maize Cropping System. Agronomy, 13(3), 740. https://doi.org/10.3390/agronomy13030740