Variance Components, Correlation and Path Coefficient Analysis of Morpho-Physiological and Yield Related Traits in Spider Plant (Gynandropsis gynandra (L.) Briq.) under Water-Stress Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Growing Environments, Experimental Design and Agronomic Practices
2.3. Data Collection
2.3.1. Phenological and Morphological Traits
2.3.2. Physiological Traits
2.3.3. Leaf Gas Exchange Parameters
2.3.4. Chlorophyll Content and Relative Water Content
2.3.5. Yield and Yield-Related Component Traits
2.4. Data Analysis
2.4.1. Analysis of Variance
2.4.2. Evaluating Genotypic and Phenotypic Variances
2.4.3. Evaluating Genotypic and Phenotypic Coefficient of Variation
2.4.4. Evaluation of Heritability
2.4.5. Determination of Genetic Advance (GA) and Genetic Advance as Percent of the Mean (GAM)
2.4.6. Correlation Analysis
2.4.7. Path Coefficient Analysis
3. Results
3.1. Analysis of Variance
3.2. Variance Components and Heritability Estimates
3.3. Correlation Coefficient Estimates
3.4. Path Coefficient Analysis
4. Discussion
4.1. Performance of Accessions under Different Water-Regimes
4.2. Variance Components and Heritability
4.3. Correlation Coefficients and Path Coefficient Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Achigan-Dako, E.G.; Sogbohossou, D.E.O.; Houdegbe, C.A.; Salaou, M.A.; Sohindji, F.S.; Blalogoe, J.; Chataika, B.Y.; Zohoungbogbo, H.F.; Adje, C.A.O.; Hotegni, N.V.F.; et al. Ten years of Gynandropsis gynandra research for improvement of nutrient-rich leaf consumption: Lessons learnt and way forwards. Annu. Plant Rev. Online 2021, 4, 767–812. [Google Scholar] [CrossRef]
- Chataika, B.; Akundabweni, L.; Achigan-Dako, E.G.; Sibiya, J.; Kwapata, K.; Thomas, B. Diversity and Domestication Status of Spider Plant (Gynandropsis gynandra, L.) amongst Sociolinguistic Groups of Northern Namibia. Agronomy 2020, 10, 56. [Google Scholar] [CrossRef] [Green Version]
- Chataika, B.Y.; Akundabweni, L.S.M.; Houdegbe, A.C.; Achigan-Dako, E.G.; Sibiya, J.; Masamba, K. Dietary Phytochemical Screening of Spider Plant (Gynandropsis gynandra (L.) Briq.) Accessions from Africa and Asia to Identify Genotypes for Use in Nutraceutical Breeding. Front. Sustain. Food Syst. 2021, 5, 344. [Google Scholar] [CrossRef]
- Sogbohossou, E.O.D.; Achigan-Dako, E.G.; Mumm, R.; de Vos, R.C.H.; Schranz, M.E. Natural variation in specialised metabolites production in the leafy vegetable spider plant (Gynandropsis gynandra L. (Briq.)) in Africa and Asia. Phytochemistry 2020, 178, 112468. [Google Scholar] [CrossRef]
- Mashamaite, C.V.; Manyevere, A.; Chakauya, E. Cleome gynandra: A wonder climate-smart plant for nutritional security for millions in semi-arid areas. Front. Plant Sci. 2022, 13, 1003080. [Google Scholar] [CrossRef]
- Blalogoe, J.S.; Odindo, A.O.; Sogbohossou, E.O.D.; Sibiya, J.; Achigan-Dako, E.G. Origin-dependence of variation in seed morphology, mineral composition and germination percentage in Gynandropsis gynandra (L.) Briq. accessions from Africa and Asia. BMC Plant Biol. 2020, 20, 168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Houdegbe, A.C.; Achigan-Dako, E.G.; Sogbohossou, E.O.D.; Schranz, M.E.; Odindo, A.O.; Sibiya, J. Leaf elemental composition analysis in spider plant [Gynandropsis gynandra L. (Briq.)] differentiates three nutritional groups. Front. Plant Sci. 2022, 13, 3091. [Google Scholar] [CrossRef]
- Sogbohossou, E.O.D.; Kortekaas, D.; Achigan-Dako, E.G.; Maundu, P.; Stoilova, T.; Van Deynze, A.; de Vos, R.C.H.; Schranz, M.E. Association between vitamin content, plant morphology and geographical origin in a worldwide collection of the orphan crop Gynandropsis gynandra (Cleomaceae). Planta 2019, 250, 933–947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chataika, B.Y.; Akundabweni, L.S.M.; Achigan-Dako, E.G.; Sibiya, J.; Kwapata, K. Utilization of Spider Plants (Gynandropsis gynandra, L. Briq) amongst Farming Households and Consumers of Northern Namibia. Sustainability 2020, 12, 6604. [Google Scholar] [CrossRef]
- Farooqi, Z.U.R.; Ayub, M.A.; Zia ur Rehman, M.; Sohail, M.I.; Usman, M.; Khalid, H.; Naz, K. Regulation of drought stress in plants. In Plant Life under Changing Environment; Academic Press: Cambridge, MA, USA, 2020; pp. 77–104. [Google Scholar] [CrossRef]
- Aroca, R. Plant Responses to Drought Stress: From Morphological to Molecular Features; Springer: Berlin/Heidelberg, Germany, 2013; 466p. [Google Scholar] [CrossRef]
- Mukami, A.; Ngetich, A.; Mweu, C.; Oduor, R.O.; Muthangya, M.; Mbinda, W.M. Differential characterization of physiological and biochemical responses during drought stress in finger millet varieties. Physiol. Mol. Biol. Plants 2019, 25, 837–846. [Google Scholar] [CrossRef] [PubMed]
- Lima, J.M.; Nath, M.; Dokku, P.; Raman, K.V.; Kulkarni, K.P.; Vishwakarma, C.; Sahoo, S.P.; Mohapatra, U.B.; Mithra, S.V.A.; Chinnusamy, V.; et al. Physiological, anatomical and transcriptional alterations in a rice mutant leading to enhanced water stress tolerance. AoB Plants 2015, 7, plv023. [Google Scholar] [CrossRef] [Green Version]
- Rosielle, A.A.; Hamblin, J. Theoretical Aspects of Selection for Yield in Stress and Non-Stress Environment1. Crop Sci. 1981, 21, 943–946. [Google Scholar] [CrossRef]
- Bolaños, J.; Edmeades, G.O. The importance of the anthesis-silking interval in breeding for drought tolerance in tropical maize. Field Crop Res. 1996, 48, 65–80. [Google Scholar] [CrossRef]
- Blum, A. Plant Breeding for Stress Environments; CRC Press: Boca Raton, FL, USA, 2018; pp. 1–223. [Google Scholar] [CrossRef]
- Edmeades, G.O.; Banziger, M.; Bolanos, J.A.; Beck, D.L.; Ortega C, A. Development and per se performance of CIMMYT maize populations as drought-tolerant sources. In Proceedings of the a Symposium, El Batan, Mexico, 25–29 March 1996. [Google Scholar]
- Monneveux, P.; Ribaut, J.M. Secondary traits for drought tolerance improvement in cereals. Drought Adapt. Cereal. 2006, 97–143. [Google Scholar]
- Monneveux, P.; Sanchez, C.; Tiessen, A. Future progress in drought tolerance in maize needs new secondary traits and cross combinations. J. Agric. Sci. 2008, 146, 287–300. [Google Scholar] [CrossRef] [Green Version]
- Lafitte, R.; Blum, A.; Atlin, G. Using secondary traits to help identify drought-tolerant genotypes. In Breeding Rice for Drought-Prone Environments; International Rice Research Institute: Los Baños, Philippines, 2003; pp. 37–48. [Google Scholar]
- Atlin, G.N.; Cooper, M.; Bjørnstad, Å. A comparison of formal and participatory breeding approaches using selection theory. Euphytica 2001, 122, 463–475. [Google Scholar] [CrossRef]
- Talebi, R.; Fayyaz, F. Estimation of Heritability and Genetic Parameters Associated with Agronomic Traits of Bread Wheat (Triticum aestivum L.) under Two Constructing Water Regimes. J. Appl. Biol. Sci. 2012, 6, 35–39. [Google Scholar]
- Aminzadeh, G.R. Evaluation of seed yield stability of wheat advanced genotypes in Ardabil, Iran. Res. J. Environ. Sci. 2010, 4, 478–482. [Google Scholar] [CrossRef] [Green Version]
- Maniee, M.; Kahrizi, D.; Mohammadi, R. Genetic Variability of Some Morpho-Physiological Traits in Durum Wheat (Triticum turgidum var. Durum). JApSc 2009, 9, 1383–1387. [Google Scholar] [CrossRef] [Green Version]
- Kahrizi, D.; Mohammadi, R. Study of androgenesis and spontaneous chromosome doubling in barley (Hordeum vulgare L.) genotypes using isolated microspore culture. Acta Agron. Hung. 2009, 57, 155–164. [Google Scholar] [CrossRef]
- Dewey, D.R.; Lu, K.H. A Correlation and Path-Coefficient Analysis of Components of Crested Wheatgrass Seed Production1. Agron. J. 1959, 51, 515–518. [Google Scholar] [CrossRef]
- Masinde, P.W.; Stützel, H.; Agong, S.G.; Fricke, A. Plant growth, water relations, and transpiration of spiderplant [Gynandropsis gynandra (L.) Briq.] under water-limited conditions. J. Am. Soc. Hortic. Sci. 2005, 130, 469–477. [Google Scholar] [CrossRef] [Green Version]
- Kesiime, V.E.; Tusiime, G.; Kashaija, I.N.; Edema, R.; Gibson, P.; Namugga, P.; Kakuhenzire, R. Characterization and Evaluation of Potato Genotypes (Solanum tuberosum L.) for Tolerance to Drought in Uganda. Am. J. Potato Res. 2016, 93, 543–551. [Google Scholar] [CrossRef]
- Tardieu, F.; Simonneau, T. Variability among species of stomatal control under fluctuating soil water status and evaporative demand: Modelling isohydric and anisohydric behaviours. J. Exp. Bot. 1998, 49, 419–432. Available online: https://hal.inrae.fr/hal-02696075 (accessed on 9 September 2021). [CrossRef] [Green Version]
- R Core Team. A Language and Environment for Statistical Computing. R Found. Stat. Comput. 2021. Available online: https://www.r-project.org/ (accessed on 12 May 2022).
- Burton, G. Quantitative inheritance in grasses. Proc. VI Int. Grassl. Cong. 1952, 277–283. Available online: https://ci.nii.ac.jp/naid/10012936842 (accessed on 17 September 2021).
- Sivasubramanjan, M.; Menon, S. Heterosis and inbreeding depression in rice. Adv. Agron. 1973, 47, 85–140. [Google Scholar]
- Allard, R.W. Principles of Plant Breeding; John Wiley & Sons: Hoboken, NJ, USA, 1999; p. 254. [Google Scholar]
- Robinson, H.F.; Comstock, R.E.; Harvey, P.H. Estimates of Heritability and the Degree of Dominance in Corn1. Agron. J. 1949, 41, 353–359. [Google Scholar] [CrossRef]
- Johnson, D.A.; Richards, R.A.; Turner, N.C. Yield, Water Relations, Gas Exchange, and Surface Reflectances of Near-Isogenic Wheat Lines Differing in Glaucousness1. Crop Sci. 1983, 23, 318–325. [Google Scholar] [CrossRef]
- Falconer, D.S.; Mackay, T.F.C. Introduction to Quantitative Genetics, 4th ed.; Prentice Hall: Harlow, UK, 1996; Volume 12, ISBN 9780582243026. [Google Scholar]
- Lenka, D.; Mishra, B. Path coefficient analysis of yield in rice varieties. Indian J. Agric. Sci. 1973, 43, 376–379. [Google Scholar]
- Mosenda, E.; Chemining’wa, G.; Ambuko, J.; Owino, W. Effect of Water Stress on Growth and Yield Components of Selected Spider Plant Accessions. J. Med. Act. Plants 2020, 9, 81. [Google Scholar]
- Kang, M.S. Genotype-environment interaction: Progress and prospects. Quant. Genet. Genom. Plant Breed. 2009, 221–243. [Google Scholar] [CrossRef]
- Apala Mafouasson, H.N.L.; Gracen, V.; Yeboah, M.A.; Ntsomboh-Ntsefong, G.; Tandzi, L.N.; Mutengwa, C.S. Genotype-by-Environment Interaction and Yield Stability of Maize Single Cross Hybrids Developed from Tropical Inbred Lines. Agronomy 2018, 8, 62. [Google Scholar] [CrossRef] [Green Version]
- Badu-Apraku, B.; Yallou, C.G.; Obeng-Antwi, K.; Alidu, H.; Talabi, A.O.; Annor, B.; Oyekunle, M.; Akaogu, I.C.; Aderounmu, M. Yield Gains in Extra-Early Maize Cultivars of Three Breeding Eras under Multiple Environments. Agron. J. 2017, 109, 418–431. [Google Scholar] [CrossRef] [Green Version]
- Semahegn, Y.; Shimelis, H.; Laing, M.; Mathew, I. Genetic variability and association of yield and yield components among bread wheat genotypes under drought-stressed conditions. Aust. J. Crop Sci. 2021, 15, 863–870. [Google Scholar] [CrossRef]
- Zakaria, K.; Antoine, B.; Boureima, S.; Mariam, K.; Mahamadi, O. Estimates of genetic parameters of spider plant (Cleome gynandra L.) of Burkina Faso. Int. J. Agric. Policy Res. 2017, 5, 138–144. [Google Scholar]
- Hasan-Ud-Daula, M.; Sarker, U. Variability, heritability, character association, and path coefficient analysis in advanced breeding lines of rice (Oryza sativa L.). Genetika 2020, 52, 711–726. [Google Scholar] [CrossRef]
- Terfa, G.N.; Gurmu, G.N. Genetic variability, heritability and genetic advance in linseed (Linum usitatissimum L) genotypes for seed yield and other agronomic traits. Oil Crop Sci. 2020, 5, 156–160. [Google Scholar] [CrossRef]
- Kushwah, A.; Bhatia, D.; Singh, G.; Singh, I.; Bindra, S.; Vij, S.; Singh, S. Phenotypic evaluation of genetic variability and selection of yield contributing traits in chickpea recombinant inbred line population under high temperature stress. Physiol. Mol. Biol. Plants 2021, 27, 747–767. [Google Scholar] [CrossRef]
- Tuhina-Khatun, M.; Hanafi, M.M.; Rafii Yusop, M.; Wong, M.Y.; Salleh, F.M.; Ferdous, J. Genetic Variation, Heritability, and Diversity Analysis of Upland Rice (Oryza sativa L.) Genotypes Based on Quantitative Traits. Biomed. Res. Int. 2015, 2015, 290861. [Google Scholar] [CrossRef] [Green Version]
- Houdegbe, A.C.; Achigan-Dako, E.G.; Dêêdi Sogbohossou, E.O.; Eric Schranz, M.; Odindo, A.O.; Sibiya, J. Phenotypic variation in biomass and related traits among four generations advanced lines of Cleome (Gynandropsis gynandra L. (Briq.)). PLoS ONE 2022, 17, e0275829. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, R.W.; Qayyum, A.; Hamza, A.; Ahmad, M.Q.; Naseer, N.S.; Liaqat, S.; Ahmad, B.; Malik, W.; Noor, E. Analysis of genetic traits for drought tolerance in maize. Genet. Mol. Res. 2015, 14, 13545–13565. [Google Scholar] [CrossRef]
- Ali, M.A.; Abbas, A.; Niaz, S.; Zulkiffal, M.; Ali, S. Morpho-physiological criteria for drought tolerance in Sorghum (Sorghum bicolor) at seedling and post-anthesis stages. Int. J. Agric. Biol. 2009, 11, 674–680. [Google Scholar]
- Long, S.P.; Zhu, X.G.; Naidu, S.L.; Ort, D.R. Can improvement in photosynthesis increase crop yields? Plant. Cell Environ. 2006, 29, 315–330. [Google Scholar] [CrossRef] [PubMed]
- Mubai, N.; Sibiya, J.; Mwololo, J.; Musvosvi, C.; Charlie, H.; Munthali, W.; Kachulu, L.; Okori, P. Phenotypic correlation, path coefficient and multivariate analysis for yield and yield-associated traits in groundnut accessions. Cogent Food Agric. 2020, 6, 1823591. [Google Scholar] [CrossRef]
- Kumar, R.; Dubey, R.B.; Ameta, K.D.; Kunwar, R.; Verma, R.; Bisen, P. Correlation and Path Coefficient Analysis for Yield Contributing and Quality Traits in Quality Protein Maize (Zea mays L.). Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 2139–2146. [Google Scholar] [CrossRef]
- Belay, N. Genetic Variability, Heritability, Correlation and Path Coefficient Analysis for Grain Yield and Yield Component in Maize (Zea mays L.) Hybrids. Adv. Crop Sci. Technol. 2018, 6, 399. [Google Scholar] [CrossRef]
Genotype | Genebank of Origin | Country of Origin | Region |
---|---|---|---|
L01 | KENRIK * | Kenya | East Africa |
L02 | University of Ouagadougou | Burkina-Faso | West Africa |
L03 | GBioS/UAC | Benin | West Africa |
L04 | GBioS/UAC | Benin | West Africa |
L05 | GBioS/UAC | Togo | West Africa |
L06 | University of Ouagadougou | Burkina-Faso | West Africa |
L07 | World Vegetable Center | Thailand | Asia |
L08 | World Vegetable Center | Zambia | Southern Africa |
L09 | World Vegetable Center | South Africa | Southern Africa |
L10 | World Vegetable Center | Malaysia | Asia |
L11 | World Vegetable Center | Uganda | East Africa |
L12 | World Vegetable Center | Malaysia | Asia |
L13 | KENRIK | Kenya | East Africa |
L14 | World Vegetable Center | Uganda | East Africa |
L15 | LUANAR | Malawi | Southern Africa |
L16 | Otjiwarongo | Namibia | Southern Africa |
L17 | World Vegetable Center | Laos | Asia |
L18 | KENRIK | Kenya | East Africa |
Source | Df | Fl | Ph | Ll | Lw | Sd | Spad | RWC | Cond | Photo | Trans | Nl | Ly |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(a) Well-watered | |||||||||||||
Season | 1 | 220.03 *** | 511.51 ** | 3.55 * | 4.41 | 1.54 | 19.43 | 0.30 | 0.05 *** | 350.91 *** | 0.00 *** | 10.6 | 3.5 |
Genotype | 17 | 113.12 *** | 223.22 *** | 6.43 *** | 8.37 *** | 7.15 *** | 19.88 *** | 430.73 *** | 0.01 *** | 225.71 *** | 0.00 ** | 6438.5 *** | 8179.6 *** |
Rep | 3 | 18.06 | 333.62 *** | 2.70 * | 4.62 * | 8.53 *** | 14.75 | 12.48 | 0.02 *** | 12.24 | 0.00 *** | 284.8 ** | 435 *** |
Season × Rep | 3 | 336.68 *** | 330.48 *** | 3.94 ** | 8.98 *** | 1.98 | 1.08 | 6.21 | 0.00 | 149.38 *** | 0.00 *** | 122.4 | 194.3 *** |
Season × Genotype | 17 | 7.23 | 83.80 * | 2.76 *** | 3.09 ** | 2.00 ** | 12.74 * | 1.38 | 0.01 ** | 28.51 ** | 0.00 | 37.4 | 7.1 |
Residuals | 102 | 17.97 | 47.41 | 0.75 | 1.20 | 0.83 | 6.52 | 3.54 | 0.00 | 11.67 | 0.00 | 68.4 | 19.6 |
Mean | 58 | 52.78 | 5.96 | 7.64 | 6.75 | 40.49 | 74.38 | 0.2310 | 75.43 | 0.0178 | 81 | 68.16 | |
CV | 8.65 | 13.05 | 14.57 | 14.36 | 13.51 | 6.31 | 2.53 | 21.31 | 4.53 | 17.66 | 10.21 | 6.50 | |
(b) Mild stress | |||||||||||||
Season | 1 | 300.44 *** | 60.32 | 2.56 * | 0.93 | 1.36 | 45.68 * | 0.11 | 0.00 | 0.19 | 0.00 *** | 0.69 | 16.07 |
Genotype | 17 | 31.48 *** | 332.39 *** | 2.52 *** | 3.75 *** | 3.61 *** | 10.09 | 293 *** | 0.01 *** | 73.6 *** | 0.00 * | 1231.52 *** | 1477.94 *** |
Rep | 3 | 80.15 *** | 91.62 | 0.72537 | 0.79 | 2.28 | 10.34 | 1.26 | 0.01 * | 5.36 | 0.00 | 42.35 | 34.89 |
Season × Rep | 3 | 5.64 | 163.81 ** | 0.42796 | 0.56 | 2.00 | 2.51 | 1.39 | 0.01 | 347.42 *** | 0.00 | 11.82 | 14.56 |
Season × Genotype | 17 | 14.65 | 72.2 * | 1.45 *** | 2.00 ** | 1.11 | 5.34 | 1.19 | 0.01 * | 24.76 * | 0.00 | 5.55 | 1.61 |
Residuals | 102 | 9.83 | 39.81 | 0.47 | 0.75 | 0.95 | 6.63 | 1.26 | 0.00 | 14.21 | 0.00 | 29.27 | 16.8 |
Mean | 38 | 34.53 | 4.27 | 5.41 | 4.39 | 34.64 | 53.14 | 0.15 | 59.83 | 0.0124 | 43 | 24.85 | |
CV | 8.36 | 18.27 | 16.04 | 16.06 | 22.28 | 7.44 | 2.11 | 40.08 | 6.30 | 20.87 | 12.58 | 16.49 | |
(c) Severe stress | |||||||||||||
Season | 1 | 637.56 *** | 142.80 | 0.56 | 4.03 ** | 7.47 *** | 42.25 * | 4.59 | 0.03 *** | 64.66 | 0.00 | 0.44 | 7.27 * |
Genotype | 17 | 52.66 *** | 295.30 *** | 1.07 *** | 1.99 *** | 2.42 *** | 14.20 | 196.32 *** | 0.00 | 157.34 *** | 0.00 | 616.47 *** | 432.45 *** |
Rep | 3 | 38.53 * | 167.82 ** | 0.27 | 0.50 | 0.25 | 8.72 | 3.27 | 0.01 * | 21.88 | 0.00 * | 14.28 | 25.86 *** |
Season × Rep | 3 | 81.69 *** | 19.66 | 0.05 | 0.30 | 0.92 | 57.42 *** | 1.57 | 0.00 | 70.12 * | 0.00 *** | 5.31 | 0.49 |
Season × Genotype | 17 | 6.47 | 93.47 ** | 0.98 *** | 0.56 | 1.34 *** | 5.05 | 0.96 | 0.00 | 37.57 * | 0.00 | 1.53 | 0.23 |
Residuals | 102 | 12.41 | 37.36 | 0.28 | 0.44 | 0.46 | 9.26 | 4.28 | 0.00 | 17.98 | 0.00 | 9.43 | 1.61 |
Mean | 29 | 22.89 | 3.36 | 4.16 | 3.20 | 30.15 | 39.20 | 0.1213 | 44.64 | 0.0094 | 22 | 9.89 | |
CV | 12.15 | 26.71 | 15.61 | 16.01 | 21.24 | 10.10 | 5.28 | 36.79 | 9.50 | 27.75 | 13.96 | 12.83 |
Trait | VG x E | VE | PCV | GCV | GA | GAM (%) | |||
---|---|---|---|---|---|---|---|---|---|
(a) Well-watered | |||||||||
Fl | 12.09 | 0.00 | 16.44 | 14.14 | 6.48 | 5.99 | 85.47 | 6.62 | 11.42 |
Ph | 17.43 | 9.10 | 47.41 | 27.90 | 10.01 | 7.91 | 62.46 | 6.80 | 12.88 |
Ll | 0.46 | 0.50 | 0.75 | 0.80 | 15.04 | 11.40 | 57.43 | 1.06 | 17.80 |
Lw | 0.66 | 0.46 | 1.20 | 1.05 | 13.39 | 10.67 | 63.49 | 1.34 | 17.51 |
Sd | 0.65 | 0.29 | 0.83 | 0.89 | 14.01 | 11.92 | 72.39 | 1.41 | 20.89 |
Spad | 0.89 | 1.55 | 6.52 | 2.48 | 3.89 | 2.33 | 35.90 | 1.17 | 2.88 |
RWC | 0.01 | 0.00 | 0.00 | 0.01 | 0.10 | 0.10 | 99.25 | 0.15 | 0.20 |
Photo | 24.65 | 4.21 | 11.67 | 28.21 | 7.04 | 6.58 | 87.37 | 9.56 | 12.67 |
Cond | 0.00 | 0.00 | 0.00 | 0.00 | 18.37 | 13.63 | 55.04 | 0.05 | 20.83 |
Trans | 0.00 | 0.00 | 0.00 | 0.00 | 9.59 | 6.51 | 46.06 | 0.00 | 9.10 |
Nl | 796.82 | 0.00 | 63.96 | 804.82 | 35.02 | 34.85 | 99.01 | 57.86 | 71.43 |
Ly | 1020.20 | 0.00 | 17.83 | 1022.43 | 46.91 | 46.86 | 99.78 | 65.73 | 96.43 |
(b) Mild stress | |||||||||
Fl | 2.10 | 1.20 | 9.84 | 3.94 | 5.22 | 3.82 | 53.47 | 2.19 | 5.75 |
Ph | 32.67 | 7.79 | 39.87 | 41.55 | 18.67 | 16.55 | 78.63 | 10.44 | 30.24 |
Ll | 0.13 | 0.25 | 0.47 | 0.32 | 13.15 | 8.56 | 42.39 | 0.49 | 11.49 |
Lw | 0.23 | 0.30 | 0.75 | 0.47 | 12.66 | 8.78 | 48.14 | 0.68 | 12.55 |
Sd | 0.31 | 0.04 | 0.96 | 0.45 | 15.31 | 12.75 | 69.43 | 0.96 | 21.89 |
Spad | 0.45 | 0.00 | 6.45 | 1.26 | 3.24 | 1.95 | 36.04 | 0.83 | 2.41 |
RWC | 0.00 | 0.00 | 0.00 | 0.00 | 0.11 | 0.11 | 99.58 | 0.12 | 0.23 |
Photo | 6.13 | 2.58 | 14.22 | 9.20 | 5.07 | 4.14 | 66.65 | 4.16 | 6.96 |
Cond | 0.00 | 0.00 | 0.00 | 0.00 | 23.05 | 11.95 | 26.86 | 0.02 | 12.75 |
Trans | 0.00 | 0.00 | 0.00 | 0.00 | 10.14 | 6.17 | 37.08 | 0.00 | 7.74 |
Nl | 150.72 | 0.00 | 25.74 | 153.94 | 28.85 | 28.55 | 97.91 | 25.02 | 58.20 |
Ly | 182.91 | 0.00 | 14.63 | 184.74 | 54.70 | 54.42 | 99.01 | 27.72 | 111.56 |
(c) Severe stress | |||||||||
Fl | 5.14 | 0.00 | 11.56 | 6.58 | 8.85 | 7.82 | 78.05 | 4.13 | 14.22 |
Ph | 25.25 | 13.99 | 37.37 | 36.91 | 26.54 | 21.95 | 68.40 | 8.56 | 37.40 |
Ll | 0.01 | 0.17 | 0.27 | 0.13 | 10.89 | 3.61 | 10.96 | 0.08 | 2.46 |
Lw | 0.18 | 0.03 | 0.44 | 0.25 | 11.98 | 10.15 | 71.89 | 0.74 | 17.73 |
Sd | 0.14 | 0.22 | 0.46 | 0.30 | 17.19 | 11.48 | 44.64 | 0.51 | 15.81 |
Spad | 0.69 | 0.00 | 8.66 | 1.77 | 4.42 | 2.76 | 38.99 | 1.07 | 3.55 |
RWC | 0.00 | 0.00 | 0.00 | 0.00 | 0.13 | 0.13 | 98.10 | 0.10 | 0.26 |
Photo | 14.97 | 4.89 | 17.98 | 19.67 | 9.93 | 8.67 | 76.13 | 6.96 | 15.58 |
Cond | 0.00 | 0.00 | 0.00 | 0.00 | 15.77 | 0.00 | 0.00 | 0.00 | 0.00 |
Trans | 0.00 | 0.00 | 0.00 | 0.00 | 10.91 | 4.89 | 20.06 | 0.00 | 4.51 |
Nl | 76.02 | 0.00 | 8.30 | 77.06 | 39.90 | 39.63 | 98.65 | 17.84 | 81.09 |
Ly | 53.88 | 0.00 | 1.41 | 54.06 | 74.34 | 74.22 | 99.67 | 15.10 | 152.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chatara, T.; Musvosvi, C.; Houdegbe, A.C.; Sibiya, J. Variance Components, Correlation and Path Coefficient Analysis of Morpho-Physiological and Yield Related Traits in Spider Plant (Gynandropsis gynandra (L.) Briq.) under Water-Stress Conditions. Agronomy 2023, 13, 752. https://doi.org/10.3390/agronomy13030752
Chatara T, Musvosvi C, Houdegbe AC, Sibiya J. Variance Components, Correlation and Path Coefficient Analysis of Morpho-Physiological and Yield Related Traits in Spider Plant (Gynandropsis gynandra (L.) Briq.) under Water-Stress Conditions. Agronomy. 2023; 13(3):752. https://doi.org/10.3390/agronomy13030752
Chicago/Turabian StyleChatara, Tinashe, Cousin Musvosvi, Aristide Carlos Houdegbe, and Julia Sibiya. 2023. "Variance Components, Correlation and Path Coefficient Analysis of Morpho-Physiological and Yield Related Traits in Spider Plant (Gynandropsis gynandra (L.) Briq.) under Water-Stress Conditions" Agronomy 13, no. 3: 752. https://doi.org/10.3390/agronomy13030752
APA StyleChatara, T., Musvosvi, C., Houdegbe, A. C., & Sibiya, J. (2023). Variance Components, Correlation and Path Coefficient Analysis of Morpho-Physiological and Yield Related Traits in Spider Plant (Gynandropsis gynandra (L.) Briq.) under Water-Stress Conditions. Agronomy, 13(3), 752. https://doi.org/10.3390/agronomy13030752