The Effect of Nitrogen and Sulphur Application on Soybean Productivity Traits in Temperate Climates Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description, Experimental Design and Field Management
2.2. Features of the Yield Components and Laboratory Analysis
- -
- crude protein by Kjeldahl’s method (according to CLA/PSO/13),
- -
- crude fat by the Soxhlet extraction-weighing method (according to CLA/PSO/10);
- -
- total sulphur by the Bradley–Lancaster nephelometric method (following wet mineralization using concentrated sulphuric acid with 30% perhydrol),
- -
- phosphorus by spectrophotometry (according to CLA/PLC/28),
- -
- potassium, magnesium and calcium by Atomic Absorption Spectrometry with excitation in the air-acetylene flame (according to CLA/ASA/2).
2.3. Statistical Analysis
3. Results
3.1. Meteorological Conditions
3.2. Yield and Elements of the Yield Structure
3.3. Content and Yield of Crude Protein and Crude Fat
3.4. Content of Macroelements
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kahraman, A. Nutritional value and foliar fertilization in soybean. J. Elem. 2017, 22, 55–66. [Google Scholar] [CrossRef]
- Tyagi, S.D.; Khan, M.H.; Teixeira Da Silva, J.A. Yield stability of some soybean genotypes across diverse environments. Int. J. Plant Breed. 2011, 5, 37–41. [Google Scholar] [CrossRef]
- Biel, W.; Gawęda, D.; Łysoń, E.; Hury, G. The effect of variety and agrotechnical factors on nutritive value of soybean seeds. Acta Agrophs. 2017, 24, 395–404. [Google Scholar]
- Jarecki, W.; Bobrecka-Jamro, D. Effect of fertilization with nitrogen and seed inoculation with nitragina on seed quality of soya bean (Glycine max (L) Merrill). Acta Sci. Pol. Agric. 2015, 14, 51–59. [Google Scholar]
- Salvagiotti, F.; Cassman, K.G.; Specht, J.E.; Walters, D.T.; Weiss, A.; Dobermann, A. Nitrogen uptake, fixation and response to fertilizer N in soybeans: A review. Field Crops Res. 2008, 108, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Saito, A.; Tanabata, S.; Tanabata, T.; Tajima, S.; Ueno, M.; Ishikawa, S.; Ohtake, N.; Sueyoshi, K.; Ohyama, T. Effect of nitrate on nodule and root growth of soybean (Glycine max (L.) Merr.). Int. J. Mol. Sci. 2014, 15, 4464–4480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lorenc-Kozik, A.M.; Pisulewska, E. Effect of increasing levels of nitrogen fertilizer and microelements on seed yield of selected soybean cultivars. Rośliny Oleiste-Oilseed Crops 2003, 24, 131–142. [Google Scholar]
- Szostak, B.; Głowacka, A.; Kasiczak, A.; Kiełtyka-Dadasiewicz, A.; Bąkowski, M. Nutritional value of soybeans and the yield of protein and fat depending on a cultivar and the level of nitrogen application. J. Elem. 2020, 25, 45–57. [Google Scholar] [CrossRef]
- Bobrecka-Jamro, D.; Jarecki, W.; Buczek, J. Response of soya bean to different nitrogen fertilization levels. J. Elem. 2018, 23, 559–568. [Google Scholar] [CrossRef]
- Pisulewska, E.; Lorenc-Kozik, A.; Borowiec, F. Effect of nitrogen fertilization level on seed yield, fat content and fatty acids composition of two soybean cultivars. Rośliny Oleiste-Oilseed Crops 1999, 2, 511–520. [Google Scholar]
- Kulig, B.; Klimek-Kopyra, A. Sowing date and fertilization level are effective elements increasing soybean productivity in rainfall deficit conditions in Central Europe. Agriculture 2023, 13, 115. [Google Scholar] [CrossRef]
- Lošák, T.; Ševčík, M.; Plchová, R.; von Bennewitz, E.; Hlušek, J.; Elbl, J.; Buňka, F.; Polášek, Z.; Antonkiewicz, J.; Varga, L.; et al. Nitrogen and sulphur fertilisation affecting soybean seed spermidine content. J. Elem. 2018, 23, 581–588. [Google Scholar] [CrossRef] [Green Version]
- Caliskan, S.; Ozkaya, I.; Caliskan, M.E.; Arslan, M. Effects of nitrogen and iron fertilization on growth, yield and fertilizer use efficiency of soybean in a Mediterranean-type soil. Field Crops Res. 2008, 108, 126–132. [Google Scholar] [CrossRef]
- Barczak, B.; Knapowski, T.; Kozera, W.; Ralcewicz, M. Effects of sulphur fertilisation on the content and uptake of macroelements in narrow-leaf lupin. Rom. Agric. Res. 2014, 31, 1–7. [Google Scholar]
- Kozłowska-Strawska, J.; Badora, A. Selected problems of sulfur management in crops. Pol. J. Nat. Sci. 2013, 28, 309–316. [Google Scholar]
- Zhao, F.J.; Wood, A.P.; McGrath, S.P. Sulphur nutrition of spring peas. Asp. Appl. Biol. 1999, 56, 189–194. [Google Scholar]
- Aulakh, M.S. Crop responses to sulphur nutrition. In Sulphur in Plants; Abrol, Y.P., Ahmad, A., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2003; pp. 341–358. [Google Scholar]
- Tiwari, K.N.; Gupta, B.R. Sulphur for Sustainable High Yield Agriculture in Uttah Pradesh. Indian J. Fertil. 2006, 1, 37–52. [Google Scholar]
- Barczak, B.; Nowak, K.; Knapowski, T.; Ralcewicz, M.; Kozera, W. Reaction of narrow-leafed lupin (Lupinus angustifolius L.) to sulphur fertilization part I: Yield and selected yield structure components. Fragm. Agron. 2013, 30, 23–34. [Google Scholar]
- Jamal, A.; Saleem Fazli, I.; Ahmad, S.; Abdin, M.Z.; Yun, S.J. Effect of nitrogen and sulphur application on nitrate reductase and ATP-sulphurylase activities in soybean. Korean J. Crop Sci. 2006, 51, 298–302. [Google Scholar]
- Scherer, H.W.; Pacyna, S.; Spoth, K.R.; Schulz, M. Low levels of ferredoxin, ATP and leghemoglobin contribute to limited N2 fixation of peas (Pisum sativum L.) and alfalfa (Medicago sativa L.) under S deficiency conditions. Biol. Fertil. Soils 2008, 44, 909–916. [Google Scholar] [CrossRef]
- Głowacka, A.; Gruszecki, T.; Szostak, B.; Michałek, S. The response of common bean to sulphur and molybdenum fertilization. Int. J. Agron. 2019, 2019, 3830712. [Google Scholar] [CrossRef]
- Tabatabai, M.A. Importance of sulphur in crop production. Biogeochemistry 1984, 1, 45–62. [Google Scholar] [CrossRef]
- Pandurangan, S.; Sandercock, M.; Beyaert, R.; Conn, K.L.; Hou, A.; Marsolais, F. Differential response to sulfur nutrition of two common bean genotypes differing in storage protein composition. Front. Plant Sci. 2015, 6, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, F.J.; Evans, E.J.; Bilsborrow, P.E. Varietal differences in sulphur uptake and utilization in relation to glucosinolate accumulation in oilseed rape. In Proceedings of the 9th International Rapeseed Congress, Cambridge, UK, 4–7 July 1995; Volume 1, pp. 271–273. [Google Scholar]
- Withers, P.J.A.; Evans, E.J.; Bilsborrow, P.E.; Milford, G.F.J.; McGrath, S.P.; Zhao, F.; Walker, K.C. Improving the prediction of sulphur deficiency in winter oilseed rape in the UK. In Proceedings of the 9th International Rapeseed Congress, Cambridge, UK, 4–7 July 1995; Volume 1, pp. 277–279. [Google Scholar]
- Pacyna, S.; Schulz, M.; Scherer, H.W. Influence of sulphur supply on glucose and ATP concentrations of inoculated broad beans (Vicia faba minor L.). Biol. Fertil. Soils 2005, 42, 324–329. [Google Scholar] [CrossRef]
- Islam, M.; Mohsan, S.; Ali, S. Effect of different phosphorus and sulfur levels on nitrogen fixation and uptake by chickpea (Cicer arietinum L.). Agrociencia 2012, 46, 1–13. [Google Scholar]
- Barker, D.W.; Sawyer, J.E. Nitrogen Application to Soybean at Early Reproductive Development. Agron. J. 2005, 97, 615–619. [Google Scholar] [CrossRef] [Green Version]
- Osborne, S.L.; Riedell, W.E. Starter Nitrogen Fertilizer Impact on Soybean Yield and Quality in the Northern Great Plains. Agron. J. 2006, 98, 1569–1574. [Google Scholar] [CrossRef] [Green Version]
- Namvar, A.; Sharifi, R.S. Phenological and morphological response of chickpea (Cicer arietinum L.) to symbiotic and mineral nitrogen fertilization. Zemdirbyste 2011, 98, 121–130. [Google Scholar]
- Sohrabi, Y.; Habibi, A.; Mohammadi, K.; Sohrabi, M.; Heidari, G.; Gholamreza, H.; Shiva, K.; Masoumeh, K. Effect of nitrogen (N) fertilizer and foliar-applied iron (Fe) fertilizer at various reproductive stages on yield, yield component and chemical composition of soybean (Glycine max L. Merr.) seed. Afr. J. Biotechnol. 2012, 11, 9599–9605. [Google Scholar] [CrossRef]
- Kumar, S.; Wani, J.A.; Lone, B.A.; Fayaz, A.; Singh, P.; Qayoom, S.; Dar, Z.A.; Ahmed, N. Effect of phosphorus and sulphur on nutrient and amino acids content of soybean (Glycine max L. Merill) under ‘Alfisols’. J. Exp. Agric. Int. 2017, 16, 1–7. [Google Scholar] [CrossRef]
- Dhaker, S.C.; Mundra, S.L.; Nepalia, V. Effect of weed management and sulphur nutrition on productivity of soybean [Glycine max (L.) Merrill]. Indian J. Weed Sci. 2010, 42, 232–234. [Google Scholar] [CrossRef]
- Jamal, A.; Fazli, I.S.; Ahmad, S.; Abdin, M.Z.; Yun, S.J. Effect of sulphur and nitrogen application on growth characteristics, seed and oil yields of soybean cultivars. Korean J. Crop Sci. 2005, 50, 340–345. [Google Scholar]
- Sharma, A.; Sharma, S. Effect of nitrogen and sulphur nutrition on yield parameters and protein composition in soybean [Glycine max (L.) Merrill]. J. Appl. Nat. Sci. 2014, 6, 402–408. [Google Scholar] [CrossRef] [Green Version]
- Devi, K.N.; Singh, L.N.K. Influence of sulphur and boron fertilization on yield, quality, nutrient uptake and economics of soybean (Glycine max) under upland conditions. J. Agric. Sci. 2012, 4, 1–10. [Google Scholar] [CrossRef] [Green Version]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Lancashire, P.D.; Bleiholder, H.; Van den Boom, T.; Langelüddeke, P.; Strauss, R.; Weber, E.; Witzenberger, A. A uniform decimal code for growth stages of crops and weeds. Ann. Appl. Biol. 1991, 119, 561–601. [Google Scholar] [CrossRef]
- Skowera, B.; Kopcinska, J.; Kopeć, B. Changes in thermal and precipitation conditions in Poland in 1971–2010. Ann. Warsaw Univ. Life Sci. SGGW Land Reclam. 2014, 46, 153–162. [Google Scholar] [CrossRef]
- Gai, Z.; Zhang, J.; Li, C. Effects of starter nitrogen fertilizer on soybean root activity, leaf photosynthesis and grain yield. PLoS ONE 2017, 12, e0174841. [Google Scholar] [CrossRef] [Green Version]
- Van Kessel, C.; Hartley, C. Agricultural management of grain legumes: Has it led to an increase in nitrogen fixation? Field Crops Res. 2000, 65, 165–181. [Google Scholar] [CrossRef]
- Zainab, A.; Morteza, S.D.; Amir, A.M. Effect of different levels of nitrogen fertilizer on morphological traits and yield of soybean cultivar. Adv. Environ. Biol. 2014, 8, 334–337. [Google Scholar]
- Schweiger, P.; Hofer, M.; Hartl, W.; Wanek, W.; Vollmann, J. N2 fixation by organically grown soybean in Central Europe: Method of quantification and agronomic effects. Eur. J. Agron. 2012, 41, 11–17. [Google Scholar] [CrossRef]
- Faligowska, A.; Szukała, J. Influence of seed inoculation and nitrogen fertilization on morphological characters of legume crops. Zesz. Probl. Postęp. Nauk Rol. 2010, 550, 201–209. [Google Scholar]
- Varun, B.K.; Patel, B.A.; Panchal, H.D.B.; Dalwadi, M.R.; Patel, J.C. Effect of different sources and levels of sulphur on yield and quality of soybean under inceptisol of middle Gujarat. Asian J. Soil Sci. 2011, 6, 85–87. [Google Scholar]
- Burkitbayev, M.; Bachilova, N.; Kurmanbayeva, M.; Tolenova, K.; Yerezhepova, N.; Zhumagul, M.; Mamurova, A.; Turysbek, B.; Demeu, G. Effect of sulfur-containing agrochemicals on growth, yield, and protein content of soybeans (Glycine max (L.) Merr). Saudi J. Biol. Sci. 2021, 28, 891–900. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, M.H.; Mohammad, F.; Khan, M.N.; Khan, M.M.A. Cumulative effect of soil and foliar application of nitrogen, phosphorus, and sulfur on growth, physico-biochemical parameters, yield attributes, and fatty acid composition in oil of erucic acid-free rapeseed-mustard genotypes. J. Plant Nutr. 2008, 31, 1284–1298. [Google Scholar] [CrossRef]
- Kozłowska-Strawska, J.; Kaczor, A. Sulphur as a deficient element in agriculture—Its influence on yield and on the quality of plant materials. Ecol. Chem. Eng. A 2009, 16, 9–19. [Google Scholar]
- . Schnug, E.; Haneklaus, S. Ecological aspects of plant sulphur supply. Norw. J. Agric. Sci. Suppl. 1994, 15, 149–156. [Google Scholar]
- Fecák, P.; Šariková, D.; Černý, I. Influence of tillage system and starting N fertilization on seed yield and quality of soybean Glycine max (L. ) Merrill. Plant Soil Environ. 2010, 56, 105–110. [Google Scholar] [CrossRef] [Green Version]
- Sulieman, S.; Fischinger, S.A.; Gresshoff, P.M.; Schulzea, J. Asparagine as a major factor in the N-feedback regulation of N2 fixation in Medicago truncatula. Physiol. Plant. 2013, 140, 21–31. [Google Scholar] [CrossRef]
- Kraska, P.; Andruszczak, S.; Gierasimiuk, P.; Chojnacka, S. The effect of subsurface mineral fertilizer application on the yield and seed quality of soybean under no-tillage conditions. Agron. Sci. 2022, 77, 109–131. [Google Scholar] [CrossRef]
- Brodowska, M.; Kaczor, A. The effect of various forms of sulphur and nitrogen on calcium and magnesium content and uptake in spring wheat (Triticum aestivum L.) and cocksfoot (Dactylis glomerata L.). J. Elem. 2009, 14, 641–647. [Google Scholar] [CrossRef]
- Cakmak, I. Plant nutrition research: Priorities to meet human needs for food in sustainable ways. Plant Soil 2004, 247, 3–24. [Google Scholar] [CrossRef]
Soil Characteristic | Value |
---|---|
Texture class 1 | Clayey silt |
Sand (2–0.05 mm) | 21% |
Silt (0.05–0.002) | 70% |
Clay (<0.002) | 9% |
pHKCl | 6.6 |
Total nitrogen (g kg−1) | 1.3 |
Organic carbon (g kg−1) | 19.1 |
Available forms (mg kg−1) | |
Phosphorus | 175 |
Potassium | 201 |
Magnesium | 54 |
Copper | 43.2 |
Manganese | 187.2 |
Iron | 942 |
Zinc | 9.6 |
Fertilizer Combination | Dose and Time of Application | |
---|---|---|
Nitrogen | Sulphur | |
N0-S0 | without nitrogen | without sulphur |
N0-S40 | without nitrogen | 40 kg S ha−1 |
N30 (30:0)-S0 | 30 kg N ha−1 before sowing | without sulphur |
N30 (30:0)-S40 | 30 kg N ha−1 before sowing | 40 kg S ha−1 |
N30 (15:15)-S0 | 15 kg N ha−1 before sowing + 15 kg N ha−1 at the start of the seed filling | without sulphur |
N30 (15:15)-S40 | 15 kg N ha−1 before sowing + 15 kg N ha−1 at the start of the seed filling | 40 kg S ha−1 |
N30 (0:30)-S0 | 30 kg N ha−1 at the start of the seed filling | without sulphur |
N30 (0:30)-S40 | 30 kg N ha−1 at the start of the seed filling | 40 kg S ha−1 |
N60 (15:45)-S0 | 15 kg N ha−1 before sowing + 45 kg N ha−1 at the start of the seed filling | without sulphur |
N60 (15:45)-S40 | 15 kg N ha−1 before sowing + 45 kg N ha−1 at the start of the seed filling | 40 kg S ha−1 |
N60 (30:30)-S0 | 30 kg N ha−1 before sowing + 30 kg N ha−1 at the start of the seed filling | without sulphur |
N60 (30:30)-S40 | 30 kg N ha−1 before sowing + 30 kg N ha−1 at the start of the seed filling | 40 kg S ha−1 |
N60 (45:15-S0 | 45 kg N ha−1 before sowing + 15 kg N ha−1 at the start of the seed filling | without sulphur |
N60 (45:15)-S40 | 45 kg N ha−1 before sowing + 15 kg N ha−1 at the start of the seed filling | 40 kg S ha−1 |
Features | Number of Pods per Plant | Seed Number per Pod | Thousand Seed Weight |
---|---|---|---|
Yield | 0.437 * | 0.409 * | 0.188 |
Fertilization | Macroelements (g kg−1) | |||||
---|---|---|---|---|---|---|
Nitrogen | Sulphur | P | K | Ca | Mg | S |
0 | 0 | 8.65 e | 15.42 i | 1.10 a | 2.70 a | 2.57 a |
40 | 8.96 f | 14.70 g | 1.51 d | 2.83 a | 3.06 c | |
N30 (30:0) | 0 | 7.96 b | 13.68 ef | 1.98 g | 3.94 fg | 2.67 ab |
40 | 8.12 bc | 12.80 c | 2.17 h | 3.79 de | 3.19 cd | |
N30 (15:15) | 0 | 8.43 de | 14.81 gh | 1.38 c | 3.00 c | 2.55 a |
40 | 8.53 de | 12.40 b | 1.95 g | 2.93 bc | 3.31 de | |
N30 (0:30) | 0 | 7.96 b | 14.73 g | 1.14 a | 3.05 c | 2.67 ab |
40 | 7.87 b | 13.90 f | 1.70 e | 2.98 bc | 3.25 cd | |
N60 (15:45) | 0 | 7.94 b | 15.10 hi | 1.42 c | 3.92 efg | 2.70 ab |
40 | 8.44 de | 13.41 de | 1.83 f | 3.79 def | 3.48 e | |
N60 (30:30) | 0 | 7.58 a | 12.44 b | 1.86 f | 4.04 g | 2.64 ab |
40 | 8.01 b | 11.94 a | 1.87 f | 3.79 def | 3.79 f | |
N60 (45:15) | 0 | 8.38 cd | 14.99 gh | 1.27 b | 3.95 g | 2.80 b |
40 | 8.44 de | 13.10 cd | 1.55 d | 3.71 d | 3.93 f |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Głowacka, A.; Jariene, E.; Flis-Olszewska, E.; Kiełtyka-Dadasiewicz, A. The Effect of Nitrogen and Sulphur Application on Soybean Productivity Traits in Temperate Climates Conditions. Agronomy 2023, 13, 780. https://doi.org/10.3390/agronomy13030780
Głowacka A, Jariene E, Flis-Olszewska E, Kiełtyka-Dadasiewicz A. The Effect of Nitrogen and Sulphur Application on Soybean Productivity Traits in Temperate Climates Conditions. Agronomy. 2023; 13(3):780. https://doi.org/10.3390/agronomy13030780
Chicago/Turabian StyleGłowacka, Aleksandra, Elvyra Jariene, Ewelina Flis-Olszewska, and Anna Kiełtyka-Dadasiewicz. 2023. "The Effect of Nitrogen and Sulphur Application on Soybean Productivity Traits in Temperate Climates Conditions" Agronomy 13, no. 3: 780. https://doi.org/10.3390/agronomy13030780
APA StyleGłowacka, A., Jariene, E., Flis-Olszewska, E., & Kiełtyka-Dadasiewicz, A. (2023). The Effect of Nitrogen and Sulphur Application on Soybean Productivity Traits in Temperate Climates Conditions. Agronomy, 13(3), 780. https://doi.org/10.3390/agronomy13030780