Helichrysum microphyllum subsp. tyrrhenicum, Its Root-Associated Microorganisms, and Wood Chips Represent an Integrated Green Technology for the Remediation of Petroleum Hydrocarbon-Contaminated Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrates, Plants and Wood Chips
2.2. Greenhouse Test and Samplings
2.3. Physico–Chemical Analyses
2.4. Microbiological and Enzymatic Analyses
2.4.1. Selective Enumeration of Microorganisms by the Most Probable Number
2.4.2. Dehydrogenase Assay
2.5. Statistical Analyses
3. Results
3.1. Properties of the Substrate and Wood Chips
3.2. Plant Growth and Biomass Production
3.3. Substrate Properties, Microbial Activity and Abundance of the Different Microbial Populations after the Phytoremediation Greenhouse Test
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cunningham, S.D.; Berti, W.R.; Huang, J.W. Phytoremediation of Contaminated Soils. Trends Biotechnol. 1995, 13, 393–397. [Google Scholar] [CrossRef]
- Abdullah, S.R.S.; Al-Baldawi, I.A.; Almansoory, A.F.; Purwanti, I.F.; Al-Sbani, N.H.; Sharuddin, S.S.N. Plant-Assisted Remediation of Hydrocarbons in Water and Soil: Application, Mechanisms, Challenges and Opportunities. Chemosphere 2020, 247, 125932. [Google Scholar] [CrossRef] [PubMed]
- Cundy, A.B.; Bardos, R.P.; Puschenreiter, M.; Mench, M.; Bert, V.; Friesl-Hanl, W.; Müller, I.; Li, X.N.; Weyens, N.; Witters, N.; et al. Brownfields to Green Fields: Realising Wider Benefits from Practical Contaminant Phytomanagement Strategies. J. Environ. Manag. 2016, 184, 67–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoang, S.A.; Lamb, D.; Seshadri, B.; Sarkar, B.; Choppala, G.; Kirkham, M.B.; Bolan, N.S. Rhizoremediation as a Green Technology for the Remediation of Petroleum Hydrocarbon-Contaminated Soils. J. Hazard. Mater. 2021, 401, 123282. [Google Scholar] [CrossRef]
- Gerhardt, K.E.; Huang, X.D.; Glick, B.R.; Greenberg, B.M. Phytoremediation and Rhizoremediation of Organic Soil Contaminants: Potential and Challenges. Plant Sci. 2009, 176, 20–30. [Google Scholar] [CrossRef]
- Gkorezis, P.; Daghio, M.; Franzetti, A.; Van Hamme, J.D.; Rylott, E.L. The Interaction between Plants and Bacteria in the Remediation of Petroleum Hydrocarbons: An Environmental Perspective. Front. Microbiol. 2016, 7, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Muratova, A.; Dubrovskaya, E.; Golubev, S.; Grinev, V.; Chernyshova, M.; Turkovskaya, O. The Coupling of the Plant and Microbial Catabolisms of Phenanthrene in the Rhizosphere of Medicago sativa. J. Plant Physiol. 2015, 188, 1–8. [Google Scholar] [CrossRef]
- Muratova, A.; Pozdnyakova, N.; Golubev, S.; Wittenmayer, L.; Makarov, O.; Merbach, W.; Turkovskaya, O. Oxidoreductase Activity of Sorghum Root Exudates in a Phenanthrene-Contaminated Environment. Chemosphere 2009, 74, 1031–1036. [Google Scholar] [CrossRef]
- Hunt, L.J.; Duca, D.; Dan, T.; Knopper, L.D. Petroleum Hydrocarbon (PHC) Uptake in Plants: A Literature Review. Environ. Pollut. 2019, 245, 472–484. [Google Scholar] [CrossRef]
- Martin, B.C.; George, S.J.; Price, C.A.; Ryan, M.H.; Tibbett, M. The Role of Root Exuded Low Molecular Weight Organic Anions in Facilitating Petroleum Hydrocarbon Degradation: Current Knowledge and Future Directions. Sci. Total Environ. 2014, 472, 642–653. [Google Scholar] [CrossRef]
- Rohrbacher, F.; St-Arnaud, M. Root Exudation: The Ecological Driver of Hydrocarbon Rhizoremediation. Agronomy 2016, 6, 19. [Google Scholar] [CrossRef] [Green Version]
- Correa-García, S.; Pande, P.; Séguin, A.; St-Arnaud, M.; Yergeau, E. Rhizoremediation of Petroleum Hydrocarbons: A Model System for Plant Microbiome Manipulation. Microb. Biotechnol. 2018, 11, 819–832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillips, L.A.; Germida, J.J.; Farrell, R.E.; Greer, C.W. Hydrocarbon Degradation Potential and Activity of Endophytic Bacteria Associated with Prairie Plants. Soil Biol. Biochem. 2008, 40, 3054–3064. [Google Scholar] [CrossRef]
- Palma-Cruz, F.d.J.; Pérez-Vargas, J.; Rivera Casado, N.A.; Gómez Guzmán, O.; Calva-Calva, G. Phytoremediation Potential and Ecological and Phenological Changes of Native Pioneer Plants from Weathered Oil Spill-Impacted Sites at Tropical Wetlands. Environ. Sci. Pollut. Res. 2016, 23, 16359–16371. [Google Scholar] [CrossRef] [PubMed]
- Bacchetta, G.; Cao, A.; Cappai, G.; Carucci, A.; Casti, M.; Fercia, M.L.; Lonis, R.; Mola, F. A Field Experiment on the Use of Pistacia lentiscus L. and Scrophularia canina L. subsp. bicolor (Sibth. et Sm.) Greuter for the Phytoremediation of Abandoned Mining Areas. Plant Biosyst. 2012, 146, 1054–1063. [Google Scholar] [CrossRef]
- Bacchetta, G.; Cappai, G.; Carucci, A.; Tamburini, E. Use of Native Plants for the Remediation of Abandoned Mine Sites in Mediterranean Semiarid Environments. Bull. Environ. Contam. Toxicol. 2015, 94, 326–333. [Google Scholar] [CrossRef]
- Boi, M.E.; Porceddu, M.; Cappai, G.; De Giudici, G.; Bacchetta, G. Effects of Zinc and Lead on Seed Germination of Helichrysum microphyllum subsp. tyrrhenicum, a Metal-Tolerant Plant. Int. J. Environ. Sci. Technol. 2020, 17, 1917–1928. [Google Scholar] [CrossRef]
- Boi, M.E.; Medas, D.; Aquilanti, G.; Bacchetta, G.; Birarda, G.; Cappai, G.; Carlomagno, I.; Casu, M.A.; Gianoncelli, A.; Meneghini, C.; et al. Mineralogy and Zn Chemical Speciation in a Soil-Plant System from a Metal-Extreme Environment: A Study on Helichrysum microphyllum subsp. tyrrhenicum (Campo Pisano Mine, SW Sardinia, Italy). Minerals 2020, 10, 259. [Google Scholar] [CrossRef] [Green Version]
- Boi, M.E.; Cappai, G.; De Giudici, G.; Medas, D.; Piredda, M.; Porceddu, M.; Bacchetta, G. Ex Situ Phytoremediation Trial of Sardinian Mine Waste Using a Pioneer Plant Species. Environ. Sci. Pollut. Res. 2021, 28, 55736–55753. [Google Scholar] [CrossRef]
- Boi, M.E.; Sanna Angotzi, M.; Porceddu, M.; Musu, E.; Mameli, V.; Bacchetta, G.; Cannas, C. Germination and Early Seedling Development of Helichrysum microphyllum Cambess. subsp. tyrrhenicum Bacch., Brullo & Giusso in the Presence of Arsenates and Arsenites. Heliyon 2022, 8, e10693. [Google Scholar] [CrossRef]
- Concas, S.; Lattanzi, P.; Bacchetta, G.; Barbafieri, M.; Vacca, A. Zn, Pb and Hg Contents of Pistacia lentiscus L. Grown on Heavy Metal-Rich Soils: Implications for Phytostabilization. Water. Air. Soil Pollut. 2015, 226, 340. [Google Scholar] [CrossRef]
- Cook, R.L.; Hesterberg, D. Comparison of Trees and Grasses for Rhizoremediation of Petroleum Hydrocarbons. Int. J. Phytoremediation 2013, 15, 844–860. [Google Scholar] [CrossRef]
- De Giudici, G.; Medas, D.; Meneghini, C.; Casu, M.A.; Gianoncelli, A.; Iadecola, A.; Podda, S.; Lattanzi, P. Microscopic Biomineralization Processes and Zn Bioavailability: A Synchrotron-Based Investigation of Pistacia lentiscus L. Roots. Environ. Sci. Pollut. Res. 2015, 22, 19352–19361. [Google Scholar] [CrossRef] [PubMed]
- De Giudici, G.; Pusceddu, C.; Medas, D.; Meneghini, C.; Gianoncelli, A.; Rimondi, V.; Podda, F.; Cidu, R.; Lattanzi, P.; Wanty, R.B.; et al. The Role of Natural Biogeochemical Barriers in Limiting Metal Loading to a Stream Affected by Mine Drainage. Appl. Geochem. 2017, 76, 124–135. [Google Scholar] [CrossRef] [Green Version]
- Kharazian, P.; Bacchetta, G.; Cappai, G.; Piredda, M.; De Giudici, G. An Integrated Geochemical and Mineralogical Investigation on Soil-Plant System of Pinus halepensis Pioneer Tree Growing on Heavy Metal Polluted Mine Tailing. Plant Biosyst. 2022. [Google Scholar] [CrossRef]
- Kharazian, P.; Fernández-Ondoño, E.; Jiménez, M.N.; Sierra Aragón, M.; Aguirre-Arcos, A.; Bacchetta, G.; Cappai, G.; De Giudici, G. Pinus halepensis in Contaminated Mining Sites: Study of the Transfer of Metals in the Plant–Soil System Using the BCR Procedure. Toxics 2022, 10, 728. [Google Scholar] [CrossRef]
- Jiménez, M.N.; Fernandez, E.; Navarro, E.B.; Contini, E.; Casti, M.; Bacchetta, G. Livelli di metalli pesanti in Dittrichia viscosa (L.) Greuter, Cistus salviifolius L. e Euphorbia cupanii Bertol. Ex Moris su suoli contaminati e non contaminati dalle attività estrattive nell’ Iglesiente (Sardegna sudoccidentale). Ital. Bot. 2005, 37, 794–795. [Google Scholar]
- Jiménez, M.N.; Bacchetta, G.; Casti, M.; Navarro, F.B.; Lallena, A.M.; Fernández-Ondoño, E. Potential Use in Phytoremediation of Three Plant Species Growing on Contaminated Mine-Tailing Soils in Sardinia. Ecol. Eng. 2011, 37, 392–398. [Google Scholar] [CrossRef]
- Jiménez, M.N.; Bacchetta, G.; Casti, M.; Navarro, F.B.; Lallena, A.M.; Fernández-Ondoño, E. Study of Zn, Cu and Pb Content in Plants and Contaminated Soils in Sardinia. Plant Biosyst. 2014, 148, 419–428. [Google Scholar] [CrossRef]
- Jiménez, M.N.; Bacchetta, G.; Navarro, F.B.; Casti, M.; Fernández-Ondoño, E. Native Plant Capacity for Gentle Remediation in Heavily Polluted Mines. Appl. Sci. 2021, 11, 1769. [Google Scholar] [CrossRef]
- Medas, D.; De Giudici, G.; Casu, M.A.; Musu, E.; Gianoncelli, A.; Iadecola, A.; Meneghini, C.; Tamburini, E.; Sprocati, A.R.; Turnau, K.; et al. Microscopic Processes Ruling the Bioavailability of Zn to Roots of Euphorbia pithyusa L. Pioneer Plant. Environ. Sci. Technol. 2015, 49, 1400–1408. [Google Scholar] [CrossRef] [PubMed]
- Hilliard, O.M. Helichrysum Mill. In Flora of Southern Africa; Leister, O.A., Ed.; Department of Agriculture: Pretoria, South Africa, 1983; pp. 61–310. [Google Scholar]
- Anderberg, A.A. Taxonomy and phylogeny of the tribe Gnaphalieae (Asteraceae). Opera Bot. 1991, 104, 1–195. [Google Scholar]
- Juliano, C.; Marchetti, M.; Campagna, P.; Usai, M. Antimicrobial Activity and Chemical Composition of Essential Oil from Helichrysum microphyllum Cambess. subsp. tyrrhenicum Bacch., Brullo & Giusso Collected in South-West Sardinia. Saudi J. Biol. Sci. 2019, 26, 897–905. [Google Scholar] [CrossRef]
- Fois, M.; Farris, E.; Calvia, G.; Campus, G.; Fenu, G.; Porceddu, M.; Bacchetta, G. The Endemic Vascular Flora of Sardinia: A Dynamic Checklist with an Overview of Biogeography and Conservation Status. Plants 2022, 11, 601. [Google Scholar] [CrossRef] [PubMed]
- Angiolini, C.; Bacchetta, G.; Brullo, S.; Casti, M.; Giusso Del Galdo, G.; Guarino, R. The Vegetation of Mining Dumps in SW-Sardinia. Feddes Repert. 2005, 116, 243–276. [Google Scholar] [CrossRef]
- Bacchetta, G.; Brullo, S.; Mossa, L. Note tassonomiche sul genere Helichrysum Miller (Asteraceae) in Sardegna. Inf. Bot. Ital. 2003, 35, 217–225. [Google Scholar]
- Bacchetta, G.; Casti, M.; Zavattero, L. Analisi della vegetazione del distretto minerario di Montevecchio (Sardegna sud-occidentale). Fitosociologia 2007, 44, 83–108. [Google Scholar]
- Bacchetta, G.; Boi, M.E.; Cappai, G.; De Giudici, G.; Piredda, M. Phytoremediation of Sardinian abandoned mine site: A preliminary study on the use of Helichrysum microphyllum Cambess. subsp. tyrrhenicum Bacch., Brullo & Giusso. In Proceedings of the 15th International Conference on Environmental Science and Technology (CEST), Rhodes, Greece, 31 August–2 September 2017. [Google Scholar]
- Bacchetta, G.; Boi, M.E.; Cappai, G.; De Giudici, G.; Piredda, M.; Porceddu, M. Metal Tolerance Capability of Helichrysum microphyllum Cambess. subsp. tyrrhenicum Bacch., Brullo & Giusso: A Candidate for Phytostabilization in Abandoned Mine Sites. Bull. Environ. Contam. Toxicol. 2018, 101, 758–765. [Google Scholar] [CrossRef]
- EEA, European Environment Agency. Progress in Management of Contaminated Sites. 2021. Available online: https://www.eea.europa.eu/data-and-maps/indicators/progress-in-management-of-contaminated-sites-3/assessment (accessed on 4 December 2022).
- Reid, B.J.; Jones, K.C.; Semple, K.T. Bioavailability of Persistent Organic Pollutants in Soils and Sediments—A Perspective on Mechanisms, Consequences and Assessment. Environ. Pollut. 2000, 108, 103–112. [Google Scholar] [CrossRef]
- Semple, K.T.; Morriss, A.W.J.; Paton, G.I. Bioavailability of Hydrophobic Organic Contaminants in Soils: Fundamental Concepts and Techniques for Analysis. Eur. J. Soil Sci. 2003, 54, 809–818. [Google Scholar] [CrossRef]
- Stroud, J.L.; Paton, G.I.; Semple, K.T. Microbe-Aliphatic Hydrocarbon Interactions in Soil: Implications for Biodegradation and Bioremediation. J. Appl. Microbiol. 2007, 102, 1239–1253. [Google Scholar] [CrossRef]
- Koshlaf, E.; Ball, A. Soil Bioremediation Approaches for Petroleum Hydrocarbon Polluted Environments. AIMS Microbiol. 2017, 3, 25–49. [Google Scholar] [CrossRef]
- Huang, X.D.; El-Alawi, Y.; Gurska, J.; Glick, B.R.; Greenberg, B.M. A Multi-Process Phytoremediation System for Decontamination of Persistent Total Petroleum Hydrocarbons (TPHs) from Soils. Microchem. J. 2005, 81, 139–147. [Google Scholar] [CrossRef]
- Liste, H.H.; Prutz, I. Plant Performance, Dioxygenase-Expressing Rhizosphere Bacteria, and Biodegradation of Weathered Hydrocarbons in Contaminated Soil. Chemosphere 2006, 62, 1411–1420. [Google Scholar] [CrossRef] [PubMed]
- Cai, B.; Ma, J.; Yan, G.; Dai, X.; Li, M.; Guo, S. Comparison of Phytoremediation, Bioaugmentation and Natural Attenuation for Remediating Saline Soil Contaminated by Heavy Crude Oil. Biochem. Eng. J. 2016, 112, 170–177. [Google Scholar] [CrossRef]
- Morales-Guzmán, G.; Ferrera-Cerrato, R.; Del Carmen Rivera-Cruz, M.; Torres-Bustillos, L.G.; Mendoza-López, M.R.; Esquivel-Cote, R.; Alarcón, A. Phytoremediation of Soil Contaminated with Weathered Petroleum Hydrocarbons by Applying Mineral Fertilization, an Anionic Surfactant, or Hydrocarbonoclastic Bacteria. Int. J. Phytoremediation 2022, 25, 3. [Google Scholar] [CrossRef] [PubMed]
- Giles, W.R.; Kriel, K.D.; Stewart, J.R. Characterization and Bioremediation of a Weathered Oil Sludge. Environ. Geosci. 2001, 8, 110–122. [Google Scholar] [CrossRef]
- Ros, M.; Rodríguez, I.; García, C.; Hernández, T. Microbial Communities Involved in the Bioremediation of an Aged Recalcitrant Hydrocarbon Polluted Soil by Using Organic Amendments. Bioresour. Technol. 2010, 101, 6916–6923. [Google Scholar] [CrossRef] [PubMed]
- Solomon, L.; Ogugbue, C.; Okpokwasili, G. Inherent Bacterial Diversity and Enhanced Bioremediation of an Aged Crude Oil-Contaminated Soil in Yorla, Ogoni Land Using Composted Plant Biomass. J. Adv. Microbiol. 2018, 9, 1–11. [Google Scholar] [CrossRef]
- Huang, Y.; Pan, H.; Wang, Q.; Ge, Y.; Liu, W.; Christie, P. Enrichment of the Soil Microbial Community in the Bioremediation of a Petroleum-Contaminated Soil Amended with Rice Straw or Sawdust. Chemosphere 2019, 224, 265–271. [Google Scholar] [CrossRef]
- ISPRA. Procedure for the Analysis of Hydrocarbons >C12 in Contaminated Soils. Handbooks and Guidelines. Available online: https://www.isprambiente.gov.it/contentfiles/00010400/10425-mlg-75-2011.pdf/ (accessed on 9 March 2023).
- Alexander, M. Most Probable Number Method for Microbial Populations. In Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties, 2nd ed.; Page, A.L., Ed.; American Society of Agronomy: Madison, WI, USA, 1982; Volume 9.2.2, pp. 815–820. [Google Scholar]
- Haines, J.R.; Wrenn, B.A.; Holder, E.L.; Strohmeier, K.L.; Herrington, R.T.; Venosa, A.D. Measurement of Hydrocarbon-Degrading Microbial Populations by a 96-Well Plate Most-Probable-Number Procedure. J. Ind. Microbiol. 1996, 16, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Ruggeri, C.; Franzetti, A.; Bestetti, G.; Caredda, P.; La Colla, P.; Pintus, M.; Sergi, S.; Tamburini, E. Isolation and Characterisation of Surface Active Compound-Producing Bacteria from Hydrocarbon-Contaminated Environments. Int. Biodeterior. Biodegrad. 2009, 63, 936–942. [Google Scholar] [CrossRef]
- Kumar, S.; Chaudhuri, S.; Maiti, S.K. Soil Dehydrogenase Enzyme Activity in Natural and Mine Soil—A Review. Middle East J. Sci. Res. 2013, 13, 898–906. [Google Scholar] [CrossRef]
- Mosher, J.J.; Levison, B.S.; Johnston, C.G. A Simplified Dehydrogenase Enzyme Assay in Contaminated Sediment Using 2-(p-Iodophenyl)-3(p-Nitrophenyl)-5-Phenyl Tetrazolium Chloride. J. Microbiol. Methods 2003, 53, 411–415. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 1–9. [Google Scholar]
- Clarke, K.R.; Gorley, R.N. PRIMER v7: User Manual/Tutorial; PRIMER-E: Plymouth, UK, 2015; pp. 1–296. [Google Scholar]
- Haider, F.U.; Ejaz, M.; Cheema, S.A.; Khan, M.I.; Zhao, B.; Liqun, C.; Salim, M.A.; Naveed, M.; Khan, N.; Núñez-Delgado, A.; et al. Phytotoxicity of Petroleum Hydrocarbons: Sources, Impacts and Remediation Strategies. Environ. Res. 2021, 197, 111031. [Google Scholar] [CrossRef]
- Caredda, P.; La Colla, P.; Pintus, M.; Ruggeri, C.; Viola, A.; Tamburini, E.; Suardi, E.; Franzetti, A.; Bestetti, G. Laboratory tests and bioremediation of a site chronically contaminated by diesel. In Proceedings of the Ninth International In Situ and On-Site Bioremediation Symposium, Baltimore, MD, USA, 7–10 May 2007; Battelle Press: Columbus, OH, USA, 2017; pp. 1–9. [Google Scholar]
- Margesin, R.; Schinner, F. A Feasibility Study for the in situ Remediation of a Former Tank Farm. World J. Microbiol. Biotechnol. 1999, 15, 615–622. [Google Scholar] [CrossRef]
- Cheng, L.; Zhou, Q.; Yu, B. Responses and Roles of Roots, Microbes, and Degrading Genes in Rhizosphere during Phytoremediation of Petroleum Hydrocarbons Contaminated Soil. Int. J. Phytoremediation 2019, 21, 1161–1169. [Google Scholar] [CrossRef]
- Casavant, N.C.; Thompson, D.; Beattie, G.A.; Phillips, G.J.; Halverson, L.J. Use of a Site-Specific Recombination-Based Biosensor for Detecting Bioavailable Toluene and Related Compounds on Roots. Environ. Microbiol. 2003, 5, 238–249. [Google Scholar] [CrossRef]
- Chaudhry, Q.; Blom-Zandstra, M.; Gupta, S.; Joner, E.J. Utilising the Synergy between Plants and Rhizosphere Microorganisms to Enhance Breakdown of Organic Pollutants in the Environment. Environ. Sci. Pollut. Res. 2005, 12, 34–48. [Google Scholar] [CrossRef]
- Kim, Y.B.; Ky, Y.P.; Chung, Y.; Oh, K.C.; Buchanan, B.B. Phytoremediation of Anthracene Contaminated Soils by Different Plant Species. J. Plant Biol. 2004, 47, 174–178. [Google Scholar] [CrossRef]
- Leigh, M.B.; Fletcher, J.S.; Fu, X.; Schmitz, F.J. Root Turnover: An Important Source of Microbial Substrates in Rhizosphere Remediation of Recalcitrant Contaminants. Environ. Sci. Technol. 2002, 36, 1579–1583. [Google Scholar] [CrossRef]
- Mishra, S.; Singh, S.N. Microbial Degradation of N-Hexadecane in Mineral Salt Medium as Mediated by Degradative Enzymes. Bioresour. Technol. 2012, 111, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Abbasian, F.; Lockington, R.; Mallavarapu, M.; Naidu, R. A Comprehensive Review of Aliphatic Hydrocarbon Biodegradation by Bacteria. Appl. Biochem. Biotechnol. 2015, 176, 670–699. [Google Scholar] [CrossRef] [PubMed]
- Widdel, F.; Boetius, A.; Rabus, R. Anaerobic Biodegradation of Hydrocarbons Including Methane. In The Prokaryotes, 3rd ed.; Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., Stackebrandt, E., Eds.; Springer: New York, NY, USA, 2006; Volume 2, pp. 1028–1049. [Google Scholar]
- Widdel, F.; Rabus, R. Anaerobic Biodegradation of Saturated and Aromatic Hydrocarbons. Curr. Opin. Biotechnol. 2013, 12, 259–276. [Google Scholar] [CrossRef] [PubMed]
- Watkinson, R.J.; Morgan, P. Physiology of aliphatic hydrocarbon-degrading microorganisms. In Physiology of Biodegradative Microorganisms; Ratledge, C., Ed.; Springer: Dordrecht, The Netherlands, 1991; pp. 79–92. [Google Scholar] [CrossRef]
- Parekh, V.R.; Traxler, R.W.; Sobek, J.M. N Alkane Oxidation Enzymes of a Pseudomonad. Appl. Environ. Microbiol. 1977, 33, 881–884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zand, A.D.; Bidhendi, G.N.; Mehrdadi, N. Phytoremediation of Total Petroleum Hydrocarbons (TPHs) Using Plant Species in Iran. Turkish J. Agric. For. 2010, 34, 429–438. [Google Scholar] [CrossRef]
- Bouchez-Naïtali, M.; Rakatozafy, H.; Marchal, R.; Leveau, J.Y.; Vandecasteele, J.P. Diversity of Bacterial Strains Degrading Hexadecane in Relation to the Mode of Substrate Uptake. J. Appl. Microbiol. 1999, 86, 421–428. [Google Scholar] [CrossRef]
- Franzetti, A.; Caredda, P.; La Colla, P.; Pintus, M.; Tamburini, E.; Papacchini, M.; Bestetti, G. Cultural Factors Affecting Biosurfactant Production by Gordonia sp. BS29. Int. Biodeterior. Biodegrad. 2009, 63, 943–947. [Google Scholar] [CrossRef]
- Franzetti, A.; Caredda, P.; Ruggeri, C.; La Colla, P.; Tamburini, E.; Papacchini, M.; Bestetti, G. Potential Applications of Surface Active Compounds by Gordonia sp. strain BS29 in Soil Remediation Technologies. Chemosphere 2009, 75, 801–807. [Google Scholar] [CrossRef]
- Franzetti, A.; Tamburini, E.; Banat, I.M. Applications of Biological Surface Active Compounds in Remediation Technologies. In Biosurfactants. Advances in Experimental Medicine and Biology; Sen, R., Ed.; Springer: New York, NY, USA, 2010; Volume 672, pp. 121–134. [Google Scholar] [CrossRef]
- Franzetti, A.; Bestetti, G.; Caredda, P.; La Colla, P.; Tamburini, E. Surface-Active Compounds and Their Role in the Access to Hydrocarbons in Gordonia Strains. FEMS Microbiol. Ecol. 2008, 63, 238–248. [Google Scholar] [CrossRef] [Green Version]
- Beltrani, T.; Chiavarini, S.; Cicero, D.O.; Grimaldi, M.; Ruggeri, C.; Tamburini, E.; Cremisini, C. Chemical Characterization and Surface Properties of a New Bioemulsifier Produced by Pedobacter sp. Strain MCC-Z. Int. J. Biol. Macromol. 2015, 72, 1090–1096. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wu, J.; Liu, Y.; Wu, X. Biological Process of Alkane Degradation by Gordonia sihwaniensis. ACS Omega 2022, 7, 55–63. [Google Scholar] [CrossRef]
- Kauppi, S.; Sinkkonen, A.; Romantschuk, M. Enhancing Bioremediation of Diesel-Fuel-Contaminated Soil in a Boreal Climate: Comparison of Biostimulation and Bioaugmentation. Int. Biodeterior. Biodegrad. 2011, 65, 359–368. [Google Scholar] [CrossRef]
- Okafor, U.; Nwankwegu, A. Effect of Woodchips on Bioremediation of Crude Oil-Polluted Soil. Br. Microbiol. Res. J. 2016, 15, 1–7. [Google Scholar] [CrossRef]
- Onwosi, C.O.; Odibo, F.J.C.; Enebechi, C.K.; Nwankwegu, A.S.; Ikele, A.I.; Okeh, O.C. Bioremediation of Diesel-Contaminated Soil by Composting with Locally Generated Bulking Agents. Soil Sediment Contam. 2017, 26, 438–456. [Google Scholar] [CrossRef]
Condition | Plant Survival | Dry Biomass (g dry w) | |
---|---|---|---|
Epigeal Tissues | Hypogeal Tissues | ||
GARD | 100.0% | 40.9 ± 12.2 a | 8.0 ± 4.2 ns |
UNAM | 93.3% | 15.6 ± 4.3 b | 5.6 ± 4.8 ns |
WCAM | 100.0% | 14.4 ± 8.8 b | 3.1 ± 2.7 ns |
Parameter | Matrix | Condition | Mean ± SD | |
---|---|---|---|---|
Substrate moisture (%) | Bk | UNAM | 10% ± 6% | ** |
WCAM | 33% ± 8% | |||
Substrate pH (H2O) | Bk | UNAM | 8.1 ± 0.2 | * |
WCAM | 7.84 ± 0.05 | |||
Dehydrogenase activity (INTF g−1 wet w) | Bk | UNAM | 42.0 ± 6.7 | * |
WCAM | 50.5 ± 5.9 | |||
Rz | UNAM | 203.2 ± 35.4 | ns | |
WCAM | 244.6 ± 105.7 | |||
Viable titer of fungi (log MPN g−1 wet w) | Bk | UNAM | 4.0 ± 0.5 | ** |
WCAM | 5.7 ± 0.3 | |||
Rz | UNAM | 4.8 ± 0.3 | ** | |
WCAM | 5.6 ± 0.1 | |||
Viable titer of bacteria (log MPN g−1 wet w) | Bk | UNAM | 6.1 ± 0.1 | ** |
WCAM | 6.5 ± 0.2 | |||
Rz | UNAM | 7.0 ± 0.3 | ns | |
WCAM | 7.2 ± 0.7 | |||
Viable titer of diesel degraders (log MPN g−1 wet w) | Bk | UNAM | 6.4 ± 0.2 | ** |
WCAM | 7.2 ± 0.2 | |||
Rz | UNAM | 7.5 ± 0.3 | ns | |
WCAM | 7.4 ± 0.6 | |||
Viable titer of paraffin degraders (log MPN g−1 wet w) | Bk | UNAM | 6.7 ± 0.3 | * |
WCAM | 7.1 ± 0.2 | |||
Rz | UNAM | 7.6 ± 0.3 | ns | |
WCAM | 7.5 ± 0.3 | |||
Total petroleum hydrocarbons (g kg−1 dry w) | Bk | UNAM | 2 ± 1 | ns |
WCAM | 0.6 ± 0.3 | |||
Rz | UNAM | 0.03 ± 0.02 | * | |
WCAM | 0.1 ± 0.1 | |||
Dp | UNAM | 3 ± 2 | * | |
WCAM | 1.3 ± 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mandaresu, M.; Dessì, L.; Lallai, A.; Porceddu, M.; Boi, M.E.; Bacchetta, G.; Pivetta, T.; Lussu, R.; Ardu, R.; Pinna, M.; et al. Helichrysum microphyllum subsp. tyrrhenicum, Its Root-Associated Microorganisms, and Wood Chips Represent an Integrated Green Technology for the Remediation of Petroleum Hydrocarbon-Contaminated Soils. Agronomy 2023, 13, 812. https://doi.org/10.3390/agronomy13030812
Mandaresu M, Dessì L, Lallai A, Porceddu M, Boi ME, Bacchetta G, Pivetta T, Lussu R, Ardu R, Pinna M, et al. Helichrysum microphyllum subsp. tyrrhenicum, Its Root-Associated Microorganisms, and Wood Chips Represent an Integrated Green Technology for the Remediation of Petroleum Hydrocarbon-Contaminated Soils. Agronomy. 2023; 13(3):812. https://doi.org/10.3390/agronomy13030812
Chicago/Turabian StyleMandaresu, Melinda, Ludovica Dessì, Andrea Lallai, Marco Porceddu, Maria Enrica Boi, Gianluigi Bacchetta, Tiziana Pivetta, Raffaela Lussu, Riccardo Ardu, Marika Pinna, and et al. 2023. "Helichrysum microphyllum subsp. tyrrhenicum, Its Root-Associated Microorganisms, and Wood Chips Represent an Integrated Green Technology for the Remediation of Petroleum Hydrocarbon-Contaminated Soils" Agronomy 13, no. 3: 812. https://doi.org/10.3390/agronomy13030812
APA StyleMandaresu, M., Dessì, L., Lallai, A., Porceddu, M., Boi, M. E., Bacchetta, G., Pivetta, T., Lussu, R., Ardu, R., Pinna, M., Meloni, F., Sanjust, E., & Tamburini, E. (2023). Helichrysum microphyllum subsp. tyrrhenicum, Its Root-Associated Microorganisms, and Wood Chips Represent an Integrated Green Technology for the Remediation of Petroleum Hydrocarbon-Contaminated Soils. Agronomy, 13(3), 812. https://doi.org/10.3390/agronomy13030812