Short-Term Crop Residue Management in No-Tillage Cultivation Effects on Soil Quality Indicators in Virginia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment 1
2.2. Experiment 2 and 3
2.3. Soil Sampling and Soil Quality Parameters Determination
2.4. Weather Data
2.5. Data Analysis
3. Results and Discussion
3.1. Weather Data
3.2. Effect of Corn Stover and Wheat Straw Retention on Total Soil Nitrogen and Carbon Concentrations, CN Ratio and Bulk Density
3.3. Effect of Corn Stover and Wheat Straw Retention on Field Moisture Capacity, Permanent Wilting Point, Plant Available Water and Soil pH
3.4. Effect of Corn Stover and Wheat Straw Retention on Water Aggregate Stability
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Kumar, P.; Lai, L.; Battaglia, M.L.; Kumar, S.; Owens, V.; Fike, J.; Galbraith, J.; Hong, C.O.; Faris, R.; Crawford, R.; et al. Impacts of nitrogen fertilization rate and landscape position on select soil properties in switchgrass field at four sites in the USA. Catena 2019, 180, 183–193. [Google Scholar] [CrossRef]
- Kumar, S.; Lai, L.; Kumar, P.; Feliciano, Y.M.V.; Battaglia, M.L.; Hong, C.O.; Owens, V.N.; Fike, J.; Farris, R.; Galbraith, J. Impacts of nitrogen rate and landscape position on soils and switchgrass root growth parameters. Agron. J. 2019, 111, 1046–1059. [Google Scholar] [CrossRef]
- Janusch, C.; Lewin, E.F.; Battaglia, M.L.; Rezaei-Chiyaneh, E.; Von Cossel, M. Flower-power in the bioenergy sector—A review on second generation biofuel from perennial wild plant mixtures. Renew. Sustain. Energy Rev. 2021, 147, 111257. [Google Scholar] [CrossRef]
- Siri Prieto, G.; Bustamante, M.; Battaglia, M.L.; Ernst, O.; Seleiman, M.F.; Sadeghpour, A. Effects of perennial biomass yield energy grasses and fertilization on soil characteristics and nutrient balances. Agron. J. 2021, 113, 4292–4305. [Google Scholar] [CrossRef]
- Hettenhaus, J.R.; Wooley, R.; Wiselogel, A. Biomass Commercialization Prospects in the Next 2 to 5 Years: Biomass Colloquies; NREL/ACO-9-29-039-01; Natl. Renewable Energy Lab.: Golden, CO, USA, 2000; Available online: http://infohouse.p2ric.org/ref/40/39078.pdf (accessed on 14 January 2023).
- Wilhelm, W.W.; Johnson, J.M.; Hatfield, J.L.; Voorhees, W.B.; Linden, D.R. Crop and soil productivity response to corn residue removal: A literature review. Agron. J. 2004, 96, 1–17. [Google Scholar] [CrossRef]
- Searchinger, T.; Heimlich, R.; Houghton, R.; Dong, F.; Elobeid, A.; Fabiosa, J.; Tokgoz, S.; Hayes, D.; Yu, T. Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land use change. Science 2008, 319, 1157–1268. [Google Scholar] [CrossRef]
- Greenwell, H.C.; Loyd-Evans, M.; Wenner, C. Biofuels, science and society. Interface Focus 2012, 1, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Balan, V. Current Challenges in Commercially Producing Biofuels from Lignocellulosic Biomass. ISRN Biotechnol. 2014, 2014, 31. [Google Scholar] [CrossRef] [Green Version]
- Battaglia, M.L.; Thomason, W.E.; Fike, J.H.; Evanylo, G.; von Cossel, M.; Babur, E.; Iqbal, Y.; Diatta, A. The broad impacts of corn stover and wheat straw removal on crop productivity, soil health and greenhouse gases emissions: A review. GCB Bioenergy 2021, 13, 45–57. [Google Scholar] [CrossRef]
- Battaglia, M.L.; Thomason, W.E.; Fike, J.H.; Evanylo, G.K.; Stewart, R.D.; Gross, C.D.; Seleiman, M.; Babur, E.; Sadeghpour, A.; Harrison, M.T. Corn and Wheat Residue Management Effects on Greenhouse Emissions in the Mid-Atlantic USA. Land 2022, 11, 846. [Google Scholar] [CrossRef]
- Baiamonte, G.; Gristina, L.; Orlando, S.; Palermo, S.S.; Minacapilli, M. No-Till Soil Organic Carbon Sequestration Patterns as Affected by Climate and Soil Erosion in the Arable Land of Mediterranean Europe. Remote Sens. 2022, 14, 4064. [Google Scholar] [CrossRef]
- Karlen, D.L.; Wollenhaupt, N.C.; Erbach, D.C.; Berry, E.C.; Swan, J.B.; Eash, N.S.; Jordahl, J.L. Crop residue effects on soil quality following 10-years of no-till corn. Soil Tillage Res. 1994, 31, 149–167. [Google Scholar] [CrossRef]
- Huggins, D.R.; Clapp, C.E.; Allmaras, R.R.; Lamb, J.A.; Layese, M.F. Carbon dynamics in corn-soybean sequences as estimated from natural carbon-13 abundance. Soil Sci. Soc. Am. J. 1998, 62, 195–203. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Lal, R.; Post, W.M.; Izaurralde, R.C.; Owens, L.B. Rapid changes in soil carbon and structural properties due to stover removal from no-till corn plots. Soil Sc. 2006, 171, 468–482. [Google Scholar] [CrossRef]
- Benjamin, J.G.; Halvorson, A.D.; Nielsen, D.C.; Mikha, M.M. Crop management effects on crop residue production and changes in soil organic matter in the central Great Plains. Agron. J. 2008, 102, 990–997. [Google Scholar] [CrossRef]
- Kendall, J.R.A.; Long, D.S.; Collins, H.P.; Pierce, F.J.; Chatterjee, A.; Smith, J.L.; Young, S.L. Soil Carbon Dynamics of Transition to Pacific Northwest Cellulosic Ethanol Feedstock Production. Soil Sci. Soc. Am. J. 2015, 79, 272–281. [Google Scholar] [CrossRef]
- Wilhelm, W.W.; Johnson, J.M.F.; Karlen, D.L.; Lightle, D.T. Corn stover to sustain soil organic carbon further constrains biomass supply. Agron. J. 2007, 99, 1665–1667. [Google Scholar] [CrossRef] [Green Version]
- Raffa, D.W.; Bogdanski, A.; Dubois, O.; Tittonell, P. Take it or Leave it? Towards a decision support tool on sustainable crop residue use. In Part 1: Soil Management. Environment and Natural Resources Management Working Paper No. 61 Energy; Food and Agriculture Organization of the United Nations: Rome, Italy, 2014; p. 110. Available online: http://www.fao.org/3/a-i4120e.pdf (accessed on 14 January 2023).
- Barber, S.A. Corn residue management and soil organic matter. Agron. J. 1979, 71, 625–627. [Google Scholar] [CrossRef]
- Magdoff, F.; Lanyon, L.; Liebhardt, B. Nutrient cycling, transformations, and flows: Implications for a more sustainable agriculture. Adv. Agron. 1997, 60, 2–68. [Google Scholar]
- Franzluebbers, A.J. Water infiltration and soil structure related to organic matter and its stratification with depth. Soil Tillage Res. 2002, 66, 197–205. [Google Scholar] [CrossRef]
- Anderson-Teixeira, K.J.; Davis, S.C.; Masters, M.; Delucia, E.H. Changes in soil organic carbon under biofuel crops. GCB Bioenergy 2009, 1, 75–96. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Lal, R. Corn stover removal for expanded uses reduces soil fertility and structural stability. Soil Sci. Soc. Am. J. 2009, 73, 418–426. [Google Scholar] [CrossRef]
- Kenney, I.T. Regional assessment of short-term impacts of corn stover removal for bioenergy on soil quality and crop production. Ph.D. Thesis, Kansas State University, Manhattan, KS, USA, 2011. [Google Scholar]
- Sindelar, A.J. Stover, Tillage, and Nitrogen Management in Continuous Corn for Grain, Ethanol, and Soil Carbon. Ph.D. Thesis, University of Minnesota, Minneapolis, MN, USA, 2012. [Google Scholar]
- Ozlu, E. Long-Term Impacts of Annual Cattle Manure and Fertilizer on Soil Quality Under Corn-Soybean Rotation in Eastern South Dakota. Ph.D. Thesis, South Dakota State University, Brookings, SD, USA, 2016. [Google Scholar]
- Ozlu, E.; Arriaga, F.J. The role of carbon stabilization and minerals on soil aggregation in different ecosystems. Catena 2021, 202, 105303. [Google Scholar] [CrossRef]
- McAloon, A.; Taylor, F.; Yee, W.; Ibsen, K.; Wooley, R. Determining the Cost of Producing Ethanol from Cornstarch and Lignocellulosic Feedstocks; Tech. Rep.; NREL/TP-580-28893; Natl. Renewable Energy Lab.: Golden, CO, USA, 2000. Available online: https://www.nrel.gov/docs/fy01osti/28893.pdf (accessed on 14 January 2023).
- Nelson, R.G. Resource assessment and removal analysis for corn stover and wheat straw in the Eastern and Midwestern United States—Rainfall and wind-induced soil erosion methodology. Biomass Bioenerg. 2002, 22, 349–363. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Lal, R.; Post, W.M.; Owens, L.B. Changes in long-term no-till corn growth and yield under different rates of stover mulch. Agron. J. 2006, 98, 1128–1136. [Google Scholar] [CrossRef] [Green Version]
- Morachan, Y.B.; Moldenhauer, W.C.; Larson, W.E. Effects of increasing amounts of organic residues on continuous corn: I. Yields and soil physical properties. Agron. J. 1972, 64, 199–203. [Google Scholar] [CrossRef]
- Glassner, D.; Hettenhaus, J.; Schechinger, T. Corn stover collection project: A pilot for establishing infrastructure for agricultural residue and other crop collection for biomass processing to ethanol. In Proceedings of the Bioenergy 1998 Conference, Madison, WI, USA, 4–8 October 1998; pp. 1100–1110. [Google Scholar]
- Kadam, K.; McMillan, J. Availability of corn stover as a sustainable feedstock for bioethanol production. Bioresour Technol. 2003, 88, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Graham, R.L.; Nelson, R.; Sheenan, J.; Perlack, R.D.; Wright, L.L. Current and potential U.S. corn stover supplies. Agron. J. 2007, 99, 1–11. [Google Scholar] [CrossRef]
- Battaglia, M.L.; Groover, G.; Thomason, W.E. Value and Implications of Corn Stover removal from Virginia Fields; Virginia Cooperative Extension Publication CSES-180: Blacksburg, VA, USA, 2017. [Google Scholar]
- Battaglia, M.L.; Groover, G.; Thomason, W.E. Harvesting and Nutrient Replacement Costs Associated with Corn Stover Removal in Virginia; Virginia Cooperative Extension Publication: Blacksburg, VA, USA, 2018. [Google Scholar]
- Gonzalez, R.; Phillips, R.; Saloni, D.; Jameel, H.; Abt, R.; Pirraglia, A.; Wright, J. Biomass to energy in the southern United States: Supply chain and delivered cost. Bioresources 2011, 6, 2954–2976. [Google Scholar]
- Virginia Department of Environmental Quality. Physiographic Provinces of Virginia. 2018. Available online: https://www.deq.virginia.gov/Programs/Water/WaterSupplyWaterQuantity/GroundwaterProtectionSteeringCommittee/PhysiographicProvincesofVirginia.aspx (accessed on 14 January 2023).
- NRCS. Natural Resource Conservation Service. Web Soil Survey. 2018. Available online: https://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm (accessed on 14 January 2023).
- USDA-NASS. Quick Stats Lite (Beta). 2018. Available online: http://www.nass.usda.gov/Quick_Stats/Lite/index.php (accessed on 14 January 2023).
- Brann, D.E.; Holshouser, D.L.; Mullins., G.L. Agronomy Handbook; Virginia Tech Cooperative Extension Publication: Blacksburg, VA, 2009; p. 134. [Google Scholar]
- Mehlich, A. Determination of P, Ca, Mg, K, Na, and NH4; North Carolina Soil Test Division (Mimeo): Raleigh, NC, USA, 1953. [Google Scholar]
- Thomas, G.W. Soil pH and soil acidity. In Methods of Soil Analysis; Sparks, D.L., Ed.; Part 3; SSSA Book Ser.5; SSSA: Madison, WI, USA, 1996; pp. 475–490. [Google Scholar]
- Spargo, J.T.; Cavigelli, M.A.; Alley, M.M.; Maul, J.E.; Buyer, J.S.; Sequeira, C.H.; Follet, R.F. Changes in soil organic carbon and nitrogen fractions with duration of no-tillage management. Soil Sci. Soc. Am. J. 2012, 76, 1624–1633. [Google Scholar] [CrossRef]
- Franzluebbers, A.J.; Arshad, M.A. Water-stable aggregation and organic matter in four soils under conventional and zero tillage. Can. J. Soil Sci. 1996, 76, 387–393. [Google Scholar] [CrossRef]
- Kirkham, M.B. Field Capacity, Wilting Point, Available Water, and the Nonlimiting Water Range. In Principles of Soil and Plant Water Relations; Kirkham, M.B., Ed.; Academic Press. P.: New York, NY, USA, 2014; pp. 153–170. [Google Scholar]
- Six, J.; Elliott, E.T.; Paustian, K.; Doran, J.W. Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Sci. Soc. Am. J. 1998, 62, 1367–1377. [Google Scholar] [CrossRef] [Green Version]
- SAS Institute. SAS 9.4 User’s Guide; SAS Inst.: Cary, NC, USA, 2014. [Google Scholar]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger climate classification Updated. Meteorol. Z 2006, 15, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Maskina, M.S.; Power, J.F.; Doran, J.W.; Wilhelm, W.W. Residual Effects of No-Till Crop Residues on Corn Yield and Nitrogen Uptake. Soil Sci. Soc. Am. J. 1993, 57, 1555–1560. [Google Scholar] [CrossRef]
- Power, J.F.; Doran, J.W.; Wilhelm, W.W. Crop residue effects on soil environment and dryland maize and soybean production. Soil Tillage Res. 1986, 8, 101–111. [Google Scholar] [CrossRef] [Green Version]
- Power, J.F.; Koerner, P.T.; Doran, J.W.; Wilhelm, W.W. Residual effects of crop residues on grain production and selected soil properties. Soil Sci. Soc. Am. J. 1998, 62, 133–1397. [Google Scholar] [CrossRef] [Green Version]
- Dam, R.F.; Mehdi, B.B.; Burgess, M.S.E.; Madramootoo, C.A.; Mehuys, G.R.; Callum, I.R. Soil bulk density and crop yield under eleven consecutive years of corn with different tillage and residue practices in a sandy loam soil in central Canada. Soil Tillage Res. 2005, 84, 41–53. [Google Scholar] [CrossRef]
- Clapp, C.E.; Allmaras, R.R.; Layese, M.F.; Linden, D.R.; Dowdy, R.H. Soil organic carbon and 13-C abundance as related to tillage, crop residue, and nitrogen fertilizer under continuous corn management in Minnesota. Soil Tillage Res. 2000, 55, 127–142. [Google Scholar] [CrossRef]
- Dolan, M.S.; Clapp, C.E.; Almaras, R.R.; Baker, J.M.; Molina, J.A.E. Soil organic carbon and nitrogen in a Minnesota soil as related to tillage, residue and nitrogen management. Soil Tillage Res. 2006, 89, 221–231. [Google Scholar] [CrossRef]
- Wilhelm, W.W.; Doran, J.W.; Power, J.F. Corn and soybean yield response to crop residue management under no-tillage production systems. Agron. J. 1986, 78, 184–189. [Google Scholar] [CrossRef] [Green Version]
- Easton, Z.M.; Bock, E. Soil and Soil Water Relationships; Virginia Cooperative Extension Publication: Blacksburg, VA, USA, 2016; BSE-194P. [Google Scholar]
- Doran, J.W.; Wilhelm, W.W.; Power, J.F. Crop residue removal and soil productivity with no-till corn, sorghum, and soybean. Soil Sci. Soc. Am. J. 1984, 48, 640–645. [Google Scholar] [CrossRef] [Green Version]
- Karlen, D.L.; Hunt, P.G.; Campbell, R.B. Crop residue removal effects on corn yield and fertility of a Norfolk sandy loam. Soil Sc. Soc. Am. J. 1984, 48, 868–872. [Google Scholar] [CrossRef] [Green Version]
- Hammerbeck, A.L.; Stetson, S.J.; Osborne, S.L.; Schumacher, T.E.; Pikul, J.L., Jr. Corn Residue Removal Impact on Soil Aggregates in a No-Till Corn/Soybean Rotation. Soil Sci. Soc. Am. J. 2012, 76, 1390–1398. [Google Scholar] [CrossRef]
- Bordovsky, D.G.; Choudhary, M.; Gerard, C.J. Effect of tillage, cropping, and residue management on soil properties in the Texas Rolling Plains. Soil Sci. 1999, 164, 331–340. [Google Scholar] [CrossRef]
- Karlen, D.L.; Birrell, S.J.; Hess, J.R. A five-year assessment of corn stover harvest in Central Iowa, USA. Soil Tillage Res. 2011, 115–116, 47–55. [Google Scholar] [CrossRef] [Green Version]
Treatment | Crop | Stover Retained | Crop | Straw Retained |
---|---|---|---|---|
Mg ha−1 | Mg ha−1 | |||
1 | Grain Corn | 0.00 | none | - |
2 | Grain Corn | 3.33 | none | - |
3 | Grain Corn | 6.66 | none | - |
4 | Grain Corn | 10.00 | none | - |
5 | Grain Corn | 20.00 | none | - |
Treatment | Corn Stover † | Wheat Straw ‡ | Total Residue ⁋ |
---|---|---|---|
__________________________________Mg ha−1 __________________________________ | |||
1 | 0.00 | 0.00 | 0.00 |
2 | 0.00 | 1.00 | 1.00 |
3 | 0.00 | 2.00 | 2.00 |
4 | 0.00 | 3.00 | 3.00 |
5 | 3.33 | 0.00 | 3.33 |
6 | 3.33 | 1.00 | 4.33 |
7 | 3.33 | 2.00 | 5.33 |
8 | 3.33 | 3.00 | 6.33 |
9 | 6.66 | 0.00 | 6.66 |
10 | 6.66 | 1.00 | 7.66 |
11 | 6.66 | 2.00 | 8.66 |
12 | 6.66 | 3.00 | 9.66 |
13 | 10.00 | 0.00 | 10.00 |
14 | 10.00 | 1.00 | 11.00 |
15 | 10.00 | 2.00 | 12.00 |
16 | 10.00 | 3.00 | 13.00 |
Location | Blacksburg | New Kent 1 | New Kent 2 | |
---|---|---|---|---|
pH † | 6 | 6.2 | 5.5 | |
P | ----- mg/kg soil ‡ ----- | 43 | 78.7 | 16.3 |
K | 66.5 | 113.3 | 64.7 | |
Ca | 492.5 | 548 | 368 | |
Mg | 97 | 92.7 | 62.3 | |
Zn | 1.3 | 1.6 | 1 | |
Mn | 26.6 | 6.7 | 11.1 | |
Cu | 0.9 | 0.1 | 0.6 | |
Fe | 14.2 | 16.3 | 18.4 | |
B | 0.2 | 0.3 | 0.1 | |
CEC | Cmol(+)/kg ⁋ | 4.9 | 4.1 | 3.6 |
Acidity | ------- % ------- | 28.8 | 9.1 | 30 |
Base Sat | 71.2 | 90.9 | 70 | |
Ca Sat | 51.2 | 65.3 | 51 | |
Mg Sat | 16.6 | 18.5 | 14.4 | |
K Sat | 3.4 | 7.2 | 4.6 | |
P | - Rating EUR - | H | VH | M+ |
K | M | H | M | |
Ca | M | M | M− | |
Mg | H+ | H | M+ |
Blacksburg | |||||||||
Parameter | R-sq | Pr > t | Min | Max | Mean | ||||
Soil Indicator | Depth, cm | a | b | c | |||||
TN, % | 0–2.5 | −3.2 × 10−6 | 0.0002 | 0.129 | 0.035 | 0.894 | 0.12 | 0.15 | 0.13 |
2.5–7.5 | 1.9 × 10−5 | −0.0002 | 0.094 | 0.031 | 0.765 | 0.08 | 0.11 | 0.09 | |
7.5–20.0 | −1.2 × 10−7 | −4.0 × 10−5 | 0.074 | 0.003 | 0.998 | 0.07 | 0.09 | 0.07 | |
TC, % | 0–2.5 | −0.0005 | 0.0210 | 1.320 | 0.400 | 0.444 | 1.22 | 1.67 | 1.43 |
2.5–7.5 | 0.0001 | 0.0002 | 0.943 | 0.162 | 0.698 | 0.87 | 1.05 | 0.96 | |
7.5–20.0 | −0.0002 | 0.0052 | 0.775 | 0.024 | 0.718 | 0.70 | 0.95 | 0.79 | |
CN Ratio | 0–2.5 | −0.0047 | 0.1599 | 10.170 | 0.389 | 0.262 | 9.47 | 12.82 | 10.92 |
2.5–7.5 | −0.0010 | 0.0264 | 10.079 | 0.005 | 0.866 | 8.74 | 11.28 | 10.18 | |
7.5–20.0 | −0.0026 | 0.0750 | 10.530 | 0.138 | 0.408 | 9.76 | 11.93 | 10.84 | |
Bulk density (g cm−3) | 0–2.5 | 0.0004 | −0.0079 | 1.571 | 0.143 | 0.191 | 1.48 | 1.64 | 1.55 |
2.5–7.5 | 0.0001 | −0.0018 | 1.650 | 0.061 | 0.549 | 1.59 | 1.70 | 1.65 | |
7.5–20.0 | 0.0001 | −0.0016 | 1.603 | 0.088 | 0.425 | 1.57 | 1.64 | 1.60 | |
New Kent 1 | |||||||||
Parameter | R-sq | Pr > t | Min | Max | Mean | ||||
Soil Indicator | Depth, cm | a | b | c | |||||
TN, % | 0–2.5 | −3.8 × 10−5 | 0.0018 | 0.111 | 0.069 | 0.843 | 0.08 | 0.16 | 0.12 |
2.5–7.5 | −2.9 × 10−5 | 0.0009 | 0.081 | 0.042 | 0.799 | 0.06 | 0.11 | 0.09 | |
7.5–20.0 | −6.0 × 10−5 | 0.0010 | 0.046 | 0.023 | 0.511 | 0.03 | 0.07 | 0.05 | |
TC, % | 0–2.5 | −0.0003 | 0.0163 | 1.230 | 0.051 | 0.915 | 0.88 | 1.80 | 1.32 |
2.5–7.5 | 0.0005 | 0.0001 | 0.872 | 0.042 | 0.713 | 0.67 | 1.22 | 0.90 | |
7.5–20.0 | −0.0006 | 0.0113 | 0.542 | 0.021 | 0.608 | 0.34 | 0.93 | 0.58 | |
CN Ratio | 0–2.5 | 0.0017 | −0.0274 | 11.060 | 0.007 | 0.650 | 9.94 | 11.62 | 10.98 |
2.5–7.5 | 0.0073 | −0.0898 | 10.730 | 0.036 | 0.212 | 8.52 | 11.70 | 10.57 | |
7.5–20.0 | 0.0038 | −0.0523 | 12.070 | 0.003 | 0.705 | 10.40 | 15.27 | 11.95 | |
Bulk density (g cm−3) | 0–2.5 | 0.0012 | −0.0187 | 1.590 | 0.077 | 0.097 | 1.16 | 1.62 | 1.54 |
2.5–7.5 | 0.0001 | −0.0010 | 1.580 | 0.003 | 0.796 | 1.44 | 1.66 | 1.58 | |
7.5–20.0 | 0.0004 | −0.0091 | 1.660 | 0.064 | 0.611 | 1.47 | 1.81 | 1.62 | |
New Kent 2 | |||||||||
Parameter | R-sq | Pr > t | Min | Max | Mean | ||||
Soil Indicator | Depth, cm | a | b | c | |||||
TN, % | 0–2.5 | −0.0001 | 0.0034 | 0.150 | 0.084 | 0.507 | 0.08 | 0.21 | 0.16 |
2.5–7.5 | −5.8 × 10−5 | 0.0015 | 0.100 | 0.045 | 0.683 | 0.07 | 0.13 | 0.10 | |
7.5–20.0 | 2.1 × 10−5 | 0.0003 | 0.054 | 0.093 | 0.778 | 0.04 | 0.07 | 0.06 | |
TC, % | 0–2.5 | −0.0015 | 0.0409 | 1.620 | 0.131 | 0.517 | 0.95 | 2.37 | 1.80 |
2.5–7.5 | −0.0003 | 0.0117 | 1.010 | 0.054 | 0.816 | 0.79 | 1.31 | 1.06 | |
7.5–20.0 | 0.0002 | 0.0024 | 0.581 | 0.110 | 0.730 | 0.50 | 0.74 | 0.61 | |
CN Ratio | 0–2.5 | 0.0001 | 0.0258 | 10.810 | 0.060 | 0.976 | 10.15 | 11.94 | 10.98 |
2.5–7.5 | 0.0023 | −0.0266 | 10.360 | 0.010 | 0.544 | 9.76 | 11.29 | 10.32 | |
7.5–20.0 | 1.8 × 10−5 | −0.0081 | 10.860 | 0.004 | 0.998 | 9.52 | 11.98 | 10.81 | |
Bulk density (g cm−3) | 0–2.5 | −0.0005 | 0.0061 | 1.470 | 0.012 | 0.513 | 1.33 | 1.59 | 1.48 |
2.5–7.5 | −0.0003 | 0.0053 | 1.510 | 0.018 | 0.554 | 1.29 | 1.59 | 1.52 | |
7.5–20.0 | 0.0004 | −0.0033 | 1.600 | 0.024 | 0.524 | 1.47 | 1.70 | 1.60 |
Blacksburg | ||||||||
Parameter | R-sq | Pr > t | Min | Max | Mean | |||
Soil Indicator | a | b | c | |||||
Field capacity, kg kg−1 | 2.2 × 10−5 | −1.3 × 10−5 | 0.198 | 0.095 | 0.749 | 0.19 | 0.22 | 0.20 |
Wilting point, kg kg−1 | 4.2 × 10−5 | −0.0008 | 0.049 | 0.175 | 0.147 | 0.04 | 0.05 | 0.05 |
Plant available water, kg kg−1 | −1.9 × 10−7 | 0.0008 | 0.150 | 0.081 | 0.754 | 0.14 | 0.17 | 0.15 |
Soil pH | 0.0012 | −0.0072 | 4.920 | 0.100 | 0.664 | 4.24 | 5.95 | 4.99 |
New Kent 1 | ||||||||
Parameter | R-sq | Pr > t | Min | Max | Mean | |||
Soil indicator | a | b | c | |||||
Field capacity, kg kg−1 | 0.0002 | −0.0007 | 0.124 | 0.059 | 0.510 | 0.10 | 0.18 | 0.13 |
Wilting point, kg kg−1 | 0.0002 | −0.0013 | 0.045 | 0.119 | 0.148 | 0.02 | 0.07 | 0.05 |
Plant available water, kg kg−1 | 0.0000 | 0.0006 | 0.079 | 0.006 | 0.984 | 0.03 | 0.13 | 0.08 |
Soil pH | −0.0014 | 0.0165 | 5.270 | 0.018 | 0.733 | 4.72 | 7.02 | 5.30 |
New Kent 2 | ||||||||
Parameter | R-sq | Pr > t | Min | Max | Mean | |||
Soil indicator | a | b | c | |||||
Field capacity, kg kg−1 | −0.0001 | 0.0018 | 0.141 | 0.006 | 0.620 | 0.09 | 0.19 | 0.14 |
Wilting point, kg kg−1 | 0.0001 | 0.0009 | 0.029 | 0.023 | 0.379 | 0.02 | 0.04 | 0.03 |
Plant available water, kg kg−1 | −0.0001 | 0.0008 | 0.112 | 0.002 | 0.804 | 0.05 | 0.17 | 0.11 |
Soil pH | −0.0040 | 0.0560 | 5.560 | 0.014 | 0.451 | 4.55 | 6.72 | 5.69 |
Blacksburg | |||||||||
Parameter | R-sq | Pr > t | Min | Max | Mean | ||||
Soil Indicator | Aggregate Size, µm | a | b | c | |||||
Free sand DW, g | >2000 | −0.0040 | 0.0768 | 1.200 | 0.111 | 0.264 | 0.53 | 2.41 | 1.36 |
<2000 to >250 | −0.0082 | 0.1424 | 12.180 | 0.100 | 0.329 | 10.17 | 15.12 | 12.41 | |
<250 to >53 | 0.0077 | −0.1195 | 8.030 | 0.116 | 0.359 | 5.33 | 9.89 | 7.93 | |
New Kent 1 | |||||||||
Parameter | R-sq | Pr > t | Min | Max | Mean | ||||
Soil indicator | Aggregate size, µm | a | b | c | |||||
Free sand DW, g | >2000 | 0.0085 | −0.0997 | 2.700 | 0.006 | 0.643 | 0.18 | 7.08 | 2.55 |
<2000 to > 250 | −0.0107 | 0.1454 | 10.470 | 0.023 | 0.318 | 8.25 | 12.45 | 10.80 | |
<250 to >53 | −0.0003 | −0.0180 | 5.380 | 0.003 | 0.984 | 1.64 | 8.34 | 5.24 | |
New Kent 2 | |||||||||
Parameter | R-sq | Pr > t | Min | Max | Mean | ||||
Soil indicator | Aggregate size, µm | a | b | c | |||||
Free sand DW, g | >2000 | −0.0183 | 0.2905 | 1.470 | 0.069 | 0.262 | 0.54 | 5.59 | 2.31 |
<2000 to > 250 | −0.0165 | 0.2077 | 6.880 | 0.042 | 0.275 | 5.43 | 9.75 | 7.29 | |
<250 to >53 | 0.0281 | −0.4202 | 7.570 | 0.108 | 0.110 | 4.23 | 8.93 | 6.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Battaglia, M.L.; Thomason, W.; Ozlu, E.; Rezaei-Chiyaneh, E.; Fike, J.H.; Diatta, A.A.; Uslu, O.S.; Babur, E.; Schillaci, C. Short-Term Crop Residue Management in No-Tillage Cultivation Effects on Soil Quality Indicators in Virginia. Agronomy 2023, 13, 838. https://doi.org/10.3390/agronomy13030838
Battaglia ML, Thomason W, Ozlu E, Rezaei-Chiyaneh E, Fike JH, Diatta AA, Uslu OS, Babur E, Schillaci C. Short-Term Crop Residue Management in No-Tillage Cultivation Effects on Soil Quality Indicators in Virginia. Agronomy. 2023; 13(3):838. https://doi.org/10.3390/agronomy13030838
Chicago/Turabian StyleBattaglia, Martin L., Wade Thomason, Ekrem Ozlu, Esmaeil Rezaei-Chiyaneh, John H. Fike, André Amakobo Diatta, Omer Suha Uslu, Emre Babur, and Calogero Schillaci. 2023. "Short-Term Crop Residue Management in No-Tillage Cultivation Effects on Soil Quality Indicators in Virginia" Agronomy 13, no. 3: 838. https://doi.org/10.3390/agronomy13030838
APA StyleBattaglia, M. L., Thomason, W., Ozlu, E., Rezaei-Chiyaneh, E., Fike, J. H., Diatta, A. A., Uslu, O. S., Babur, E., & Schillaci, C. (2023). Short-Term Crop Residue Management in No-Tillage Cultivation Effects on Soil Quality Indicators in Virginia. Agronomy, 13(3), 838. https://doi.org/10.3390/agronomy13030838