The Effect of Deep Placement of Basal Nitrogen Fertilizer on Gaseous Nitrogen Losses and Nitrogen Use Efficiency of Paddy Fields under Water-Saving Irrigation in Northeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design
2.3. N2O Emissions
2.4. NH3 Volatilization
2.5. Gaseous N Losses
2.6. Nitrogen Use Efficiency and Rice Yield
2.7. Statistical Analysis
3. Results
3.1. Nitrous Oxide Emissions
3.2. Ammonia Volatilization
3.3. Gaseous Nitrogen Losses
3.4. The Nitrogen Accumulation of the Plants
3.5. Rice Yield and the Nitrogen Use Efficiency
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xin, F.; Xiao, X.; Dong, J.; Zhang, G.; Zhang, Y.; Wu, X.; Li, X.; Zou, Z.; Ma, J.; Du, G.; et al. Large increases of paddy rice area, gross primary production, and grain production in Northeast China during 2000–2017. Sci. Total Environ. 2020, 711, 135183. [Google Scholar] [CrossRef]
- Xu, H.; Tian, Z.; He, X.; Wang, J.; Sun, L.; Fischer, G.; Fan, D.; Zhong, H.; Wu, W.; Pope, E.; et al. Future increases in irrigation water requirement challenge the water-food nexus in the northeast farming region of China. Agr. Water Manag. 2019, 213, 594–604. [Google Scholar] [CrossRef]
- Chen, P.; Xu, J.; Zhang, Z.; Wang, K.; Li, T.; Wei, Q.; Li, Y. Carbon pathways in aggregates and density fractions in Mollisols under water and straw management: Evidence from 13C natural abundance. Soil Biol. Biochem. 2022, 169, 108684. [Google Scholar] [CrossRef]
- Yang, S.; Peng, S.; Xu, J.; Luo, Y.; Li, D. Methane and nitrous oxide emissions from paddy field as affected by water-saving irrigation. Phys. Chem. Earth 2012, 53–54, 30–37. [Google Scholar] [CrossRef]
- Zhuang, Y.; Zhang, L.; Li, S.; Liu, H.; Zhai, L.; Zhou, F.; Ye, Y.; Ruan, S.; Wen, W. Effects and potential of water-saving irrigation for rice production in China. Agr. Water Manag. 2019, 217, 374–382. [Google Scholar] [CrossRef]
- Chen, P.; Nie, T.; Chen, S.; Zhang, Z.; Qi, Z.; Liu, W. Recovery efficiency and loss of 15N-labelled urea in a rice-soil system under water saving irrigation in the Songnen Plain of Northeast China. Agr. Water Manag. 2019, 222, 139–153. [Google Scholar] [CrossRef]
- Chen, X.; Wo, F.; Chen, C.; Fang, K. Seasonal changes in the concentrations of nitrogen and phosphorus in farmland drainage and groundwater of the Taihu Lake region of China. Environ. Monit. Assess. 2010, 169, 159–168. [Google Scholar] [CrossRef]
- Cui, S.; Shi, Y.; Groffman, P.M.; Schlesinger, W.H.; Zhu, Y.G. Centennial-scale analysis of the creation and fate of reactive nitrogen in China (1910–2010). Proc. Natl. Acad. Sci. USA 2013, 110, 2052–2057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sey, B.K.; Manceur, A.M.; Whalen, J.K.; Gregorich, E.G.; Rochette, P. Small-scale heterogeneity in carbon dioxide, nitrous oxide and methane production from aggregates of a cultivated sandy-loam soil. Soil. Biol. Biochem. 2008, 40, 2468–2473. [Google Scholar] [CrossRef]
- Liu, S.; Qin, Y.; Zou, J.; Liu, Q. Effects of water regime during rice-growing season on annual direct N(2)O emission in a paddy rice-winter wheat rotation system in southeast China. Sci. Total Environ. 2010, 408, 906–913. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Wang, S.; Tan, K.; Lei, Y. Nitrate accumulation and leaching potential is controlled by land-use and extreme precipitation in a headwater catchment in the North China Plain. Sci. Total Environ. 2020, 707, 136168. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Cárdenas, L.M.; Calvet, S.; Brüggemann, N.; Loick, N.; Liu, S.; Bol, R. The effect of nitrification inhibitor on N2O, NO and N2 emissions under different soil moisture levels in a permanent grassland soil. Soil. Biol. Biochem. 2017, 113, 153–160. [Google Scholar] [CrossRef]
- Bhagat, R.M.; Bhuiyan, S.I.; Moody, K. Water, tillage and weed interactions in lowland tropical rice: A review. Agr. Water Manag. 1996, 31, 165–184. [Google Scholar] [CrossRef]
- Xu, J.-Z.; Peng, S.-Z.; Hou, H.-J.; Yang, S.-H.; Luo, Y.-F.; Wang, W.-G. Gaseous losses of nitrogen by ammonia volatilization and nitrous oxide emissions from rice paddies with different irrigation management. Irrig. Sci. 2012, 31, 983–994. [Google Scholar] [CrossRef]
- Ding, T.; Ning, Y.; Zhang, Y. Estimation of greenhouse gas emissions in China 1990-2013. Greenh. Gases 2017, 7, 1097–1115. [Google Scholar] [CrossRef]
- Zhang, M.; Yao, Y.; Zhao, M.; Zhang, B.; Tian, Y.; Yin, B.; Zhu, Z. Integration of urea deep placement and organic addition for improving yield and soil properties and decreasing N loss in paddy field. Agr. Ecosyst. Environ. 2017, 247, 236–245. [Google Scholar] [CrossRef]
- Xia, L.; Li, X.; Ma, Q.; Lam, S.K.; Wolf, B.; Kiese, R.; Butterbach-Bahl, K.; Chen, D.; Li, Z.; Yan, X. Simultaneous quantification of N2, NH3 and N2O emissions from a flooded paddy field under different N fertilization regimes. Glob. Chang. Biol. 2019, 26, 2292–2303. [Google Scholar] [CrossRef]
- Yao, Y.; Zhang, M.; Tian, Y.; Zhao, M.; Zhang, B.; Zhao, M.; Zeng, K.; Yin, B. Urea deep placement for minimizing NH3 loss in an intensive rice cropping system. Field Crops Res. 2018, 218, 254–266. [Google Scholar] [CrossRef]
- Chatterjee, D.; Mohanty, S.; Guru, P.K.; Swain, C.K.; Tripathi, R.; Shahid, M.; Kumar, U.; Kumar, A.; Bhattacharyya, P.; Gautam, P.; et al. Comparative assessment of urea briquette applicators on greenhouse gas emission, nitrogen loss and soil enzymatic activities in tropical lowland rice. Agr. Ecosyst. Environ. 2018, 252, 178–190. [Google Scholar] [CrossRef]
- Bandaogo, A.; Bidjokazo, F.; Youl, S.; Safo, E.; Abaidoo, R.; Andrews, O. Effect of fertilizer deep placement with urea supergranule on nitrogen use efficiency of irrigated rice in Sourou Valley (Burkina Faso). Nutr. Cycl. Agroecosyst. 2014, 102, 79–89. [Google Scholar] [CrossRef]
- Liu, T.Q.; Li, S.H.; Guo, L.G.; Cao, C.G.; Li, C.F.; Zhai, Z.B.; Zhou, J.Y.; Mei, Y.M.; Ke, H.J. Advantages of nitrogen fertilizer deep placement in greenhouse gas emissions and net ecosystem economic benefits from no-tillage paddy fields. J. Clean Prod. 2020, 263, 121322. [Google Scholar] [CrossRef]
- Liu, T.Q.; Fan, D.J.; Zhang, X.X.; Chen, J.; Li, C.F.; Cao, C.G. Deep placement of nitrogen fertilizers reduces ammonia volatilization and increases nitrogen utilization efficiency in no-tillage paddy fields in central China. Field Crops Res. 2015, 184, 80–90. [Google Scholar] [CrossRef]
- Zhu, C.; Xiang, J.; Zhang, Y.; Zhang, Y.; Zhu, D.; Chen, H. Mechanized transplanting with side deep fertilization increases yield and nitrogen use efficiency of rice in Eastern China. Sci. Rep. 2019, 9, 5653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nie, T.; Huang, J.; Zhang, Z.; Chen, P.; Li, T.; Dai, C. The inhibitory effect of a water-saving irrigation regime on CH4 emission in Mollisols under straw incorporation for 5 consecutive years. Agric. Water Manag. 2023, 278, 108163. [Google Scholar] [CrossRef]
- Chen, P.; Xu, J.; Zhang, Z.; Nie, T. ‘Preferential’ ammonium uptake by rice does not always turn into higher N recovery of fertilizer sources under water-saving irrigation. Agr. Water Manag. 2022, 272, 107867. [Google Scholar] [CrossRef]
- Fan, C.; Chen, H.; Li, B.; Xiong, Z. Biochar reduces yield-scaled emissions of reactive nitrogen gases from vegetable soils across China. Biogeosciences 2017, 14, 2851–2863. [Google Scholar] [CrossRef] [Green Version]
- Wu, P.; Liu, F.; Li, H.; Cai, T.; Zhang, P.; Jia, Z. Suitable fertilizer application depth can increase nitrogen use efficiency and maize yield by reducing gaseous nitrogen losses. Sci. Total Environ. 2021, 781, 146787. [Google Scholar] [CrossRef]
- Li, J.; Yang, H.; Zhou, F.; Zhang, X.; Luo, J.; Li, Y.; Lindsey, S.; Shi, Y.; He, H.; Zhang, X. Effects of maize residue return rate on nitrogen transformations and gaseous losses in an arable soil. Agr. Water Manag. 2019, 211, 132–141. [Google Scholar] [CrossRef]
- Guo, Y.; Ji, Y.; Zhang, J.; Liu, Q.; Han, J.; Zhang, L. Effects of water and nitrogen management on N2O emissions and NH3 volatilization from a vineyard in North China. Agr. Water Manag. 2022, 266, 107601. [Google Scholar] [CrossRef]
- Singh, S.; Singh, J.S.; Kashyap, A.K. Methane flux from irrigated rice fields in relation to crop growth and N-fertilization. Soil Biol. Biochem. 1999, 31, 1219–1228. [Google Scholar] [CrossRef]
- Ke, J.; He, R.; Hou, P.; Ding, C.; Ding, Y.; Wang, S.; Liu, Z.; Tang, S.; Ding, C.; Chen, L.; et al. Combined controlled-released nitrogen fertilizers and deep placement effects of N leaching, rice yield and N recovery in machine-transplanted rice. Agr. Ecosyst. Environ. 2018, 265, 402–412. [Google Scholar] [CrossRef]
- Li, M.; Wang, Y.; Adeli, A.; Yan, H. Effects of application methods and urea rates on ammonia volatilization, yields and fine root biomass of alfalfa. Field Crops Res. 2018, 218, 115–125. [Google Scholar] [CrossRef]
- Corrochano-Monsalve, M.; Bozal-Leorri, A.; Sánchez, C.; González-Murua, C.; Estavillo, J.-M. Joint application of urease and nitrification inhibitors to diminish gaseous nitrogen losses under different tillage systems. J. Clean. Prod. 2021, 289, 125701. [Google Scholar] [CrossRef]
- Hofmeier, M.; Roelcke, M.; Han, Y.; Lan, T.; Bergmann, H.; Böhm, D.; Cai, Z.; Nieder, R. Nitrogen management in a rice–wheat system in the Taihu Region: Recommendations based on field experiments and surveys. Agr. Ecosyst. Environ. 2015, 209, 60–73. [Google Scholar] [CrossRef]
- Goldberg, S.D.; Knorr, K.H.; Gebauer, G. N(2)O concentration and isotope signature along profiles provide deeper insight into the fate of N(2)O in soils. Isot. Environ. Health 2008, 44, 377–391. [Google Scholar] [CrossRef] [PubMed]
- Cui, T.; Li, Z.; Wang, S. Effects of in-situ straw decomposition on composition of humus and structure of humic acid at different soil depths. J. Soils Sediment 2017, 17, 2391–2399. [Google Scholar] [CrossRef]
- Nasielski, J.; Grant, B.; Smith, W.; Niemeyer, C.; Janovicek, K.; Deen, B. Effect of nitrogen source, placement and timing on the environmental performance of economically optimum nitrogen rates in maize. Field Crops Res. 2020, 246, 107686. [Google Scholar] [CrossRef]
- Nkebiwe, P.M.; Weinmann, M.; Bar-Tal, A.; Müller, T. Fertilizer placement to improve crop nutrient acquisition and yield: A review and meta-analysis. Field Crops Res. 2016, 196, 389–401. [Google Scholar] [CrossRef]
- Maris, S.C.; Teira-Esmatges, M.R.; Arbones, A.; Rufat, J. Effect of irrigation, nitrogen application, and a nitrification inhibitor on nitrous oxide, carbon dioxide and methane emissions from an olive (Olea europaea L.) orchard. Sci. Total Environ. 2015, 538, 966–978. [Google Scholar] [CrossRef]
- Qin, X.; Li Ye Wang, B.; Wan, Y.; Gao, Q.; Chen, X.; Chen, H.; Song, C. Nonlinear dependency of N2O emissions on nitrogen input in dry farming systems may facilitate green development in China. Agr. Ecosyst. Environ. 2021, 317, 107456. [Google Scholar] [CrossRef]
- Linquist, B.A.; Adviento-Borbe, M.A.; Pittelkow, C.M.; van Kessel, C.; van Groenigen, K.J. Fertilizer management practices and greenhouse gas emissions from rice systems: A quantitative review and analysis. Field Crops Res. 2012, 135, 10–21. [Google Scholar] [CrossRef]
- Freney, J.R.; Trevitt, A.C.F.; Muirhead, W.A.; Denmead, O.T.; Simpson, J.R.; Obcemea, W.N. Effect of water depth on ammonia loss from lowland rice. Fertil. Res. 1988, 16, 97–107. [Google Scholar] [CrossRef]
- Cao, Y.; Tian, Y.; Yin, B.; Zhu, Z. Assessment of ammonia volatilization from paddy fields under crop management practices aimed to increase grain yield and N efficiency. Field Crops Res. 2013, 147, 23–31. [Google Scholar] [CrossRef]
- Xu, J.; Peng, S.; Yang, S.; Wang, W. Ammonia volatilization losses from a rice paddy with different irrigation and nitrogen managements. Agr. Water Manag. 2012, 104, 184–192. [Google Scholar] [CrossRef]
- Keshavarz Afshar, R.; Lin, R.; Mohammed, Y.A.; Chen, C. Agronomic effects of urease and nitrification inhibitors on ammonia volatilization and nitrogen utilization in a dryland farming system: Field and laboratory investigation. J. Clean. Prod. 2018, 172, 4130–4139. [Google Scholar] [CrossRef]
- Zhao, M.; Tian, Y.; Ma, Y.; Zhang, M.; Yao, Y.; Xiong, Z.; Yin, B.; Zhu, Z. Mitigating gaseous nitrogen emissions intensity from a Chinese rice cropping system through an improved management practice aimed to close the yield gap. Agr. Ecosyst. Environ. 2015, 203, 36–45. [Google Scholar] [CrossRef]
- Du, S.; Zhang, Z.; Li, T.; Wang, Z.; Zhou, X.; Gai, Z.; Qi, Z. Response of Rice Harvest Index to Different Water and Nitrogen Management Modes in the Black Soil Region of Northeast China. Agriculture 2022, 12, 115. [Google Scholar] [CrossRef]
- Fan, D.; He, W.; Smith, W.N.; Drury, C.F.; Jiang, L.; Grant, B.B.; Shi, Y.; Song, D.; Chen, Y.; Wang, X.; et al. Global evaluation of inhibitor impacts on ammonia and nitrous oxide emissions from agricultural soils: A meta-analysis. Global. Chang. Biol. 2022, 28, 5121–5141. [Google Scholar] [CrossRef]
- Qiao, C.; Liu, L.; Hu, S.; Compton, J.E.; Greaver, T.; Li, Q. How inhibiting nitrification affects nitrogen cycle and reduces environmental impacts of anthropogenic nitrogen input. Global. Chang. Biol. 2015, 21, 1249–1257. [Google Scholar] [CrossRef]
Irrigation Regime | Soil Water Content | Turning Green | Early Tillering | Middle Tillering | Later Tillering | Jointing and Booting | Heading and Flowering | Milk | Yellow-Wipe |
---|---|---|---|---|---|---|---|---|---|
CFI | maximum | 30 mm | 50 mm | 50 mm | Drainage | 50 mm | 50 mm | 50 mm | Naturally drying |
minimum | 0 mm | 10 mm | 10 mm | 10 mm | 10 mm | 10 mm | |||
WSI | maximum | 30 mm | 30 mm | 30 mm | Drainage | 30 mm | 30 mm | 0 mm | Naturally drying |
minimum | 0 mm | 0.7θs | 0.7θs | 0.8θs | 0.8θs | 0.7θs |
Year | Treatment | Seasonal N2O Fluxes/ kg hm−2 | N2O-N/ kg hm−2 | Seasonal NH3 Volatilization/ kg hm−2 | NH3-N/ kg hm−2 | GNL/kg hm−2 |
---|---|---|---|---|---|---|
2021 | CFN | 0.77 ± 0.09 a | 0.49 ± 0.06 a | 12.36 ± 0.88 a | 10.18 ± 0.73 a | 10.67 ± 0.79 a |
WSN | −0.02 ± 0.01 b | −0.01 ± 0.01 b | 12.28 ± 0.90 a | 10.12 ± 0.74 a | 10.10 ± 0.73 a | |
WSN1 | −0.23 ± 0.02 c | −0.15 ± 0.01 c | 10.39 ± 0.75 b | 8.56 ± 0.62 b | 8.41 ± 0.61 b | |
WSN2 | −0.26 ± 0.04 c | −0.17 ± 0.03 c | 8.62 ± 0.68 c | 7.10 ± 0.56 c | 6.93 ± 0.55 c | |
2022 | CFN | 1.16 ± 0.19 a | 0.74 ± 0.12 a | 7.02 ± 0.53 a | 5.78 ± 0.44 a | 6.52 ± 0.54 a |
WSN | 1.06 ± 0.02 a | 0.68 ± 0.01 a | 6.89 ± 0.53 ab | 5.68 ± 0.45 ab | 6.35 ± 0.53 ab | |
WSN1 | 0.79 ± 0.13 b | 0.50 ± 0.08b | 6.31 ± 0.49 bc | 5.70 ± 0.48 bc | 5.70 ± 0.48 bc | |
WSN2 | 0.66 ± 0.02 b | 0.42 ± 0.07 b | 5.91 ± 0.41 c | 5.29 ± 0.40 c | 5.29 ± 0.35 c |
Year | Treatment | Leaf N Accumulation/ kg hm−2 | Stem N Accumulation/ kg hm−2 | Grain N Accumulation/ kg hm−2 | Root N Accumulation/ kg hm−2 | Total N Accumulation/ kg hm−2 |
---|---|---|---|---|---|---|
2021 | CFN | 8.45 ± 0.63 b | 25.39 ± 2.40 a | 75.03 ± 4.08 b | 14.46 ± 0.77 a | 123.32 ± 7.66 ab |
WSN | 10.82 ± 0.87 a | 23.14 ± 1.82 ab | 94.07 ± 5.98 a | 7.49 ± 0.57 b | 135.52 ± 9.15 a | |
WSN1 | 7.89 ± 0.53 b | 22.75 ± 2.09 b | 90.93 ± 8.70 a | 8.23 ± 0.41 b | 129.79 ± 11.52 a | |
WSN2 | 6.11 ± 0.50 c | 15.53 ± 1.17 c | 79.71 ± 5.87 b | 6.09 ± 0.47 c | 107.43 ± 7.96 b | |
2022 | CFN | 12.13 ± 0.98 a | 26.57 ± 1.78 a | 90.59 ± 5.95 a | 21.81 ± 1.71 a | 151.10 ± 10.32 a |
WSN | 12.71 ± 0.84 a | 25.29 ± 2.26 a | 95.58 ± 6.37 a | 13.63 ± 0.91 b | 147.21 ± 9.62 ab | |
WSN1 | 11.57 ± 0.73 ab | 24.21 ± 2.24 a | 91.19 ± 5.97 a | 9.46 ± 0.44 c | 136.43 ± 8.66 bc | |
WSN2 | 10.58 ± 0.95 b | 21.11 ± 1.67 b | 86.30 ± 7.50 a | 9.19 ± 0.70 c | 127.18 ± 10.75 c |
Year | Treatment | Nitrogen Application/ kg hm−2 | Nitrogen Use Efficiency/% | Rice Yield/kg hm−2 |
---|---|---|---|---|
2021 | CFN | 110 | 36.64 ± 1.31 b | 7569 ± 249 c |
WSN | 110 | 54.77 ± 4.32 a | 9749 ± 325 a | |
WSN1 | 99 | 54.32 ± 7.36 a | 9657 ± 602 a | |
WSN2 | 88 | 38.14 ± 3.66 b | 8458 ± 364 b | |
2022 | CFN | 110 | 55.21 ± 3.13 a | 9139 ± 269 b |
WSN | 110 | 58.78 ± 4.68 a | 9558 ± 364 a | |
WSN1 | 99 | 58.64 ± 4.06 a | 9282 ± 323 ab | |
WSN2 | 88 | 55.76 ± 6.54 a | 8863 ± 492 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; Zhang, Z.; Chen, P.; Qi, Z.; Nie, T.; Zhang, Z.; Sun, D.; Du, S.; Zhou, X. The Effect of Deep Placement of Basal Nitrogen Fertilizer on Gaseous Nitrogen Losses and Nitrogen Use Efficiency of Paddy Fields under Water-Saving Irrigation in Northeast China. Agronomy 2023, 13, 842. https://doi.org/10.3390/agronomy13030842
Li T, Zhang Z, Chen P, Qi Z, Nie T, Zhang Z, Sun D, Du S, Zhou X. The Effect of Deep Placement of Basal Nitrogen Fertilizer on Gaseous Nitrogen Losses and Nitrogen Use Efficiency of Paddy Fields under Water-Saving Irrigation in Northeast China. Agronomy. 2023; 13(3):842. https://doi.org/10.3390/agronomy13030842
Chicago/Turabian StyleLi, Tiecheng, Zhongxue Zhang, Peng Chen, Zhijuan Qi, Tangzhe Nie, Zuohe Zhang, Di Sun, Sicheng Du, and Xin Zhou. 2023. "The Effect of Deep Placement of Basal Nitrogen Fertilizer on Gaseous Nitrogen Losses and Nitrogen Use Efficiency of Paddy Fields under Water-Saving Irrigation in Northeast China" Agronomy 13, no. 3: 842. https://doi.org/10.3390/agronomy13030842
APA StyleLi, T., Zhang, Z., Chen, P., Qi, Z., Nie, T., Zhang, Z., Sun, D., Du, S., & Zhou, X. (2023). The Effect of Deep Placement of Basal Nitrogen Fertilizer on Gaseous Nitrogen Losses and Nitrogen Use Efficiency of Paddy Fields under Water-Saving Irrigation in Northeast China. Agronomy, 13(3), 842. https://doi.org/10.3390/agronomy13030842