Short-Term Evapotranspiration Forecasting of Rubber (Hevea brasiliensis) Plantations in Xishuangbanna, Southwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Meteorological Data
2.2.2. The Observed ETc and Soil Water Content
2.3. Calculation of Reference Evapotranspiration
2.3.1. Hargreaves-Samani (HS) Model
2.3.2. Penman-Monteith Model
2.3.3. Soil Water Stress Coefficient (Ks) and Crop Coefficient (Kc)
2.4. Model Evaluation Criteria
2.5. Sensitivity Analysis
3. Results
3.1. Evaluation of Weather Forecast (Tmax, Tmin)
3.2. Calibration and Validation of the HS Model
3.3. The Analysis of ET0 Forecasts
3.4. Results of Calculated Soil Water Stress Coefficient (Ks) and Crop Coefficient (Kc)
3.5. Performance of ETc Forecasts
3.6. The Results of the Sensitivity Analysis
4. Discussion
5. Conclusions
- (1)
- The forecasting accuracy of ETc based on the “Kc-ET0” method in our research shows good performance and acceptable accuracy. The accuracy of ETc forecasting in the dry season is higher than that in the rainy season. The results indicate that the proposed method is considered suitable for ETc forecasting of rubber plantations in Xishuangbanna, Southwest China.
- (2)
- ETc forecast errors come from temperature forecasts, the Kc value, and the HS model. The HS model does not consider meteorological variables such as wind speed and relative humidity. Using the locally optimized values of parameters, the results of HS method are significantly improved. Compared to the temperature forecast, the error in the Kc value has a larger impact on the error in the ETc forecast. The accuracy of the Kc and forecasting performance for ETc can be improved if the observation time of the actual data series is increased.
- (3)
- Our study provides reference information for forecasting ETc using short-term weather forecast data and a theoretical basis for rubber plantations in Xishuangbanna. It is anticipated that the short-term forecasting approach of ETc for rubber plantations as demonstrated in this study can be applied in larger regions for water management and the water use efficiency of rubber plantations, allowing irrigation managers and farmers to make ET-based irrigation schedules to increase the efficiency of water applications based on the plant water requirements and soil processes.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, B.; Liu, M.; Cui, Y.; Shao, D.; Mao, Z.; Zhang, L.; Luo, Y. Assessing forecasting performance of daily reference evapotranspiration using public weather forecast and numerical weather prediction. J. Hydrol. 2020, 590, 125547. [Google Scholar] [CrossRef]
- Qiu, R.; Liu, C.; Cui, N.; Wu, Y.; Wang, Z.; Li, G. Evapotranspiration estimation using a modified Priestley-Taylor model in a rice-wheat rotation system. Agric. Water Manag. 2019, 224, 105755. [Google Scholar] [CrossRef]
- Kumagai, T.; Mudd, R.G.; Giambelluca, T.W.; Kobayashi, N.; Miyazawa, Y.; Lim, T.K.; Kasemsap, P. How do rubber (Hevea brasiliensis) plantations behave under seasonal water stress in northeastern Thailand and central Cambodia? Agric. For. Meteorol. 2015, 213, 10–22. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Chen, J.; Luo, Y.; Liu, F.; Luo, H.; Xie, H.; Cui, Y. Short-term daily forecasting of crop evapotranspiration of rice using public weather forecasts. Paddy Water Environ. 2018, 16, 397–410. [Google Scholar] [CrossRef]
- Ling, Z. Spatial-Temporal Variation Characteristics and Prediction Model of Evapotranspiration of Rubber Plantation in Xishuangbanna. Ph.D. Thesis, Yunnan Normal University, Kunming, China, 2021. [Google Scholar]
- Tan, Z.; Zhang, Y.; Song, Q.; Liu, W.; Deng, X.; Tang, J.; Deng, Y.; Zhou, W.; Yang, L.; Yu, G.; et al. Rubber plantations act as water pumps in tropical China. Geophys. Res. Lett. 2011, 38, L24406. [Google Scholar] [CrossRef] [Green Version]
- Giambelluca, T.W.; Mudd, R.G.; Liu, W.; Ziegler, A.D.; Kobayashi, N.; Kumagai, T.; Miyazawa, Y.; Lim, T.K.; Huang, M.; Fox, J.; et al. Evapotranspiration of rubber (Hevea brasiliensis) cultivated at two plantation sites in Southeast Asia. Water Resour. Res. 2016, 52, 660–679. [Google Scholar] [CrossRef] [Green Version]
- Mohan, M.M.P.; Kanchirapuzha, R.; Varma, M.R.R. Review of approaches for the estimation of sensible heat flux in remote sensing-based evapotranspiration models. J. Appl. Remote Sens. 2020, 14, 041501. [Google Scholar] [CrossRef]
- Kalua, M.; Rallings, A.M.; Booth, L.; Medellín-Azuara, J.; Carpin, S.; Viers, J.H. sUAS Remote Sensing of Vineyard Evapotranspiration Quantifies Spatiotemporal Uncertainty in Satellite-Borne ET Estimates. Remote Sens. 2020, 12, 3251. [Google Scholar] [CrossRef]
- Niu, C.J.; Deng, W.; Gu, S.X.; Chen, G.; Liu, S.S. Real-time irrigation forecasting for ecological water in artificial wetlands in the Dianchi Basin. J. Inf. Optim. Sci. 2017, 38, 1181–1196. [Google Scholar] [CrossRef]
- Pelosi, A.; Villani, P.; Bolognesi, S.; Chirico, G.; D’Urso, G. Predicting Crop Evapotranspiration by Integrating Ground and Remote Sensors with Air Temperature Forecasts. Sensors 2020, 20, 1740. [Google Scholar] [CrossRef] [Green Version]
- Rochester, E.W.; Busch, C.D. An irrigation scheduling model which incorporates rainfall predictions. J. Am. Water Resour. Assoc. 1972, 8, 608–613. [Google Scholar] [CrossRef]
- Zhang, L.; Cui, Y.; Xiang, Z.; Zheng, S.; Traore, S.; Luo, Y. Short-term forecasting of daily crop evapotranspiration using the ‘Kc-ET0’ approach and public weather forecasts. Arch. Agron. Soil Sci. 2018, 7, 903–915. [Google Scholar] [CrossRef]
- Silva, D.; Meza, F.; Varas, E. Estimating reference evapotranspiration (ET0) using numerical weather forecast data in central Chile. J. Hydrol. 2010, 382, 64–71. [Google Scholar] [CrossRef]
- Gu, S.; Zhao, Z.; Chen, J.; Chen, J.; Zhang, L. Daily potential evapotranspiration and meteorological drought prediction based on high-dimensional Copula function. Trans. CSAE 2020, 36, 151–159. [Google Scholar] [CrossRef]
- Cunha, A.C.; Filho, L.R.A.G.; Tanaka, A.A.; Goes, B.C.; Putti, F.F. Influence of the estimated global solar radiation on the reference evapotranspiration obtained through the Penman-monteith FAO-56 method. Agric. Water Manag. 2021, 243, 106491. [Google Scholar] [CrossRef]
- Elbeltagi, A.; Nagy, A.; Mohammed, S.; Pande, C.B.; Kumar, M.; Bhat, S.A.; Zsembeli, J.; Huzsvai, L.; Tamás, J.; Kovács, E.; et al. Combination of Limited Meteorological Data for Predicting Reference Crop Evapotranspiration Using Artificial Neural Network Method. Agronomy 2022, 12, 516. [Google Scholar] [CrossRef]
- Allen, R.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements; FAO Irrigation & Drainage Paper No. 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Sarlak, N.; Bagcaci, S.C. The Assesment of Empirical Potential Evapotranspiration Methods: A Case Study of Konya Closed Basin. Teknik Dergi. 2020, 31, 9755–9772. [Google Scholar]
- Aydin, Y. An Evaluation of the Hargreaves-Samani Method for Estimating Evapotranspiration Under Semi-Arid Conditions. Philipp. Agric. Sci. 2021, 104, 310–317. [Google Scholar]
- Irmak, S.; Irmak, A.; Allen, R.; Jones, J. Solar and net radiation-based equations to estimate reference evapotranspiration in humid climate. ASCE J. Irrig. Drain. Eng. 2003, 129, 336–347. [Google Scholar] [CrossRef]
- Smith, M. CLIMWAT for CROPWAT: A Climatic Database for Irrigation Planning and Management; FAO Irrigation and Drainage Paper No. 49; FAO: Rome, Italy, 1993; Available online: http://www.fao.org/land-water/databases-and-software/climwat-for-cropwat/en/ (accessed on 17 August 2019).
- Kukal, M.; Irmak, S.; Walia, H.; Odhiambo, L. Spatio-temporal Calibration of Hargreaves-Samani Model to Estimate Reference Evapotranspiration across U.S. High Plains. Agron. J. 2020, 112, 4232–4248. [Google Scholar] [CrossRef]
- Qian, K.; Chen, M.; Shen, Y.; Hu, X.; Jin, L.; Liu, S.; Cui, Y.; Luo, Y. Comparison and Sensitivity Analysis of Reference Crop Evapotranspiration Prediction Models in the Sanjiang Plain Based on Public Weather Forecasting. Water Sav. Irrig. 2021, 308, 62–67. (In Chinese) [Google Scholar] [CrossRef]
- Ferreira, L.B.; Duarte, A.B.; Araujo, E.D.; Ferreira, T.D.; da Cunha, F.F. Reference evapotranspiration estimated from air temperature using the mars regression technique. Biosci. J. 2018, 34, 674–682. [Google Scholar] [CrossRef] [Green Version]
- Santos, J.E.O.; Cunha, F.F.; da Filgueiras, R.; Silva, G.H.; da Castro Teixeira, A.H.; de Santos Silva, F.C.; dos Sediyama, G.C. Performance of SAFER evapotranspiration using missing meteorological data. Agric. Water Manag. 2020, 233, 106076. [Google Scholar] [CrossRef]
- Ballesteros, R.; Ortega, J.F.; Moreno, M.Á. FORETo: New software for reference evapotranspiration forecasting. J. Arid. Environ. 2016, 124, 128–141. [Google Scholar] [CrossRef]
- Qiu, R.; Luo, Y.; Wu, J.; Zhang, B.; Liu, Z.; Agathokleous, E.; Yang, X.; Hu, W.; Clothier, B. Short–term forecasting of daily evapotranspiration from rice using a modified Priestley–Taylor model and public weather forecasts. Agric. Water Manag. 2023, 277, 108123. [Google Scholar] [CrossRef]
- Luo, Y.; Chang, X.; Peng, S.; Khan, S.; Wang, W.; Zheng, Q.; Cai, X. Short-term forecasting of daily reference evapotranspiration using the hargreaves-samani model and temperatureforecasts. Agric. Water Manag. 2014, 136, 42–51. [Google Scholar] [CrossRef]
- Yang, Y.; Cui, Y.; Bai, K.; Luo, T.; Dai, J.; Wang, W.; Luo, Y. Short-term forecasting of daily reference evapotranspiration using the reduced-set PenmanMonteith model and public weather forecasts. Agric. Water Manag. 2019, 211, 70–80. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, X.; Ge, J.; Zhang, J.; Traore, S.; Fipps, G.; Luo, Y. Evaluation of Five Equations for Short-Term Reference Evapotranspiration Forecasting Using Public Temperature Forecasts for North China Plain. Water 2022, 14, 2888. [Google Scholar] [CrossRef]
- Vijayakumar, K.; Dey, S.; Chandrasekhar, T.; Devakumar, A.; Sethuraj, M. Irrigation requirement of rubber trees (Hevea brasiliensis) in the subhumid tropics. Agric. Water Manag. 1998, 35, 245–259. [Google Scholar] [CrossRef]
- Ziegler, A.; Fox, J.; Xu, J. The rubber juggernaut. Science 2009, 324, 1024–1025. [Google Scholar] [CrossRef]
- Huang, X.; Li, X.; Mu, X.; Yuan, H.; Liang, Q.; Yao, P.; Yu, F. Study on regional vegetation water suitability: Based on the review of seasonal drought in Southwest China. Bull. Soil Water Conserv. 2014, 34, 301–307. [Google Scholar]
- Chiarelli, D.D.; Passera, C.; Rulli, M.C.; Rosa, L.; Ciraolo, G.; D’Odorico, P. Hydrological consequences of natural rubber plantations in Southeast Asia. Land Degrad. Dev. 2020, 31, 2060–2073. [Google Scholar] [CrossRef]
- Lin, Y.X.; Zhang, Y.P.; Zhao, W.; Zhang, X.; Dong, Y.X.; Fei, X.H.; Li, J. Comparison of transpiration characteristics of rubber forests with different stand ages. Chin. J. Ecol. 2016, 35, 855–863. [Google Scholar] [CrossRef]
- Kobayashi, N.; Kumagai, T.; Miyazawa, Y.; Matsumoto, K.; Tateishi, M.; Lim, T.K.; Mudd, R.G.; Ziegler, A.D.; Giambelluca, T.W.; Yin, S. Transpiration characteristics of a rubber plantation in central Cambodia. Tree Physiol. 2014, 34, 285–301. [Google Scholar] [CrossRef] [Green Version]
- Gonkhamdee, S.; Maeght, J.-L.; Do, F.C.; Pierret, A. Growth dynamics of fine Hevea brasiliensis roots along a 4.5-m soil profile. Khon Kaen Agric. J. 2009, 37, 265–276. [Google Scholar]
- Gu, S.; He, D.; Cui, Y.; Xie, X.; Li, Y. Spatial variability of irrigation factors and their relationships with “corridor-barrier” functions in the Longitudinal Range-Gorge Region. Chin. Sci. Bull. 2007, 52, 33–41. [Google Scholar] [CrossRef]
- Mokhtar, A.; He, H.M.; Alsafadi, K.; Mohammed, S.; Ayantobo, O.O.; Elbeltagi, A.; Abdelwahab, O.M.M.; Zhao, H.F.; Quan, Y.; Abdo, G.H.; et al. Assessment of the effects of spatiotemporal characteristics of drought on crop yields in southwest China. Int. J. Climatol. 2021, 42, 3056–3075. [Google Scholar] [CrossRef]
- Seneviratne, S.; Corti, T.; Davin, E.; Hirschi, M.; Jaeger, E.; Lehner, I.; Orlowsky, B.; Teuling, A. Investigating soil moisture-climate interactions in a changing climate: A review. Earth Sci. Rev. 2010, 99, 125–161. [Google Scholar] [CrossRef]
- Zhou, W.; Wu, Z.; He, Q.; Lu, C.; Jie, M. Rubber planting and drinking water shortage: A case of Goniu village in Xishuangbanna. Chin. J. Ecol. 2011, 30, 1570–1574. [Google Scholar] [CrossRef]
- Chiarelli, D.D.; Rosa, L.; Rulli, M.C.; D’Odorico, P. The water-land-food nexus of natural rubber production. J. Clean. Prod. 2018, 172, 1739–1747. [Google Scholar] [CrossRef] [Green Version]
- Mangmeechai, A. Effects of Rubber Plantation Policy on Water Resources and Landuse Change in the Northeastern Region of Thailand. Geogr. Environ. Sustain. 2020, 13, 73–83. [Google Scholar] [CrossRef]
- Hargreaves, G.H.; Samani, Z.A. Reference Crop Evapotranspiration from Temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Hargreaves, G.H.; Allen, R.G. History and Evaluation of Hargreaves Evapotranspiration Equation. J. Irrig. Drain. Eng. 1985, 129, 53–63. [Google Scholar] [CrossRef]
- Paredes, P.; Pereira, L.S.; Almorox, J.; Darouich, H. Reference grass evapotranspiration with reduced data sets: Parameterization of the FAO Penman-Monteith temperature approach and the Hargeaves-Samani equation using local climatic variables. Agric. Water Manag. 2020, 240, 106210. [Google Scholar] [CrossRef]
- Hu, Q.; Yang, D.; Wang, Y.; Yang, H. Global Calibration and Applicability Evaluation of Hargreaves Equation. Adv. Water Sci. 2011, 22, 160–167. [Google Scholar] [CrossRef]
- Martí, P.; Zarzo, M.; Vanderlinden, K.; Girona, J. Parametric expressions for the adjusted Hargreaves coefficient in Eastern Spain. J. Hydrol. 2015, 529, 1713–1724. [Google Scholar] [CrossRef]
- Morales-Salinas, L.; Ortega-Farías, S.; Riveros-Burgos, C.; Neira-Román, J.; Carrasco-Benavides, M.; López-Olivari, R. Monthly calibration of Hargreaves-Samani equation using remote sensing and topoclimatology in central-southern Chile. Int. J. Remote Sens. 2017, 38, 7497–7513. [Google Scholar] [CrossRef]
- Jensen, M.E.; Burman, R.D.; Allen, R.G. Evapotranspiration and Irrigation Water Requirements; American Society of Civil Engineers: Reston, VA, USA, 2016. [Google Scholar] [CrossRef]
- Allen, R.G.; Smith, M.; Perrier, A.; Pereira, L.S. An update for the defnition of reference evapotranspiration. J. Environ. Sci. Health 1994, 43, 1–35. [Google Scholar]
- Singh, P.K.; Patel, S.K.; Jayswal, P.; Chinchorkar, S.S. Usefulness of class A Pan coefcient models for computation of reference evapotranspiration for a semi-arid region. Mausam 2014, 65, 521–528. [Google Scholar] [CrossRef]
- Arellano, M.G.; Irmak, S. Reference (Potential) Evapotranspiration. I: Comparison of Temperature, Radiation, and Combination-Based Energy Balance Equations in Humid, Subhumid, Arid, Semiarid, and Mediterranean-Type Climates. J. Irrig. Drain. Eng. 2016, 142, 04015065. [Google Scholar] [CrossRef]
- Luo, Y.; Khan, S.; Cui, Y.; Peng, S. Application of system dynamics approach for time varying water balance in aerobic paddy fields. Paddy Water Environ. 2009, 7, 1–9. [Google Scholar] [CrossRef]
- Allen, R. Using the FAO-56 dual crop coefficient method over an irrigated region as part of an evapotranspiration intercomparison study. J. Hydrol. 2000, 229, 27–41. [Google Scholar] [CrossRef]
- Singh, V.P.; Xu, C.-Y. Sensitivity of mass-transfer-based evaporation equations to errors in daily and monthly input data. Hydrol. Process. 1997, 11, 1465–1473. [Google Scholar] [CrossRef]
- Xiong, Y.; Luo, Y.; Wang, Y.; Traore, S.; Xu, J.; Jiao, X.; Fipps, G. Forecasting daily reference evapotranspiration using the Blaney–Criddle model and temperature forecasts. Arch. Agron. Soil Sci. 2016, 62, 790–805. [Google Scholar] [CrossRef]
- Zhang, L.; Traore, S.; Cui, Y.; Luo, Y.; Zhu, G.; Liu, B.; Fipps, G.; Karthikeyan, R.; Singh, V. Assessment of spatiotemporal variability of reference evapotranspiration and controlling climate factors over decades in China using geospatial techniques. Agric. Water Manag. 2019, 213, 499–511. [Google Scholar] [CrossRef]
- Awal, R.; Habibi, H.; Fares, A.; Deb, S. Estimating Reference Crop Evapotranspiration under Limited Climate Data in West Texas. J. Hydrol. Reg. Stud. 2020, 28, 100677. [Google Scholar] [CrossRef]
- Rodrigues, G.C.; Braga, R.P. Estimation of Reference Evapotranspiration during the Irrigation Season Using Nine TemperatureBased Methods in a Hot-Summer Mediterranean Climate. Agriculture 2021, 11, 124. [Google Scholar] [CrossRef]
- Perera, K.; Western, A.; Nawarathna, B.; George, B. Forecasting daily reference evapotranspiration for Australia using numerical weather prediction outputs. Agric. For. Meteorol. 1997, 194, 50–63. [Google Scholar] [CrossRef]
- Ling, Z.; Shi, Z.; Gu, S.; He, G.; Liu, X.; Wang, T.; Zhu, W.; Gao, L. Estimation of Applicability of Soil Model for Rubber (Hevea brasiliensis) Plantations in Xishuangbanna. Southwest China Water 2022, 14, 295. [Google Scholar] [CrossRef]
Planting Year | Location | Altitude (m) | Slope (°) | Plot Area (m × m) | Mean Stem Diameter (cm) | Tree Height (m) | Planting Density (Trees/ha) |
---|---|---|---|---|---|---|---|
2001 | 21°34′10″ N 101°35′24″ E | 726 | 22 | 200 × 200 | 17 ± 2 | 11.58 ± 2.3 | 300 ± 50 |
Lead Time (Day) | Tmax | Tmin | ||||
---|---|---|---|---|---|---|
MAE (°C) | RMSE (°C) | R | MAE (°C) | RMSE (°C) | R | |
1 | 1.74 | 2.37 | 0.84 | 1.39 | 1.87 | 0.93 |
2 | 1.76 | 2.43 | 0.85 | 1.42 | 1.88 | 0.93 |
3 | 1.76 | 2.45 | 0.84 | 1.49 | 1.96 | 0.91 |
4 | 1.77 | 2.49 | 0.83 | 1.84 | 2.52 | 0.85 |
5 | 1.93 | 2.71 | 0.81 | 1.77 | 2.33 | 0.87 |
6 | 2.01 | 2.89 | 0.77 | 1.92 | 2.41 | 0.83 |
7 | 2.10 | 3.16 | 0.75 | 1.91 | 2.44 | 0.83 |
Average | 1.86 | 2.64 | 0.81 | 1.68 | 2.20 | 0.88 |
Original (2000–2015) | Calibration Period (2000–2012) | Validation Period (2013–2015) | |||||||
---|---|---|---|---|---|---|---|---|---|
MAE (mm) | RMSE (mm d−1) | R | MAE (mm) | RMSE (mm d−1) | R | MAE (mm) | RMSE (mm d−1) | R | |
HS | 1.20 | 1.30 | 0.88 | 0.36 | 0.45 | 0.89 | 0.35 | 0.46 | 0.91 |
Lead Time (Day) | Dry Season | Rainy Season | ||||
---|---|---|---|---|---|---|
MAE (mm d−1) | RMSE (mm d−1) | R | MAE (mm d−1) | RMSE (mm d−1) | R | |
1 | 0.52 | 0.62 | 0.91 | 0.47 | 0.58 | 0.83 |
2 | 0.43 | 0.54 | 0.90 | 0.49 | 0.60 | 0.77 |
3 | 0.45 | 0.56 | 0.89 | 0.50 | 0.62 | 0.76 |
4 | 0.48 | 0.60 | 0.88 | 0.51 | 0.63 | 0.75 |
5 | 0.48 | 0.61 | 0.87 | 0.51 | 0.63 | 0.74 |
6 | 0.52 | 0.65 | 0.85 | 0.57 | 0.72 | 0.72 |
7 | 0.52 | 0.65 | 0.85 | 0.57 | 0.72 | 0.69 |
Average | 0.49 | 0.60 | 0.88 | 0.52 | 0.64 | 0.75 |
Lead Time (d) | Dry Season | Rainy Season | ||||
---|---|---|---|---|---|---|
MAE (mm d−1) | RMSE (mm d−1) | R | MAE (mm d−1) | RMSE (mm d−1) | R | |
1 | 0.64 | 0.85 | 0.82 | 0.57 | 0.73 | 0.70 |
2 | 0.61 | 0.82 | 0.80 | 0.59 | 0.75 | 0.69 |
3 | 0.62 | 0.83 | 0.80 | 0.60 | 0.77 | 0.68 |
4 | 0.62 | 0.84 | 0.81 | 0.63 | 0.81 | 0.65 |
5 | 0.61 | 0.82 | 0.81 | 0.64 | 0.82 | 0.65 |
6 | 0.63 | 0.84 | 0.80 | 0.65 | 0.83 | 0.65 |
7 | 0.65 | 0.85 | 0.79 | 0.65 | 0.83 | 0.65 |
Average | 0.63 | 0.84 | 0.80 | 0.62 | 0.79 | 0.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ling, Z.; Shi, Z.; Xia, T.; Gu, S.; Liang, J.; Xu, C.-Y. Short-Term Evapotranspiration Forecasting of Rubber (Hevea brasiliensis) Plantations in Xishuangbanna, Southwest China. Agronomy 2023, 13, 1013. https://doi.org/10.3390/agronomy13041013
Ling Z, Shi Z, Xia T, Gu S, Liang J, Xu C-Y. Short-Term Evapotranspiration Forecasting of Rubber (Hevea brasiliensis) Plantations in Xishuangbanna, Southwest China. Agronomy. 2023; 13(4):1013. https://doi.org/10.3390/agronomy13041013
Chicago/Turabian StyleLing, Zhen, Zhengtao Shi, Tiyuan Xia, Shixiang Gu, Jiaping Liang, and Chong-Yu Xu. 2023. "Short-Term Evapotranspiration Forecasting of Rubber (Hevea brasiliensis) Plantations in Xishuangbanna, Southwest China" Agronomy 13, no. 4: 1013. https://doi.org/10.3390/agronomy13041013
APA StyleLing, Z., Shi, Z., Xia, T., Gu, S., Liang, J., & Xu, C. -Y. (2023). Short-Term Evapotranspiration Forecasting of Rubber (Hevea brasiliensis) Plantations in Xishuangbanna, Southwest China. Agronomy, 13(4), 1013. https://doi.org/10.3390/agronomy13041013