Influence of Crop Residue Management and Soil Tillage Method on Reducing the Carbon Footprint of Winter Wheat Production in the Salt-Affected Arable Land in the North China Plain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Ground Measurement of Gain Yield and Soil Attributes
2.3. Direct GHG Emissions
2.4. Indirect GHG Emissions
2.5. Calculation of Carbon Footprint
2.6. Statistical Analysis
3. Results
3.1. The Contributors to Carbon Footprint
3.1.1. N2O Emission
3.1.2. Carbon Sequestration
3.1.3. Wheat Grain Yield
3.2. The Carbon Footprint in Wheat Production
3.2.1. Carbon Footprint per Unit Area in Wheat Production
3.2.2. Carbon Footprint per Unit Yield in Wheat Production
3.3. Correlations between Carbon Footprint and Contributors
3.3.1. The Relative Contributions of Factors to Carbon Footprint per Unit Area in Wheat Production
3.3.2. The Relative Contributions of Contributors to the Carbon Footprint per Unit Yield of Wheat Production
4. Discussion
4.1. Crop Residue Management Affecting Carbon Footprint Contributors
4.1.1. Crop Residue Management Affecting N2O Emission
4.1.2. Crop Residue Management Affecting Carbon Sequestration
4.1.3. Crop Residue Management Affecting Wheat Yield
4.2. Carbon Footprint per Unit Area and Carbon Footprint per Unit Yield of Wheat Production in Salt-Affected and Non-Saline Soil
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate change 2021: The physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change. In Intergovernmental POCC; Cambridge University Press: New York, NY, USA, 2021. [Google Scholar]
- NDRC. Second Biennial Update on the Climate Change in the People’s Republic of China; NDRC: Beijing, China, 2018.
- ISO. Greenhouse Gases–Carbon Footprint of Products–Requirements and Guidelines for Quantification and Communication; ISO: Switzerland, Geneva, 2013; Volume 1. [Google Scholar]
- He, L.; Zhang, A.; Wang, X.; Li, J.; Hussain, Q. Effects of different tillage practices on the carbon footprint of wheat and maize production in the Loess Plateau of China. J. Clean. Prod. 2019, 234, 297–305. [Google Scholar] [CrossRef]
- Gan, Y.; Liang, C.; Chai, Q.; Lemke, R.L.; Campbell, C.A.; Zentner, R.P. Improving farming practices reduces the carbon footprint of spring wheat production. Nat. Commun. 2014, 5, 5012. [Google Scholar] [CrossRef]
- Dhaliwal, S.S.; Naresh, R.K.; Gupta, R.K.; Panwar, A.S.; Mahajan, N.C.; Singh, R.; Mandal, A. Effect of tillage and straw return on carbon footprints, soil organic carbon fractions and soil microbial community in different textured soils under rice–wheat rotation: A review. Rev. Environ. Sci. Bio/Technol. 2020, 19, 103–115. [Google Scholar] [CrossRef]
- Alhajj Ali, S.; Tedone, L.; Verdini, L.; De Mastro, G. Effect of different crop management systems on rainfed durum wheat greenhouse gas emissions and carbon footprint under Mediterranean conditions. J. Clean. Prod. 2017, 140, 608–621. [Google Scholar] [CrossRef]
- Bajgai, Y.; Yeshey, Y.; De Mastro, G.; Ghimiray, M.; Chhogyel, N.; Tshewang, S.; Alhajj Ali, S. Influence of nitrogen application on wheat crop performance, soil properties, greenhouse gas emissions and carbon footprint in central Bhutan. Environ. Dev. 2019, 32, 100469. [Google Scholar] [CrossRef]
- Bai, J.; Li, Y.; Zhang, J.; Xu, F.; Bo, Q.; Wang, Z.; Li, Z.; Li, S.; Shen, Y.; Yue, S. Straw returning and one-time application of a mixture of controlled release and solid granular urea to reduce carbon footprint of plastic film mulching spring maize. J. Clean. Prod. 2021, 280, 124478. [Google Scholar] [CrossRef]
- Yang, R.; Su, Y.; Kong, J. Effect of tillage, cropping, and mulching pattern on crop yield, soil C and N accumulation, and carbon footprint in a desert oasis farmland. Soil Sci. Plant Nutr. 2017, 63, 599–606. [Google Scholar] [CrossRef]
- Xie, W.; Wu, L.; Zhang, Y.; Wu, T.; Li, X.; Ouyang, Z. Effects of straw application on coastal saline topsoil salinity and wheat yield trend. Soil Tillage Res. 2017, 169, 1–6. [Google Scholar] [CrossRef]
- Shi, Y.; Liu, X.; Zhang, Q.; Li, G.; Wang, P. Biochar rather than organic fertilizer mitigated the global warming potential in a saline-alkali farmland. Soil Tillage Res. 2022, 219, 105337. [Google Scholar] [CrossRef]
- Zhang, L.; Song, L.; Wang, B.; Shao, H.; Zhang, L.; Qin, X. Co-effects of salinity and moisture on CO2 and N2O emissions of laboratory-incubated salt-affected soils from different vegetation types. Geoderma 2018, 332, 109–120. [Google Scholar] [CrossRef]
- Wong, V.N.L.; Dalal, R.C.; Greene, R.S.B. Carbon dynamics of sodic and saline soils following gypsum and organic material additions: A laboratory incubation. Appl. Soil Ecol. 2009, 41, 29–40. [Google Scholar] [CrossRef]
- Zhang, Z.S.; Chen, J.; Liu, T.Q.; Cao, C.G.; Li, C.F. Effects of nitrogen fertilizer sources and tillage practices on greenhouse gas emissions in paddy fields of central China. Atmos. Environ. 2016, 144, 274–281. [Google Scholar] [CrossRef]
- Haj-Amor, Z.; Araya, T.; Kim, D.; Bouri, S.; Lee, J.; Ghiloufi, W.; Yang, Y.; Kang, H.; Jhariya, M.K.; Banerjee, A.; et al. Soil salinity and its associated effects on soil microorganisms, greenhouse gas emissions, crop yield, biodiversity and desertification: A review. Sci. Total Environ. 2022, 843, 156946. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, U.; Thapa, R.; Desutter, T.; He, Y.; Chatterjee, A. Saline–Sodic Soils: Potential Sources of Nitrous Oxide and Carbon Dioxide Emissions? Pedosphere 2017, 27, 65–75. [Google Scholar] [CrossRef]
- Zhang, L.; Shao, H.; Wang, B.; Zhang, L.; Qin, X. Effects of nitrogen and phosphorus on the production of carbon dioxide and nitrous oxide in salt-affected soils under different vegetation communities. Atmos. Environ. 2019, 204, 78–88. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, Y.; Wang, J.; Pang, H.; Li, Y. Buried straw layer plus plastic mulching reduces soil salinity and increases sunflower yield in saline soils. Soil Tillage Res. 2016, 155, 363–370. [Google Scholar] [CrossRef]
- Ning, J.; Lou, S.; Guo, Y. Appropriate N fertilizer addition mitigates N2O emissions from forage crop fields. Sci. Total Environ. 2022, 829, 154628. [Google Scholar] [CrossRef]
- Lin, X.W.; Xie, Z.B.; Zheng, J.Y.; Liu, Q.; Bei, Q.C.; Zhu, J.G. Effects of biochar application on greenhouse gas emissions, carbon sequestration and crop growth in coastal saline soil. Eur. J. Soil Sci. 2015, 66, 329–338. [Google Scholar] [CrossRef]
- Yu, Y.; Zhao, C.; Zheng, N.; Jia, H.; Yao, H. Interactive effects of soil texture and salinity on nitrous oxide emissions following crop residue amendment. Geoderma 2019, 337, 1146–1154. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef]
- Zhao, X.M.; He, L.; Zhang, Z.D.; Wang, H.B.; Zhao, L.P. Simulation of accumulation and mineralization (CO2 release) of organic carbon in chernozem under different straw return ways after corn harvesting. Soil Tillage Res. 2016, 156, 148–154. [Google Scholar] [CrossRef]
- Luo, Z.; Wang, E.; Sun, O.J. Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments. Agric. Ecosyst. Environ. 2010, 139, 224–231. [Google Scholar] [CrossRef]
- Tanveer, S.K.; Wen, X.; Lu, X.L.; Zhang, J.; Liao, Y.; Bond-Lamberty, B. Tillage, mulch and N fertilizer affect emissions of CO2 under the rain fed condition. PLoS ONE 2013, 8, e72140. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Lu, M.; Cui, J.; Li, B.; Fang, C. Effects of straw carbon input on carbon dynamics in agricultural soils: A meta-analysis. Glob. Chang. Biol. 2014, 20, 1366–1381. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Hu, M.; Shi, J.; Tian, X.; Wu, J. Integrated wheat-maize straw and tillage management strategies influence economic profit and carbon footprint in the Guanzhong Plain of China. Sci. Total Environ. 2021, 767, 145347. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, H.; Lu, X.; Wang, M.; Chu, Q.; Wen, X.; Chen, F. Lowering carbon footprint of winter wheat by improving management practices in North China Plain. J. Clean. Prod. 2016, 112, 149–157. [Google Scholar] [CrossRef]
- Schumacher, B.A. Methods for the Determination of Total Organic Carbon (TOC) in Soils and Sediments; U. S. Environmental Protection Agency, Ecological Risk Assesment Support Center: Washington, DC, USA, 2002. [Google Scholar]
- Díaz-Zorita, M.; Grosso, G.A. Effect of soil texture, organic carbon and water retention on the compactability of soils from the Argentinean pampas. Soil Tillage Res. 2000, 54, 121–126. [Google Scholar] [CrossRef]
- Gong, H.; Li, J.; Sun, M.; Xu, X.; Ouyang, Z. Lowering carbon footprint of wheat-maize cropping system in North China Plain: Through microbial fertilizer application with adaptive tillage. J. Clean. Prod. 2020, 268, 122255. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhong, Y.; Yang, J.; Wu, Y.; Li, H.; Zheng, L. Effect of nitrogen fertilizer rates on carbon footprint and ecosystem service of carbon sequestration in rice production. Sci. Total Environ. 2019, 670, 210–217. [Google Scholar] [CrossRef]
- IPCC. Climate change 2013: The physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change. In Intergovernmental POCC; Cambridge University Press: New York, NY, USA, 2013. [Google Scholar]
- Zheng, N.; Yu, Y.; Li, Y.; Ge, C.; Chapman, S.J.; Yao, H. Can aged biochar offset soil greenhouse gas emissions from crop residue amendments in saline and non-saline soils under laboratory conditions? Sci. Total Environ. 2022, 806, 151256. [Google Scholar] [CrossRef]
- Cayuela, M.L.; Sánchez-Monedero, M.A.; Roig, A.; Hanley, K.; Enders, A.; Lehmann, J. Biochar and denitrification in soils: When, how much and why does biochar reduce N2O emissions? Sci. Rep. 2013, 3, 1732. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Dong, W.; Jia, S.; Liu, Q.; Li, Y.; Hossain, M.E.; Liu, E.; Kuzyakov, Y. Transformations of N derived from straw under long-term conventional and no-tillage soils: A 15N labelling study. Sci. Total Environ. 2021, 786, 147428. [Google Scholar] [CrossRef]
- Yan, D.; Long, X.; Ye, L.; Zhang, G.; Hu, A.; Wang, D.; Ding, S. Effects of salinity on microbial utilization of straw carbon and microbial residues retention in newly reclaimed coastal soil. Eur. J. Soil Biol. 2021, 107, 103364. [Google Scholar] [CrossRef]
- Hu, N.; Chen, Q.; Zhu, L. The Responses of Soil N2O Emissions to Residue Returning Systems: A Meta-Analysis. Sustainability 2019, 11, 748. [Google Scholar] [CrossRef]
- Tenesaca, C.G.; Al-Kaisi, M.M. In-field management of corn cob and residue mix: Effect on soil greenhouse gas emissions. Appl. Soil Ecol. 2015, 89, 59–68. [Google Scholar] [CrossRef]
- Li, J.; Li, H.; Zhang, Q.; Shao, H.; Gao, C.; Zhang, X. Effects of fertilization and straw return methods on the soil carbon pool and CO2 emission in a reclaimed mine spoil in Shanxi Province, China. Soil Tillage Res. 2019, 195, 104361. [Google Scholar] [CrossRef]
- Zhang, W.; Zhou, G.; Li, Q.; Liao, N.; Guo, H.; Min, W.; Ma, L.; Ye, J.; Hou, Z. Saline water irrigation stimulate N2O emission from a drip-irrigated cotton field. Acta Agric. Scand. Sect. B Soil Plant Sci. 2016, 66, 141–152. [Google Scholar] [CrossRef]
- Rochette, P. No-till only increases N2O emissions in poorly-aerated soils. Soil Tillage Res. 2008, 101, 97–100. [Google Scholar] [CrossRef]
- Li, Y.; Duan, Y.; Wang, G.; Wang, A.; Shao, G.; Meng, X.; Hu, H.; Zhang, D. Straw alters the soil organic carbon composition and microbial community under different tillage practices in a meadow soil in Northeast China. Soil. Tillage Res. 2021, 208, 104879. [Google Scholar] [CrossRef]
- Kinoshita, R.; Schindelbeck, R.R.; van Es, H.M. Quantitative soil profile-scale assessment of the sustainability of long-term maize residue and tillage management. Soil Tillage Res. 2017, 174, 34–44. [Google Scholar] [CrossRef]
- Baker, J.M.; Ochsner, T.E.; Venterea, R.T.; Griffis, T.J. Tillage and soil carbon sequestration—What do we really know? Agric. Ecosyst. Environ. 2007, 118, 1–5. [Google Scholar] [CrossRef]
- Abbas, F.; Hammad, H.M.; Ishaq, W.; Farooque, A.A.; Bakhat, H.F.; Zia, Z.; Fahad, S.; Farhad, W.; Cerdà, A. A review of soil carbon dynamics resulting from agricultural practices. J. Environ. Manag. 2020, 268, 110319. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Yang, N.; Lu, C.; Qin, X.; Siddique, K.H.M. Soil organic carbon, total nitrogen, available nutrients, and yield under different straw returning methods. Soil Tillage Res. 2021, 214, 105171. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, L.; Fu, X.; Yan, J.; Wu, J.; Tsang, Y.; Le, Y.; Sun, Y. Salinity and nutrient contents of tidal water affects soil respiration and carbon sequestration of high and low tidal flats of Jiuduansha wetlands in different ways. Sci. Total Environ. 2016, 565, 637–648. [Google Scholar] [CrossRef]
- Jha, P.; Lakaria, B.L.; Biswas, A.K.; Saha, R.; Mahapatra, P.; Agrawal, B.K.; Sahi, D.K.; Wanjari, R.H.; Lal, R.; Singh, M.; et al. Effects of carbon input on soil carbon stability and nitrogen dynamics. Agric. Ecosyst. Environ. 2014, 189, 36–42. [Google Scholar] [CrossRef]
- Liu, T.Q.; Li, S.H.; Guo, L.G.; Cao, C.G.; Li, C.F.; Zhai, Z.B.; Zhou, J.Y.; Mei, Y.M.; Ke, H.J. Advantages of nitrogen fertilizer deep placement in greenhouse gas emissions and net ecosystem economic benefits from no-tillage paddy fields. J. Clean. Prod. 2020, 263, 121322. [Google Scholar] [CrossRef]
- Van den Putte, A.; Govers, G.; Diels, J.; Gillijns, K.; Demuzere, M. Assessing the effect of soil tillage on crop growth: A meta-regression analysis on European crop yields under conservation agriculture. Eur. J. Agron. 2010, 33, 231–241. [Google Scholar] [CrossRef]
- Dachraoui, M.; Sombrero, A. Effect of tillage systems and different rates of nitrogen fertilization on the carbon footprint of irrigated maize in a semiarid area of Castile and Leon, Spain. Soil Tillage Res. 2020, 196, 104472. [Google Scholar] [CrossRef]
- Chen, Z.; Xu, C.; Ji, L.; Feng, J.; Li, F.; Zhou, X.; Fang, F. Effects of multi-cropping system on temporal and spatial distribution of carbon and nitrogen footprint of major crops in China. Glob. Ecol. Conserv. 2020, 22, e895. [Google Scholar] [CrossRef]
- Cui, H.; Wang, Y.; Luo, Y.; Jin, M.; Chen, J.; Pang, D.; Li, Y.; Wang, Z. Tillage strategies optimize SOC distribution to reduce carbon footprint. Soil Tillage Res. 2022, 223, 105499. [Google Scholar] [CrossRef]
- Liu, Q.; Xu, C.; Han, S.; Li, X.; Kan, Z.; Zhao, X.; Zhang, H. Strategic tillage achieves lower carbon footprints with higher carbon accumulation and grain yield in a wheat-maize cropping system. Sci. Total Environ. 2021, 798, 149220. [Google Scholar] [CrossRef] [PubMed]
- Yadav, G.S.; Babu, S.; Das, A.; Mohapatra, K.P.; Singh, R.; Avasthe, R.K.; Roy, S. No-till and mulching enhance energy use efficiency and reduce carbon footprint of a direct-seeded upland rice production system. J. Clean. Prod. 2020, 271, 122700. [Google Scholar] [CrossRef]
Sites | pH | Salinity g·kg−1 | SOC g·kg−1 | TN g·kg−1 | TP g·kg−1 | TK g·kg−1 | AN mg·kg−1 | AP mg·kg−1 | AK mg·kg−1 |
---|---|---|---|---|---|---|---|---|---|
Wudi | 8.53 | 3.5 | 7.25 | 0.91 | 0.81 | 20.6 | 131.89 | 13.36 | 110.85 |
Yucheng | 8.03 | 0.78 | 9.22 | 2.02 | 0.8 | 20.55 | 343.68 | 129.99 | 111.95 |
Inputs | Emission Factors (δi) | Sources |
---|---|---|
Seed | 0.58 | CLCD v0.7 |
Urea | 2.39 | CLCD v0.7 |
Compound(N-P-K) fertilizer | 1.77 | CLCD v0.7 |
Diesel oil for machines | 4.11 | CLCD v0.7 |
Herbicide | 10.15 | Ecoinvent v2.2 |
Pesticide | 16.61 | Ecoinvent v2.2 |
Bactericide | 10.57 | CLCD v0.7 |
Electricity | 1.23 | CLCD v0.7 |
Sites | Wudi (n = 24) | Yucheng (n = 24) | Total (n = 48) | ||||||
---|---|---|---|---|---|---|---|---|---|
Models | CART | RF | XGB | CART | RF | XGB | CART | RF | XGB |
N2O emission a | 24% | 22% | 23% | 50% | 48% | 45% | 27% | 26% | 25% |
Agricultural carbon input b | 3% | 4% | 5% | 0 | 1% | 4% | 2% | 3% | 4% |
δSOC | 49% | 50% | 47% | 25% | 26% | 26% | 40% | 42% | 42% |
Grain yield c | 24% | 24% | 25% | 25% | 25% | 25% | 31% | 29% | 29% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Wu, L.; Zhu, W.; Qiao, C.; Zhang, J.; He, W. Influence of Crop Residue Management and Soil Tillage Method on Reducing the Carbon Footprint of Winter Wheat Production in the Salt-Affected Arable Land in the North China Plain. Agronomy 2023, 13, 1018. https://doi.org/10.3390/agronomy13041018
Li B, Wu L, Zhu W, Qiao C, Zhang J, He W. Influence of Crop Residue Management and Soil Tillage Method on Reducing the Carbon Footprint of Winter Wheat Production in the Salt-Affected Arable Land in the North China Plain. Agronomy. 2023; 13(4):1018. https://doi.org/10.3390/agronomy13041018
Chicago/Turabian StyleLi, Binbin, Lanfang Wu, Wanxue Zhu, Chunlian Qiao, Jin Zhang, and Wenping He. 2023. "Influence of Crop Residue Management and Soil Tillage Method on Reducing the Carbon Footprint of Winter Wheat Production in the Salt-Affected Arable Land in the North China Plain" Agronomy 13, no. 4: 1018. https://doi.org/10.3390/agronomy13041018
APA StyleLi, B., Wu, L., Zhu, W., Qiao, C., Zhang, J., & He, W. (2023). Influence of Crop Residue Management and Soil Tillage Method on Reducing the Carbon Footprint of Winter Wheat Production in the Salt-Affected Arable Land in the North China Plain. Agronomy, 13(4), 1018. https://doi.org/10.3390/agronomy13041018