Foliar Application of Zinc Improves Agronomical and Quality Parameters and Biofortification of Cowpea (Vigna sinensis) under Deficit Irrigation
Abstract
:1. Introduction
2. Materials and Methods
- Full irrigation (100%): Irrigation water applied for 7 days as much as possible for the cumulative evaporation measured with a screened US Weather Bureau Class A pan located at the meteorological station near the experimental field.
- Deficit irrigation (50%): It was established that irrigation water was applied as 50% of full irrigation.
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- FAO. Food and Agriculture Organization of the United Nations. Rome. 2018. Available online: http://faostat.fao.org (accessed on 20 October 2022).
- Jain, C.; Saxena, R. Varietal differences against PEG induced drought stress in cowpea. Octa J. Environ. Res. 2016, 4, 58–62. [Google Scholar]
- Eftekhari, A.; Baghizadeh, A.; Yaghoobi, M.M.; Abdolshahi, R. Differences in the drought stress response of DREB2 and CAT1 genes and evaluation of related physiological parameters in some bread wheat cultivars. Biotechnol. Biotechnol. Equip. 2017, 31, 709–716. [Google Scholar]
- Carvalho, M.; Muñoz-Amatriaín, M.; Castro, I.; Lino-Neto, T.; Matos, M.; Egea-Cortines, M.; Carnide, V. Genetic diversity and structure of Iberian Peninsula cowpeas compared to world-wide cowpea accessions using high density SNP markers. BMC Genom. 2017, 18, 891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvalho, M.; Muñoz-Amatriaín, M.; Castro, I.; Lino-Neto, T.; Matos, M.; Egea-Cortines, M.; Carnide, V. Response of water deficit-stressed Vigna unguiculata performances to silicon, proline or methionine foliar application. Sci. Hortic. 2018, 228, 132–144. [Google Scholar]
- Hayatu, M.; Muhammad, S.; Abdu, H.U. Effect of water stress on the leaf relative water content and yield of some cowpea (Vigna unguiculata (L) Walp.) genotype. Int. J. Sci. Technol. Res. 2014, 3, 148–152. [Google Scholar]
- Toscano, S.; Farieri, E.; Ferrante, A.; Romano, D. Physiological and biochemical responses in two ornamental shrubs to drought stress. Front. Plant Sci. 2016, 7, 645. [Google Scholar] [CrossRef] [Green Version]
- Kutama, A.S.; Hayatu, M.; Raliat, T.M.; Binta, U.B.; Abdullahi, I.K. Screening for some physiological mechanisms in some drought tolerant genotypes of cowpea (Vigna unguiculata (L.) Walp.). Stand. Res. J. Agric. Sci. 2014, 2, 59–64. [Google Scholar]
- Agbicodo, E.M.; Fatokun, C.A.; Muranaka, S.; Visser, R.G.; Linden Van Der, C.G. Breeding drought tolerant cowpea: Constraints, accomplishments, and future prospects. Euphytica 2009, 167, 353–370. [Google Scholar] [CrossRef] [Green Version]
- Turk, K.J.; Hall, A.E.; Asbell, C. Drought adaptation of cowpea. I. Influence of drought on seed yield 1. Agron. J. 1980, 72, 413–420. [Google Scholar] [CrossRef]
- Timko, M.P.; Ehlers, J.D.; Roberts, P.A. Cowpea. In Pulses, Sugar and Tuber Crops; Springer: Berlin/Heidelberg, Germany, 2007; pp. 49–67. [Google Scholar]
- Kröner, N.; Kotlarski, S.; Fischer, E.; Lüthi, D.; Zubler, E.; Schär, C. Separating climate change signals into thermodynamic, lapse-rate and circulation effects: Theory and application to the European summer climate. Clim. Dyn. 2017, 48, 3425–3440. [Google Scholar] [CrossRef] [Green Version]
- Shackel, K.A.; Hall, A.E. Comparison of water relations and osmotic adjustment in sorghum and cowpea under field conditions. Funct. Plant Biol. 1983, 10, 423–435. [Google Scholar] [CrossRef]
- Lionello, P.; Scarascia, L. The relation of climate extremes with global warming in the Mediterranean region and its north versus south contrast. Reg. Environ. Chang. 2020, 20, 31. [Google Scholar] [CrossRef]
- Raza, A.; Razzaq, A.; Mehmood, S.S.; Zou, X.; Zhang, X.; Lv, Y.; Xu, J. Impact of climate change on crops adaptation and strategies to tackle its outcome: A review. Plants 2019, 8, 34. [Google Scholar] [CrossRef] [Green Version]
- Farré, I.; Faci, J.-M. Deficit irrigation in maize for reducing agricultural water use in a Mediterranean environment. Agric. Water Manag. 2009, 96, 383–394. [Google Scholar] [CrossRef]
- Streeter, J. Effects of drought on nitrogen fixation in soybean root nodules. Plant Cell Environ. 2003, 26, 1199–1204. [Google Scholar] [CrossRef]
- Hu, M.; Wiatrak, P. Effect of planting date on soybean growth, yield, and grain quality. Agron. J. 2012, 104, 785–790. [Google Scholar] [CrossRef]
- He, J.; Du, Y.L.; Wang, T.; Turner, N.C.; Yang, R.P.; Jin, Y.; Li, F.M. Conserved water use improves the yield performance of soybean (Glycine max (L.) Merr.) under drought. Agric. Water Manag. 2017, 179, 236–245. [Google Scholar] [CrossRef]
- Ehlers, J.; Hall, A. Cowpea (Vigna unguiculata L. walp.). Field Crops Res. 1997, 53, 187–204. [Google Scholar] [CrossRef]
- Condon, A.; Hall, A. Adaptation to diverse environments: Variation in water-use efficiency within crop species. In Agricultural Ecology; Jackson, L.E., Ed.; Academic Press: San Diego, CA, USA, 1997; pp. 79–116. [Google Scholar] [CrossRef]
- Tan, H.; Tie, M.; Luo, Q.; Zhu, Y.; Lai, J.; Li, H. A review of molecular makers applied in cowpea (Vigna unguiculata L. Walp.) breeding. J. Life Sci. 2012, 6, 1190. [Google Scholar]
- Boukar, O.; Fatokun, C.A.; Roberts, A.; Abberton, M.; Huynh, B.L.; Close, T.J.; Ehlers, J.D. Cowpea. Grain Legum. 2015, 10, 219–250. [Google Scholar] [CrossRef]
- Ravelombola, W.S.; Shi, A.; Weng, Y.; Clark, J.; Motes, D.; Chen, P.; Srivastava, V. Evaluation of salt tolerance at germination stage in cowpea [Vigna unguiculata (L.) Walp]. HortScience 2017, 52, 1168–1176. [Google Scholar] [CrossRef] [Green Version]
- Timko, M.P.; Singh, B. Cowpea, a multifunctional legume. In Genomics of Tropical Crop Plants; Springer: Berlin/Heidelberg, Germany, 2008; pp. 227–258. [Google Scholar]
- Frota, K.M.G.; Mendonça, S.; Saldiva, H.N.; Cruz, R.J.; Arêas, J.A.G. Cholesterol-lowering properties of whole cowpea seed and its protein isolate in hamsters. J. Food Sci. 2008, 73, 235–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, K.H.; Rivera, J.A.; Bhutta, Z.; Gibson, R.S.; King, J.C.; Lönnerdal, B. International Zinc Nutrition Consultative Group (IZiNCG) technical document# 1. Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr. Bull. 2004, 25 (Suppl. 2), S99–S203. [Google Scholar] [PubMed]
- Cakmak, I. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant Soil 2008, 302, 1–17. [Google Scholar] [CrossRef]
- Joy, E.J.; Stein, A.J.; Young, S.D.; Ander, E.L.; Watts, M.J.; Broadley, M.R. Zinc-enriched fertilisers as a potential public health intervention in Africa. Plant Soil 2015, 389, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Abdalla, E.; Atrio-Barandela, F.; Pavon, D. Dark matter and dark energy interactions: Theoretical challenges, cosmological implications and observational signatures. Rep. Prog. Phys. 2016, 79, 096901. [Google Scholar] [CrossRef] [Green Version]
- White, P.J.; Broadley, M.R. Biofortification of crops with seven mineral elements often lacking in human diets–iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol. 2009, 182, 49–84. [Google Scholar] [CrossRef]
- Cakmak, I.; Kalayci, M.; Kaya, Y.; Torun, A.A.; Aydin, N.; Wang, Y.; Horst, W.J. Biofortification and localization of zinc in wheat grain. J. Agric. Food Chem. 2010, 58, 9092–9102. [Google Scholar] [CrossRef]
- Welch, R.M.; Graham, R.D. Breeding for micronutrients in staple food crops from a human nutrition perspective. J. Exp. Bot. 2004, 55, 353–364. [Google Scholar] [CrossRef] [Green Version]
- Zou, C.Q.; Zhang, Y.Q.; Rashid, A.; Ram, H.; Savasli, E.; Arisoy, R.Z.; Cakmak, I. Biofortification of wheat with zinc through zinc fertilization in seven countries. Plant Soil 2012, 361, 119–130. [Google Scholar] [CrossRef]
- Cakmak, I. Tansley Review No. 111 Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol. 2000, 146, 185–205. [Google Scholar] [CrossRef]
- Goodman, B.A.; Newton, A.C. Effects of drought stress and its sudden relief on free radical processes in barley. J. Sci. Food Agric. 2005, 85, 47–53. [Google Scholar] [CrossRef]
- Marschner, H.; Cakmak, I. High light intensity enhances chlorosis and necrosis in leaves of zinc, potassium, and magnesium deficient bean (Phaseolus vulgaris) plants. J. Plant. Physiol. 1989, 134, 308–315. [Google Scholar] [CrossRef]
- White, P.J.; Broadley, M.R. Biofortifying crops with essential mineral elements. Trends Plant Sci. 2005, 10, 586–593. [Google Scholar] [CrossRef]
- Kumssa, D.B.; Joy, E.J.; Ander, E.L.; Watts, M.J.; Young, S.D.; Walker, S.; Broadley, M.R. Dietary calcium and zinc deficiency risks are decreasing but remain prevalent. Sci. Rep. 2015, 5, 10974. [Google Scholar] [CrossRef] [Green Version]
- Bouis, H.E.; Welch, R.M. Biofortification—A sustainable agricultural strategy for reducing micronutrient malnutrition in the global south. Crop Sci. 2010, 50, S-20–S-32. [Google Scholar] [CrossRef] [Green Version]
- Lividini, K.; Fiedler, J.L.; De Moura, F.F.; Moursi, M.; Zeller, M. Biofortification: A review of ex-ante models. Glob. Food Secur. 2018, 17, 186–195. [Google Scholar] [CrossRef]
- Kumar, S.; Pandey, G. Biofortification of pulses and legumes to enhance nutrition. Heliyon 2020, 6, 03682. [Google Scholar] [CrossRef]
- Moura, J.D.O.; Rocha, M.D.M.; Gomes, R.L.F.; Freire Filho, F.R.; Damasceno e Silva, K.J.; Ribeiro, V.Q. Path analysis of iron and zinc contents and others traits in cowpea. Crop Breed. Appl. Biotechnol. 2012, 12, 245–252. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.; Lal, R. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci. Total Environ. 2015, 514, 131–139. [Google Scholar] [CrossRef]
- Noroozlo, Y.A.; Souri, M.K.; Delshad, M. Stimulation effects of foliar applied glycine and glutamine amino acids on lettuce growth. Open Agric. 2019, 4, 164–172. [Google Scholar] [CrossRef]
- Vaghar, M.S.; Sayfzadeh, S.; Zakerin, H.R.; Kobraee, S.; Valadabadi, S.A. Foliar application of iron, zinc, and manganese nano-chelates improves physiological indicators and soybean yield under water deficit stress. J. Plant Nutr. 2020, 43, 2740–2756. [Google Scholar] [CrossRef]
- Alloway, B.J. Zinc in Soils and Crop Nutrition; International Zinc Association: Brussels, Belgium; International Fertilizer Industry Association: Paris, France, 2008. [Google Scholar]
- Kanber, R. Irrigation of first and second crop groundnut using open water surface evaporation under Çukurova conditions. Reg. Soil Water Res. Inst. Publ. 1984, 114, 64. [Google Scholar]
- Efetha, A.; Harms, T.; Bandara, M. Irrigation management practices for maximizing seed yield and water use efficiency of Othello dry bean (Phaseolus vulgaris L.) in southern Alberta, Canada. Irrig. Sci. 2011, 29, 103–113. [Google Scholar] [CrossRef]
- Gislum, R.; Micklander, E.; Nielsen, J. Quantification of nitrogen concentration in perennial ryegrass and red fescue using near-infrared reflectance spectroscopy (NIRS) and chemometrics. Field Crops Res. 2004, 88, 269–277. [Google Scholar] [CrossRef]
- Cakmak, I.; Sari, N.; Marschner, H.; Kalayci, M.; Yilmaz, A.; Eker, S.; Gülüt, K.Y. Dry matter production and distribution of zinc in bread and durum wheat genotypes differing in zinc efficiency. Plant Soil 1996, 180, 173–181. [Google Scholar] [CrossRef]
- Liu, X.; Jin, J.; Wang, G.; Herbert, S.J. Soybean yield physiology and development of high-yielding practices in Northeast China. Field Crops Res. 2008, 105, 157–171. [Google Scholar] [CrossRef]
- Lacerda, J.S.; Martinez, H.E.; Pedrosa, A.W.; Clemente, J.M.; Santos, R.H.; Oliveira, G.L.; Jifon, J.L. Importance of zinc for arabica coffee and its effects on the chemical composition of raw grain and beverage quality. Crop Sci. 2018, 58, 1360–1370. [Google Scholar] [CrossRef]
- Souri, M.K.; Hatamian, M. Aminochelates in plant nutrition: A review. J. Plant Nutr. 2019, 42, 67–78. [Google Scholar] [CrossRef]
- Souri, M.K.; Sooraki, F.Y. Benefits of organic fertilizers spray on growth quality of chili pepper seedlings under cool temperature. J. Plant Nutr. 2019, 42, 650–656. [Google Scholar] [CrossRef]
- Movahhedy-Dehnavy, M.; Modarres-Sanavy, S.A.M.; Mokhtassi-Bidgoli, A. Foliar application of zinc and manganese improves seed yield and quality of safflower (Carthamus tinctorius L.) grown under water deficit stress. Ind. Crops Prod. 2009, 30, 82–92. [Google Scholar] [CrossRef]
- Zahra, Z.; Arshad, M.; Rafique, R.; Mahmood, A.; Habib, A.; Qazi, I.A.; Khan, S.A. Metallic nanoparticle (TiO2 and Fe3O4) application modifies rhizosphere phosphorus availability and uptake by Lactuca sativa. J. Agric. Food Chem. 2015, 63, 6876–6882. [Google Scholar] [CrossRef]
- Ahmed, S.U.; Senge, M.; Ito, K.; Adomako, J.T. Effects of water stress on soil plant analytical development (SPAD) chlorophyll meter reading and its relationship to nitrogen status and grain yield of soybean under different soil types. J. Rainwater Catchment Syst. 2010, 15, 33–38. [Google Scholar] [CrossRef] [Green Version]
- Ergo, V.V.; Lascano, R.; Vega, C.R.; Parola, R.; Carrera, C.S.; Ergo, V.V. Heat and water stressed field-grown soybean: A multivariate study on the relationship between physiological-biochemical traits and yield. Environ. Exp. Bot. 2018, 148, 1–11. [Google Scholar] [CrossRef]
- Fatokun, C.A.; Boukar, O.; Muranaka, S. Evaluation of cowpea (Vigna unguiculata (L.) Walp.) germplasm lines for tolerance to drought. Plant Genet. Resour. 2012, 10, 171–176. [Google Scholar] [CrossRef]
- Belko, N.; Zaman-Allah, M.; Cisse, N.; Diop, N.N.; Zombre, G.; Ehlers, J.D.; Vadez, V. Lower soil moisture threshold for transpiration decline under water deficit correlates with lower canopy conductance and higher transpiration efficiency in drought-tolerant cowpea. Funct. Plant Biol. 2012, 39, 306–322. [Google Scholar] [CrossRef] [Green Version]
- Hamidou, F.; Zombre, G.; Diouf, O.; Diop, N.N.; Guinko, S.; Braconnier, S. Physiological, biochemical and agromorphological responses of five cowpea genotypes (Vigna unguiculata (L.) Walp.) to water deficit under glasshouse conditions. Biotechnol. Agron. Société Environ. 2007, 11, 225–234. [Google Scholar]
- Daryanto, S.; Wang, L.; Jacinthe, P.-A. Global synthesis of drought effects on cereal, legume, tuber and root crops production: A review. Agric. Water Manag. 2017, 179, 18–33. [Google Scholar] [CrossRef] [Green Version]
- Tankari, M.; Wang, C.; Ma, H.; Li, X.; Li, L.; Soothar, R.K.; Wang, Y. Drought priming improved water status, photosynthesis and water productivity of cowpea during post-anthesis drought stress. Agric. Water Manag. 2021, 245, 106565. [Google Scholar] [CrossRef]
- Hamidou, F.; Zombre, G.; Braconnier, S. Physiological and biochemical responses of cowpea genotypes to water stress under glasshouse and field conditions. J. Agron. Crop Sci. 2007, 193, 229–237. [Google Scholar] [CrossRef]
- Daryanto, S.; Wang, L.; Jacinthe, P.-A. Global synthesis of drought effects on food legume production. PLoS ONE 2015, 10, e0127401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Candan, N.; Cakmak, I.; Ozturk, L. Zinc-biofortified seeds improved seedling growth under zinc deficiency and drought stress in durum wheat. J. Plant Nutr. Soil Sci. 2018, 181, 388–395. [Google Scholar] [CrossRef]
- Hall, A.; Mutters, R.; Farquhar, G. Genotypic and drought-induced differences in carbon isotope discrimination and gas exchange of cowpea. Crop Sci. 1992, 32, 1–6. [Google Scholar] [CrossRef]
- Hall, A.E.; Ismail, A.M.; Ehlers, J.D.; Marfo, K.O.; Cisse, N.; Thiaw, S.; Close, T.J. Breeding cowpea for tolerance to temperature extremes and adaptation to drought. In Challenges and Opportunities for Enhancing Sustainable Cowpea Production; International Institute of Tropical Agriculture: Ibadan, Nigeria, 2002; pp. 14–21. [Google Scholar]
- Zhao, Y.; Takenaka, M.; Takagi, S. Comprehensive understanding of coulomb scattering mobility in biaxially strained-Si pMOSFETs. IEEE Trans. Electron Devices 2009, 56, 1152–1156. [Google Scholar] [CrossRef]
- Cakmak, I. Biofortification of cereals with zinc and iron through fertilization strategy. In Proceedings of the 19th World Congress of Soil Science, Washington, DC, USA, 1–6 August 2010; CiteSeerX: Princeton, NJ, USA, 2010; pp. 329–346. [Google Scholar]
- Guttieri, M.J.; McLean, R.; Stark, J.C.; Souza, E. Managing irrigation and nitrogen fertility of hard spring wheats for optimum bread and noodle quality. Crop Sci. 2005, 45, 2049–2059. [Google Scholar] [CrossRef]
- Cakmak, I.; Hoffland, E. Zinc for the improvement of crop production and human health. Plant Soil 2012, 361, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Salih, H.O. Effect of Foliar Fertilization of Fe, B and Zn on nutrient concentration and seed protein of Cowpea “Vigna unguiculata”. J. Agric. Vet. Sci. 2013, 6, 42–46. [Google Scholar] [CrossRef]
- Cakmak, I. Plant nutrition research: Priorities to meet human needs for food in sustainable ways. Plant Soil 2002, 247, 3–24. [Google Scholar] [CrossRef]
- Graham, A.; McDonald, G. Effect of zinc on photosynthesis and yield of wheat under heat stress. In Proceedings of the 10th Australian Agronomy Conference, Hobart, Australia, 29 January–1 February 2001. [Google Scholar]
- Farinu, G.O.; Ingrao, G. Gross composition, amino acid, phytic acid and trace element contents of thirteen cowpea cultivars and their nutritional significance. J. Sci. Food Agric. 1991, 55, 401–410. [Google Scholar] [CrossRef]
- Shahzad, Z.; Rouached, H.; Rakha, A. Combating mineral malnutrition through iron and zinc biofortification of cereals. Compr. Rev. Food Sci. Food Saf. 2014, 13, 329–346. [Google Scholar] [CrossRef]
Soil Texture | pH | Organic Matter (%) | Phosphorus (ppm) | Potassium (ppm) | Calcium (ppm) | Sodium (ppm) | ||
---|---|---|---|---|---|---|---|---|
Sand (%) | Silt (%) | Clay (%) | ||||||
72 | 16.7 | 11.3 | 8.0 | 2.0 | 21 | 176 | 2978 | 101 |
Sandy loam | High | Low | High | Low | High | Low |
SOV | Df | Seed Yield | BY | HI | Plant H. | BN | Pod Lenght | PN | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Years | 1 | * | * | * | * | * | * | * | |||||||
2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | ||
I | 1 | * | - | * | * | - | - | - | - | - | - | - | - | - | - |
Zn | 1 | - | - | * | - | * | - | - | - | - | - | - | - | - | - |
C | 2 | * | - | * | * | * | * | * | - | - | - | - | - | * | - |
I*Zn | 2 | - | - | - | - | * | - | - | * | - | * | * | - | - | - |
I*C | 2 | - | - | * | - | - | - | - | * | - | - | * | * | * | * |
Zn*C | 2 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
I*Zn*C | 11 | - | * | * | - | - | - | * | - | - | - | - | - | * | - |
SOV | Df | Seed Number | 100 Seed Weight | SPAD | LAI | DOS | DOM | ||||||||
Years | 1 | * | * | * | * | * | * | ||||||||
2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | ||||
I | 1 | - | - | - | - | - | * | * | - | - | - | - | - | ||
Zn | 1 | - | - | - | - | - | - | - | - | - | - | - | |||
C | 2 | * | - | * | - | - | - | - | - | * | - | * | - | ||
I*Zn | 2 | - | - | - | - | * | - | - | - | - | - | - | |||
I*C | 2 | * | * | - | * | - | - | - | - | - | - | - | * | ||
Zn*C | 2 | - | - | - | - | - | - | - | - | - | - | * | |||
I*Zn*C | 11 | - | - | - | - | - | - | * | - | - | * | * | - |
SOV | Df | Cu | Zinc | Fe | Potassium | Magnesium | Calcium | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Years | 1 | * | * | * | * | * | * | ||||||
2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | ||
I | 1 | * | - | - | - | * | * | - | * | - | * | - | * |
Zn | 1 | * | - | * | * | - | * | - | * | - | - | - | * |
C | 2 | - | - | - | * | - | * | - | * | - | * | - | * |
I*Zn | 2 | * | - | - | * | - | * | - | * | - | * | - | - |
I*C | 2 | - | - | - | - | - | * | - | * | - | - | - | * |
Zn*C | 2 | * | - | - | - | - | * | - | * | * | * | - | * |
I*Zn*C | 11 | - | - | - | - | - | * | - | * | - | - | - | * |
SOV | Df | Phosporus | Fibre | Ash | Oil | Protein | |||||||
Years | 1 | * | * | * | * | * | |||||||
2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | ||||
I | 1 | - | * | - | - | - | - | * | - | - | * | ||
Zn | 1 | * | * | - | - | - | - | - | - | - | - | ||
C | 2 | * | * | - | * | - | * | - | - | - | * | ||
I*Zn | 2 | * | * | - | - | - | - | - | - | - | - | ||
I*C | 2 | - | * | - | - | - | - | - | - | - | - | ||
Zn*C | 2 | - | - | - | - | - | * | - | - | - | - | ||
I*Zn*C | 11 | - | * | - | * | - | - | - | - | * | - |
SOV | Df | ASP | GLU | SER | HIS | GLY | THR | ARG | ALA | TYR | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Years | 1 | * | * | * | * | * | * | * | * | * | |||||||||
2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | ||
I | 1 | - | * | - | * | - | * | - | * | - | - | - | * | - | * | - | * | - | * |
Zn | 1 | - | * | - | * | - | * | - | * | - | - | - | * | - | * | - | - | - | - |
C | 2 | - | * | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
I*Zn | 2 | - | * | - | - | - | - | - | - | - | - | - | * | - | - | - | - | - | - |
I*C | 2 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
Zn*C | 2 | * | * | - | - | - | - | - | - | - | - | - | * | - | - | - | - | - | - |
I*Zn*C | 11 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
SOV | Df | CYS | VAL | MET | PHE | ILE | LYS | LEU | PRO | ||||||||||
Years | 1 | * | * | * | * | * | * | * | * | ||||||||||
2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | ||||
I | 1 | - | * | - | - | - | - | - | * | - | * | - | - | - | * | - | * | ||
Zn | 1 | - | - | - | * | - | * | * | * | * | - | * | - | - | - | - | |||
C | 2 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | ||
I*Zn | 2 | - | - | * | - | - | - | - | - | - | * | - | - | - | - | - | - | ||
I*C | 2 | - | - | - | - | * | - | - | - | - | * | - | - | - | - | - | - | ||
Zn*C | 2 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | ||
I*Zn*C | 11 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Açık, A.; Öncan Sümer, F. Foliar Application of Zinc Improves Agronomical and Quality Parameters and Biofortification of Cowpea (Vigna sinensis) under Deficit Irrigation. Agronomy 2023, 13, 1021. https://doi.org/10.3390/agronomy13041021
Açık A, Öncan Sümer F. Foliar Application of Zinc Improves Agronomical and Quality Parameters and Biofortification of Cowpea (Vigna sinensis) under Deficit Irrigation. Agronomy. 2023; 13(4):1021. https://doi.org/10.3390/agronomy13041021
Chicago/Turabian StyleAçık, Abdullah, and Feride Öncan Sümer. 2023. "Foliar Application of Zinc Improves Agronomical and Quality Parameters and Biofortification of Cowpea (Vigna sinensis) under Deficit Irrigation" Agronomy 13, no. 4: 1021. https://doi.org/10.3390/agronomy13041021
APA StyleAçık, A., & Öncan Sümer, F. (2023). Foliar Application of Zinc Improves Agronomical and Quality Parameters and Biofortification of Cowpea (Vigna sinensis) under Deficit Irrigation. Agronomy, 13(4), 1021. https://doi.org/10.3390/agronomy13041021