Fruit Quality and Primary and Secondary Metabolites Content in Eight Varieties of Blood Oranges
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Sample Preparation
2.2. Fruit Morphological Characterization
2.3. Juice Quality Parameters Dermination
2.4. Analysis of Primary Metabolites by 1H-Nuclear Magnetic Resonance Spectroscopy (1H NMR)
2.5. Analysis of Secondary Metabolites by HPLC-Diode Array Detection-Electrospray Ionization-Mass Spectrometry (HPLC-ESI-DAD-MSn)
2.6. Statistical Analysis
3. Results
3.1. Morphological and Qualitative Parameters
3.2. External Crust and Juice Color
3.3. Primary Metabolites Content in Juice
3.4. Secondary Metabolites Content in Juice
3.5. Principal Component Analysis (PCA)
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations. FAOSTAT Statistical Database. Rome, Italy. 2020. Available online: www.faostat.fao.org (accessed on 30 October 2021).
- Pareek, S.; Valero, D.; Serrano, M. Postharvest Biology and Technology of Pomegranate. J. Sci. Food Agric. 2015, 95, 2360–2379. [Google Scholar] [CrossRef] [PubMed]
- Serradilla, M.J.; Akšic, M.F.; Manganaris, G.A.; Ercisli, S.; Gonzalez-Gomez, D.; Valero, D. Fruit chemistry, nutritional benefits and social aspects of cherries. In Cherries: Botany, Production and Uses; CABI: Boston, MA, USA, 2017; pp. 420–441. Available online: https://www.cabi.org/horticulture/ebook/20173212321 (accessed on 7 August 2017).
- Habibi, F.; García-Pastor, M.E.; Puente-Moreno, J.; Garrido-Auñón, F.; Serrano, M.; Valero, D. Anthocyanin in blood oranges: A review on postharvest approaches for its enhancement and preservation. Rev. Food Sci. Nutr. 2022, 12, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Kelebek, H.; Canbas, A.; Selli, S. Determination of phenolic composition and antioxidant capacity of blood orange juices obtained from cvs. Moro and Sanguinello (Citrus sinensis (L.) Osbeck) grown in Turkey. Food Chem. 2008, 107, 1710–1716. [Google Scholar] [CrossRef]
- Tadeo, F.R.; Terol, J.; Rodrigo, M.J.; Licciardello, C.; Sadka, A. Fruit growth and development. In The Genus Citrus; Woohead Publishing: Oxford, UK, 2020; pp. 245–269. [Google Scholar] [CrossRef]
- Lo Piero, A.R. The state of the art in biosynthesis of anthocyanins and its regulation in pigmented sweet orange [(Citrus sinensis) L. Osbeck]. J. Agric. Food Chem. 2015, 63, 4031–4041. [Google Scholar] [CrossRef]
- Lana, G.; Modica, G.; Las Casas, G.; Siracusa, L.; La Malfa, S.; Gentile, A.; Sicilia, A.; Distefano, D.; Continella, A. Molecular insights into the effects of rootstocks on maturation of blood oranges. Horticulturae 2021, 7, 468. [Google Scholar] [CrossRef]
- Pannitteri, C.; Continella, A.; Lo Cicero, L.; Gentile, A.; La Malfa, S.; Sperlinga, E.; Napoli, E.M.; Strano, T.; Ruberto, G.; Siracusa, L. Influence of postharvest treatments on qualitative and chemical parameters of Tarocco blood orange fruits to be used for fresh chilled juice. Food Chem. 2017, 230, 441–447. [Google Scholar] [CrossRef]
- Habibi, F.; Ramezanian, A.; Guillén, F.; Castillo, S.; Serrano, M.; Valero, D. Changes in bioactive compounds, antioxidant activity, and nutritional quality of blood orange cultivars at different storage temperatures. Antioxidants 2020, 9, 1016. [Google Scholar] [CrossRef]
- Butelli, E.; Licciardello, C.; Zhang, Y.; Liu, J.; Mackay, S.; Bailey, P.; Reforgiato-Recupero, G.; Martin, C. Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges. Plant Cell 2012, 24, 1242–1255. [Google Scholar] [CrossRef] [Green Version]
- Grosso, G.; Galvano, F.; Mistretta, A.; Marventano, S.; Nolfo, F.; Calabrese, G.; Buscemi, S.; Drago, F.; Veronesi, U.; Scuderi, A. Red orange: Experimental models and epidemiological evidence of its benefits on human health. Oxidative Med. Cell Longev. 2013, 2013, 157240. [Google Scholar] [CrossRef] [Green Version]
- Proteggente, A.R.; Saija, A.; De Pasquale, A.; Rice Evans, C. The compositional characterisation and antioxidant activity of fresh juices from sicilian sweet orange (Citrus sinensis L. Osbeck) varieties. Free Radic. Res. 2003, 37, 681–687. [Google Scholar] [CrossRef]
- Ministerio de Agricultura, Pesca y Alimentación. Anuario de Estadística. Madrid, Spain. 2019. Available online: https://www.mapa.gob.es/es/estadistica/temas/publicaciones/anuario-de-estadistica/2019/ (accessed on 3 August 2019).
- Porras, I.C.; Conesa-Martínez, A.; Martínez-Nicolás, J.; Jara-Rodríguez, F.J.; Manera-Bassa, F.; Sánchez-Valladares, A.; Brotons, J.M. Estudio Preliminar de Diversas Variedades de Naranjas Sanguinas. Parte i: Parámetros de Calidad y del Colour Externo de los Frutos. Levane Agric. 2014, 420, 19–22. Available online: https://redivia.gva.es/bitstream/handle/20.500.11939/7217/2014_Porras_Estudio.pdf?sequence=1&isAllowed=y (accessed on 3 September 2014).
- Simons, T.J.; McNeil, C.J.; Pham, V.D.; Suh, J.H.; Wang, Y.; Slupsky, C.M.; Guinard, J.X. Evaluation of California-grown blood and Cara Cara oranges through consumer testing, descriptive analysis, and targeted chemical profiling. J. Food Sci. 2019, 84, 3246–3263. [Google Scholar] [CrossRef] [PubMed]
- Rapisarda, P.; Bianco, M.L.; Pannuzzo, P.; Timpanaro, N. Effect of cold storage on vitamin C, phenolics and antioxidant activity of five orange genotypes [Citrus sinensis (L.) Osbeck]. Postharvest Biol. Technol. 2009, 49, 348–354. [Google Scholar] [CrossRef]
- Cebadera-Miranda, L.; Domínguez, L.; Dias, M.I.; Barros, L.; Ferreira, I.C.F.R.; Igual, M.; Martínez-Navarrete, N.; Fernández-Ruiz, V.; Morales, P.; Cámara, M. Sanguinello and Tarocco (Citrus sinensis [L.] Osbeck): Bioactive compounds and colour appearance of blood oranges. Food Chem. 2019, 270, 395–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, X.; Zhao, C.; Shi, H.; Liao, Y.; Xu, F.; Du, G.; Xiao, H.; Zheng, J. Nutrients and bioactives in Citrus fruits: Different Citrus varieties, fruit parts, and growth stages. Crit. Rev. Food Sci. Nutr. 2021, 5, 1–24. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, F.; Lian, Y.; Xiao, H.; Zheng, J. Biosynthesis of Citrus flavonoids and their health effects. Crit. Rev. Food Sci. Nutr. 2020, 60, 566–583. [Google Scholar] [CrossRef]
- Fallico, B.; Ballistreri, G.; Arena, E.; Brighina, S.; Rapisarda, P. Bioactive compounds in blood oranges (Citrus sinensis (L.) Osbeck): Level and intake. Food Chem. 2017, 215, 67–75. [Google Scholar] [CrossRef]
- Lado, J.; Gambetta, G.; Zacarias, L. Key determinants of Citrus fruit quality: Metabolites and main changes during maturation. Sci. Hortic. 2018, 233, 238–248. [Google Scholar] [CrossRef] [Green Version]
- Butelli, P.; Modica, G.; Porras, L.; Conesa, A.; Continella, A. Bioactive compounds, antioxidant activity and fruit quality evaluation of eleven blood orange cultivars. J. Sci. Food Agric. 2021, 102, 2960–2971. [Google Scholar] [CrossRef]
- McGuire, R.G. Reporting of objective color measurements. HortScience 1992, 27, 1254–1255. [Google Scholar] [CrossRef] [Green Version]
- Jimenez-Cuesta, M.; Cuquerella, J.; Martínez-Javega, J.M. Determination of a colour index for Citrus fruit degreening. In Proceedings of the International Society of Citriculture Citriculture, IV Congress, Tokyo, Japan, 9–12 November 1981; Volume 2, pp. 750–753. [Google Scholar]
- Choi, Y.H.; Kim, H.K.; Linthorst, H.J.M.; Hollander, J.G.; Lefeber, A.W.M.; Erkelens, C.; Nuzillard, J.M.; Verpoorte, R. NMR metabolomics to revisit the tobacco Mosaic virus infection in Nicotiana tabacum leaves. J. Nat. Prod. 2006, 69, 742–748. [Google Scholar] [CrossRef] [PubMed]
- Legua, P.; Forner-Giner, M.Á.; Nuncio-Jáuregui, N.; Hernández, F. Polyphenolic compounds, anthocyanins and antioxidant activity of nineteen pomegranate fruits: A rich source of bioactive compounds. J. Funct. Foods. 2016, 23, 628–636. [Google Scholar] [CrossRef]
- Musacchi, S.; Serra, S. Apple fruit quality: Overview on pre-harvest factors. Sci. Hortic. 2018, 234, 409–430. [Google Scholar] [CrossRef]
- Ordóñez-Díaz, J.L.; Hervalejo, A.; Pereira-Caro, G.; Muñoz-Redondo, J.M.; Romero-Rodríguez, E.; Arenas-Arenas, F.J.; Moreno-Rojas, J.M. Effect of Rootstock and Harvesting Period on the Bioactive Compounds and Antioxidant Activity of Two Orange Cultivars (‘Salustiana’ and ‘Sanguinelli’) Widely Used in Juice Industry. Processes 2020, 8, 1212. [Google Scholar] [CrossRef]
- Caruso, M.; Ferlito, F.; Licciardello, C.; Allegra, M.; Strano, M.C.; Di Silvestro, S.; Russo, M.P.; Paolo, D.P.; Caruso, P.; Las Casas, G.; et al. Pomological diversity of the Italian blood orange germplasm. Sci. Hortic. 2016, 213, 331–339. [Google Scholar] [CrossRef]
- Rapisarda, P.; Russo, G. Fruit quality of five Tarocco selections grown in Italy. In Proceedings of the International Society of Citriculture 9th Congress, University of California, Riverside, CA, USA, 3–7 December 2000; Volume 2, pp. 1149–1153. [Google Scholar]
- Continellaa, A.; Pannitteria, C.L.; Malfa, S.; Leguab, P.; Distefanoa, G.; Nicolosia, E.; Gentilea, A. Influence of different rootstocks on yield precocity and fruit quality of ‘Tarocco Scirè’ pigmented sweet orange. Sci. Hortic. 2018, 230, 62–67. [Google Scholar] [CrossRef]
- Legua, P.; Bellver, R.; Forner, J.; Forner-Giner, M.A. Plant growth, yield and fruit quality of ‘Lane Late’ navel orange on four Citrus rootstocks. Span. J. Agric. Res. 2011, 9, 271–279. [Google Scholar] [CrossRef] [Green Version]
- Legua, P.; Bellver, R.; Forner, J.B.; Forner-Giner, M.A. Trifoliata hybrids rootstocks for ‘Lane Late’ navel orange in Spain. Sci. Agric. 2011, 68, 548–553. [Google Scholar] [CrossRef]
- EN 32011R0543; Commission Implementing Regulation (EC) N° 543/2011 of 7 June 2011 Laying Down Detailed Rules for the Application of the Council Regulation (EC) No 1243/2007 in Respect of the Fruit and Vegetables Processed Fruit and Vegetables Sectors. European Union: Luxembourg, 2011.
- Hervalejo, A.; Cardeñosa, V.; Forner-Giner, M.A.; Salguero, A.; Pradas, I.C.; Moreno, J.M.; Arenas-Arenas, F.J. Preliminary data on influence of six Citrus rootstocks on fruit quality of “lane late” navel orange. Acta Hortic. 2015, 1065, 363–366. [Google Scholar] [CrossRef]
- De Pascual, T.S.; Sanchez-Ballesta, M.T. Anthocyanins: From plant to health. Phytochemistry 2008, 7, 281–299. [Google Scholar] [CrossRef]
- Meléndez-Martínez, A.J.; Gómez-Robledo, L.; Melgosa, M.; Vicario, I.M.; Heredia, F.J. Color of orange juices in relation to their carotenoid contents as assessed from different spectroscopic data. J. Food Compos. Anal. 2011, 24, 837–884. [Google Scholar] [CrossRef]
- Lo Cicero, L.; Puglisi, I.; Nicolosi, E.; Gentile, A.; Ferlito, F.; Continella, A.; Lo Piero, A.R. Anthocyanin levels and expression analysis of biosynthesis-related genes during ripening of sicilian and international grape berries subjected to leaf removal and water deficit. J. Agric. Sci. Technol. 2016, 18, 1333–1344. [Google Scholar]
- Kafkas, A.; Ercisli, S.; Kemal, K.N.; Baydar, K.; Yilmaz, H. Chemical composition of blood oranges varieties from Turkey. To comparative study. Pharmacogn. Mag. 2009, 5, 329–335. [Google Scholar] [CrossRef]
- Choi, M.H.; Kima, G.H.; Leeb, H.S. Effects of ascorbic acid retention on juice colour and pigment stability in blood orange (Citrus sinensis) juice during refrigerated storage. Food Res. Int. 2002, 35, 753–759. [Google Scholar] [CrossRef]
- Morales, J.; Bermejo, A.; Navarro, P.; Forner-Giner, M.Á.; Salvador, A. Rootstock effect on fruit quality, anthocyanins, sugars, hydroxycinnamic acids and flavanones content during the harvest of blood oranges ‘Moro’ and ‘Tarocco Rosso’ grown in Spain. Food Chem. 2021, 342, 128305. [Google Scholar] [CrossRef]
- Lado, J.; Rodrigo, M.J.; Zacarías, L. Maturity indicators and Citrus fruit quality. Stewart Postharvest Rev. 2014, 10, 1–6. [Google Scholar]
- AIJN. The AIJN Code of Practice, AIJN—European Fruit Juice Association; AIJN: Antwerp, Belgium, 2018. [Google Scholar]
- Susan, S.S.; Sennewald, K.; Gagnon, J. Comparison of taste qualities and thresholds of D- and L-amino acids. Physiol. Behav. 1981, 27, 51–59. [Google Scholar] [CrossRef]
- Rambla, J.L.; Tikunov, Y.M.; Monforte, A.J.; Bovy, A.G.; Granell, A. The expanded tomato fruit volatile landscape. J. Exp. Bot. 2014, 65, 4613–4623. [Google Scholar] [CrossRef] [Green Version]
- Pellaud, S.; Mène-Saffrané, L. Metabolic origins and transport of vitamin E biosynthetic precursors. Front. Plant Sci. 2017, 8, 1959. [Google Scholar] [CrossRef]
- Aghdam, M.S.; Fard, J.R. Melatonin treatment attenuates postharvest decay and maintains nutritional quality of strawberry fruits (Fragaria anannasa cv. Selva) by enhancing GABA shunt activity. Food Chem. 2017, 221, 1650–1657. [Google Scholar] [CrossRef]
- Wistaff, E.A.; Beller, S.; Schmid, A.; Neville, J.J.; Nietner, T. Chemometric analysis of amino acid profiles for detection of fruit juice adulterations—Application to verify authenticity of blood orange juice. Food Chem. 2021, 1, 128452. [Google Scholar] [CrossRef] [PubMed]
- Al-Jaleel, A.; Zekri, M.; Hammam, Y. Yield, fruit quality, and tree health of “Allen Eureka” lemon on seven rootstocks in Saudi Arabia. Sci. Hortic. 2005, 105, 457–465. [Google Scholar] [CrossRef]
- Kelebek, H.; Selli, S.; Canbas, A.; Cabaroglu, T. HPLC determination of organic acids, sugars, phenolic compositions and antioxidant capacity of orange juice and orange wine made from a Turkish cv. Kozan. Microchem. J. 2009, 91, 187–192. [Google Scholar] [CrossRef]
- Abdullah, M.; Cheng, X.; Shakoor, A.; Cao, Y.; Lin, Y.; Cai, Y.; Shangao, J. New opinion of sugar and light crosstalk in the induction of anthocyanins biosynthesis in fruits. Int. J. Agric. Biol. 2018, 20, 2465–2474. [Google Scholar] [CrossRef]
- Lee, H.S.; Coates, G.A. Quantitative study of free sugars and myoinositol in Citrus juices by HPLC and literature compilation. J. Liq. Chromatogr. Relat. Technol. 2014, 14, 2123–2141. [Google Scholar] [CrossRef]
- Castellari, M.; Versari, A.; Spinabelli, U.; Galassi, S.; Amati, A. An improved HPLC method for the analysis of organic acids, carbohydrates and alcohols in grape musts and wines. J. Liq. Chromatogr. Relat. Technol. 2000, 23, 2047–2056. [Google Scholar] [CrossRef]
- Kelebek, H.; Selli, S. Determination of volatile, phenolic, organic acid and sugar components in a Turkish cv. Dortyol (Citrus sinensis L. Osbeck) orange juice. J. Sci. Food Agric. 2011, 91, 1855–1862. [Google Scholar] [CrossRef] [PubMed]
- Sicari, V.; Pellicanò, T.M.; Giuffrè, A.M.; Zappia, C.; Capocasale, M. Bioactive compounds and antioxidant activity of Citrus juices produced from varieties cultivated in Calabria. J. Food Meas. Charact. 2016, 10, 773–780. [Google Scholar] [CrossRef]
- Simón-Grao, S.; Gimeno, V.; Simón, I.; Lidón, V.; Nieves, M.; Balal, R.M.; Carbonell-Barrachina, R.; Manera, A.; Hernandez, F.J.; García-Sánchez, F. Fruit quality characterization of eleven commercial mandarin cultivars in Spain. Sci. Hort. 2014, 165, 274–280. [Google Scholar] [CrossRef]
- Todaro, A.; Cavallaro, R.; La Malfa, S.; Continella, A.; Gentile, A.; Fischer, U.A.; Carle, R.; Spagna, G. Anthocyanin profile and antioxidant activity of freshly squeezed pomegranate (Punica granatum L.) juices of Sicilian and Spanish provenances. It. J. Food Sci. 2016, 28, 464–479. [Google Scholar] [CrossRef]
- Reche, J.; Almansa, M.S.; Hernández, F.; Amorós, A.; Legua, P. Physicochemical and antioxidant capacity of jujube (Ziziphus jujuba Mill.) at different maturation stages. Agronomy 2011, 11, 132. [Google Scholar] [CrossRef]
Parameters | Sanguinelli | Tarocco Sant’Alfio | Tarocco Dalmuso | Tarocco Rosso | Tarocco Gallo | Tarocco Scirè | Tarocco Meli | Moro |
---|---|---|---|---|---|---|---|---|
Morphological parameters * | ||||||||
FW (g) | 225.4 bcd | 256.5 bc | 350.6 a | 288 ab | 183.2 d | 178.3 d | 326.2 a | 223.5 cd |
ED (mm) | 74.1 cd | 78.4 bc | 86.4 a | 83.4 bc | 72.1 cd | 70.1 d | 84.5 bc | 77.3 bcd |
FL (mm) | 82 1.6 ab | 80.0 b | 88.6 a | 77.0 b | 69.1 c | 68.5 c | 88.8 a | 75.6 bc |
CT (mm) | 5.3 b | 4.9 bc | 3.5 d | 5.3 bc | 5.1 bc | 4.1 cd | 6.6 a | 5.7 ab |
NC | 11.12 ab | 10.41 abc | 9.23 c | 11.61 a | 10.23 abc | 9.61 bc | 9.34 c | 9.35 c |
NS | 1.6 a | 0.1 b | 0.0 b | 0.3 b | 0.0 b | 0.0 b | 0.0 b | 0.0 b |
CW (g) | 89.8 cde | 108.1 bcd | 151.2 a | 124.3 abc | 80.1 de | 63.5 e | 143.3 ab | 109.4 bcd |
JW (w:w) | 131.2 bc | 176.5 abc | 214.2 a | 159.5 abc | 106.2 c | 115.8 c | 198.6 ab | 110.2 c |
Qualitative parameters ** | ||||||||
pH | 3.91 b | 4.23 ab | 4.10 ab | 3.91 b | 4.42 a | 4.27 ab | 3.83 b | 4.11 ab |
TSS (°Brix) | 10.11 b | 12.32 ab | 12.52 ab | 13.00 ab | 13.95 a | 13.00 ab | 11.00 ab | 11.93 ab |
TA (g citric acid L−1) | 15.43 a | 12.81 ab | 10.52 bc | 9.22 cd | 6.13 d | 11.13 bc | 15.42 a | 10.14 bc |
MI (TSS/TA) | 6.52 e | 9.61 cde | 11.88 bc | 14.09 b | 22.75 a | 11.68 bcd | 7.13 de | 11.76 bcd |
Color | Sanguinelli | Tarocco Sant’Alfio | Tarocco Dalmuso | Tarocco Rosso | Tarocco Gallo | Tarocco Scirè | Tarocco Meli | Moro |
---|---|---|---|---|---|---|---|---|
Crust | ||||||||
L* | 55.69 b | 64.20 a | 65.21 a | 52.38 b | 59.76 ab | 59.64 ab | 62.61 a | 51.41 b |
a* | 34.15 bcd | 33.74 bcd | 30.17 d | 36.75 ab | 34.78 c | 40.13 a | 30.69 cd | 33.46 bcd |
b* | 39.59 b | 56.83 a | 56.72 a | 39.35 b | 50.61 a | 52.77 a | 55.72 a | 37.14 b |
C* | 52.51 b | 66.29 a | 64.37 a | 54.14 b | 61.66 a | 66.37 a | 63.90 a | 50.31 b |
H° | 48.23 d | 59.01 abc | 61.94 a | 46.48 d | 55.24 bc | 52.66 cd | 60.75 ab | 47.31 d |
CI | 16.98 ab | 9.57 c | 8.29 c | 18.85 a | 11.95 bc | 12.92 bc | 9.29 c | 18.84 a |
Juice | ||||||||
L* | 39.08 e | 46.21 ab | 44.91 bc | 42.86 d | 47.86 a | 43.94 cd | 44.35 cd | 36.30 f |
a* | 9.45 a | 4.77 c | 6.29 b | 5.50 bc | 1.46 e | 5.74 bc | 3.34 d | 8.51 a |
b* | 5.57 d | 15.08 ab | 13.36 b | 10.29 c | 17.09 a | 13.01 b | 13.00 b | 3.45 d |
C* | 10.99 ef | 15.85 ab | 14.80 bc | 11.67 de | 17.16 a | 14.33 bc | 13.46 cd | 9.19 f |
H° | 30.53 d | 72.37 b | 64.26 c | 61.98 d | 85.21 a | 65.60 c | 75.53 b | 21.79 e |
CI | 43.99 b | 6.91 cde | 10.90 cd | 12.43 c | 1.74 e | 10.59 cd | 5.85 de | 69.53 a |
Primary Metabolite | Sanguinelli | Tarocco Sant’Alfio | Tarocco Dalmuso | Tarocco Rosso | Tarocco Gallo | Tarocco Scirè | Tarocco Meli | Moro |
---|---|---|---|---|---|---|---|---|
Amino acids (mg L−1) | ||||||||
Alanine | 88.31 a | 39.79 c | 63.41 b | 33.86 c | 45.26 bc | 47.34 bc | 29.88 c | 41.43 c |
Arginine | 433.91 c | 827.15 a | 681.51 b | 739.33 ab | 388.42 c | 465.06 c | 710.58 b | 438.98 c |
Asparagine | 990.21 a | 1037.01 a | 406.47 c | 392.10 c | 439.12 bc | 342.90 c | 613.20 b | 266.84 c |
Aspartate | 811.08 ab | 754.97 b | 1038.07 a | 804.44 ab | 426.49 c | 422.94 c | 616.57 bc | 772.48 ab |
Glutamine | 334.65 a | 313.68 a | 304.09 a | ND | 250.68 ab | 249.78 ab | 264.89 ab | 179.88 b |
Isoleucine | 3.50 ab | 2.62 ab | 2.42 b | 2.55 ab | 4.00 ab | 4.76 a | 2.42 b | 3.23 ab |
Leucine | ND | 2.42 a | 1.71 ab | ND | ND | ND | 1.16 b | 1.01 b |
Proline | 691.44 bc | 837.48 ab | 1041.61 a | 651.27 bc | 1093.88 a | 860.44 ab | 667.67 bc | 516.77 c |
Tyrosine | 34.83 c | ND | 41.16 b | 32.96 c | 53.47 a | 51.86 a | ND | 29.53 c |
Valine | 12.51 a | 6.49 c | 8.69 bc | 6.53 c | 5.72 c | 10.97 ab | 7.31 c | 6.73 c |
Organics acids (g L−1) | ||||||||
Citrate | 11.96 b | 12.75ab | 11.43 b | 8.43 b | 7.28 d | 10.98 bc | 14.60 a | 12.75 ab |
Lactate | 0.0121 a | 0.0098 bc | 0.0101 b | 0.0079 cd | 0.0088 bc | 0.0089 bc | 0.0065 d | 0.0082 bcd |
Sugars (g L−1) | ||||||||
Fructose | 19.18 c | 18.07 c | 19.55 c | 20.67 bc | 26.24 a | 25.00 ab | 19.66 c | 22.54 abc |
Glucose | 16.64 d | 17.16 d | 18.24 cd | 19.89 bcd | 26.20 a | 24.08 ab | 18.66 cd | 21.89 abc |
Sucrose | 30.02 b | 37.85 a | 40.14 a | 40.32 a | 36.49 ab | 38.96 a | 37.38 a | 38.10 a |
Myo-inostol | 0.94 b | 1.51 a | 1.71 a | 1.67 a | 1.51 a | 1.52 a | 0.89 b | 0.96 b |
Gluc/Fruc | 0.86 b | 0.94 ab | 0.93 ab | 0.99 a | 0.99 a | 0.96 a | 0.94 ab | 0.97 a |
Gluc/Suc | 0.55 bc | 0.45 c | 0.45 c | 0.49 c | 0.72 a | 0.63 b | 0.50 c | 0.57 bc |
Others (mg L−1) | ||||||||
Choline | 9.20 b | 7.19 b | 13.71 a | 13.41 a | 12.81 a | 12.54 ab | 7.21 b | 6.38 b |
Ethanol | 348.45 a | 86.49 c | 350.84 a | 176.07 b | 89.43 c | 213.96 b | 73.87 c | 214.10 b |
Trigonelline | 4.30 b | 2.19 c | 6.79 a | 1.64 c | 4.36 b | 3.79 b | 3.10 bc | 4.26 b |
Secondary Metabolite | Rt (min) | UV/Vis (nm) | [M+H]+ (m/z) | Sanguinelli | Tarocco Sant’Alfio | Tarocco Dalmuso | Tarocco Rosso | Tarocco Gallo | Tarocco Scirè | Tarocco Meli | Moro |
---|---|---|---|---|---|---|---|---|---|---|---|
Anthocyanins (mg L−1) | |||||||||||
Cyanidin 3-O-sophoroside | 9.7 | 520 | 609 | 36.35 a | 1.79 b | 8.94 b | 8.33 b | ND | 5.01 b | 0.72 b | 23.36 a |
Cyanidin 3-O-(6″-acetyl-glucoside) | 12.9 | 520 | 489 | 64.71 a | 2.87 b | 14.82 b | 8.05 b | ND | 7.37 b | 2.20 b | 66.78 a |
Flavones (mg L−1) | |||||||||||
Vicenin 2 (apigenin 6,8-di-C-glycoside) | 10.9 | 290 | 593 | 85.48 d | 70.11 dc | 62.74 d | 108.46 ab | 80.93 dc | 111.75 a | 77.76 dc | 90.07 bc |
Flavanones (mg L−1) | |||||||||||
Narirutin (naringenin-7-rutinoside) | 16.2 | 290 | 579 | 49.04 d | 67.42 c | 44.82 d | 69.65 c | 43.24 d | 88.42 b | 68.34 c | 92.77 a |
Hesperidin (7-rutinoside) | 17.6 | 290 | 609 | 495.05 a | 285.79 c | 112.26 e | 193.28 de | 92.67 e | 160.57 e | 371.65 bc | 472.79 ab |
Didymin (naringenin-40-methyl-ether 7-rutinoside) | 22.3 | 290 | 593 | 10.93 bcd | 15.55 b | 6.39 cd | 15.71 b | 4.75 d | 12.30 bc | 27.10 a | 27.32 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Forner-Giner, M.Á.; Ballesta-de los Santos, M.; Melgarejo, P.; Martínez-Nicolás, J.J.; Melián-Navarro, A.; Ruíz-Canales, A.; Continella, A.; Legua, P. Fruit Quality and Primary and Secondary Metabolites Content in Eight Varieties of Blood Oranges. Agronomy 2023, 13, 1037. https://doi.org/10.3390/agronomy13041037
Forner-Giner MÁ, Ballesta-de los Santos M, Melgarejo P, Martínez-Nicolás JJ, Melián-Navarro A, Ruíz-Canales A, Continella A, Legua P. Fruit Quality and Primary and Secondary Metabolites Content in Eight Varieties of Blood Oranges. Agronomy. 2023; 13(4):1037. https://doi.org/10.3390/agronomy13041037
Chicago/Turabian StyleForner-Giner, María Ángeles, Manuel Ballesta-de los Santos, Pablo Melgarejo, Juan José Martínez-Nicolás, Amparo Melián-Navarro, Antonio Ruíz-Canales, Alberto Continella, and Pilar Legua. 2023. "Fruit Quality and Primary and Secondary Metabolites Content in Eight Varieties of Blood Oranges" Agronomy 13, no. 4: 1037. https://doi.org/10.3390/agronomy13041037
APA StyleForner-Giner, M. Á., Ballesta-de los Santos, M., Melgarejo, P., Martínez-Nicolás, J. J., Melián-Navarro, A., Ruíz-Canales, A., Continella, A., & Legua, P. (2023). Fruit Quality and Primary and Secondary Metabolites Content in Eight Varieties of Blood Oranges. Agronomy, 13(4), 1037. https://doi.org/10.3390/agronomy13041037