Efficiency of Rph genes against Puccinia hordei in Southern Russia in 2019–2021
Abstract
:1. Introduction
2. Materials and Methods
2.1. 2019–2021 Growing Seasons
2.2. Obtaining Infectious Material
2.3. Efficiency Evaluation of Rph Genes in Adult Plants
2.4. Efficiency Evaluation of Rph Genes in Seedling Plants
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO Stat. Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/faostat/en/#data/QC (accessed on 17 February 2022).
- News in Russia and Worldwide. Available online: https://tass.ru/ekonomika/12835219 (accessed on 17 February 2022).
- Danilova, A.V.; Volkova, G.V.; Vaganova, O.V.; Gladkova, E.V.; Danilov, R.Y.; Shumilov, Y.V.; Astapchuk, I.L. Immunological assessment of winter barley cultivars relative to the North Caucasian population of the barley leaf rust. Sci. Kuban 2017, 4, 21–25. [Google Scholar]
- Park, R.F.; Golegaonkar, P.G.; Derevnina, L.; Sandhu, K.S.; Karaoglu, H.; Elmansour, H.M.; Dracatos, P.M.; Singh, D. Leaf Rust of Cultivated Barley: Pathology and Control. Annu. Rev. Phytopathol. 2015, 53, 565–589. [Google Scholar] [CrossRef]
- Griffey, C.A.; Das, M.K.; Baldwin, R.E.; Waldenmaier, C.M. Yield losses in winter barley resulting from a new race of Puccinia hordei in North America. Plant. Dis. 1994, 78, 256–260. [Google Scholar] [CrossRef]
- Amouzoune, M.; Amri, A.; Benkirane, R.; Kehel, Z.; Al-Jaboobi, M.; Moulakat, A.; Abderrazek, J.; Rehman, S. Mining and predictive characterization of resistance to leaf rust (Puccinia hordei Otth) using two subsets of barley genetic resources. Genet. Resour. Crop. Evol. 2022, 69, 839–853. [Google Scholar] [CrossRef]
- Clifford, B.C. Barley leaf rust. In The Cereal Rusts; Roelfs, A.P., Bushnell, W.R., Eds.; Academic Press: New York, NY, USA, 1985; Volume 2, pp. 173–205. [Google Scholar]
- Czembor, H.J.; Czember, H. Leaf rust resistance in winter barley cultivars and breeding lines. Plant Breed Sci. 2007, 56, 47–56. [Google Scholar]
- Volkova, G.V.; Danilova, A.V.; Kudinova, O.A. Virulence of the population of the causative agent of barley leaf rust in the North Caucasus in 2014–2017. Agric. Biol. 2019, 54, 589–596. [Google Scholar]
- Shkalikov, V.A.; Dyakov, Y.T.; Smirnov, A.N. Plant Immunity; KolosS: Moscow, Russia, 2005; 190p. [Google Scholar]
- McIntosh, M.R. The Role of Specific Genes in Breeding for Durable Stem Rust Resistance in Wheat and Triticale. In Breeding Strategies for Resistance to Rust of Wheat; Simmonds, S., Rajaram, N.W., Eds.; CIMMYT: Mexico City, Mexico, 1988; pp. 1–9. [Google Scholar]
- Figueroa, M.; Upadhyaya, N.M.; Sperschneider, J.; Park, R.F.; Szabo, L.J.; Steffenson, B.; Dodds, P.N. Changing the game: Using integrative genomics to probe virulence mechanisms of the stem rust pathogen Puccinia graminis f. sp. tritici. Front. Plant. Sci. 2016, 7, 205. [Google Scholar] [CrossRef] [Green Version]
- Kavanagh, P.J.; Singh, D.; Bansal, U.K.; Park, R.F. Inheritance and characterization of the new and rare gene Rph25 conferring seedling resistance in Hordeum vulgare against Puccinia Hordei. Plant Breed 2017, 136, 908–912. [Google Scholar] [CrossRef]
- Yu, X.; Kong, H.Y.; Meiyalaghan, V.; Casonato, S.; Chng, S.; Jones, E.E.; Butler, R.C.; Pickering, R.; Johnston, P.A. Genetic mapping of a barley leaf rust resistance gene Rph26 introgressed from Hordeum bulbosum. Theor. Appl. Genet. 2018, 131, 2567–2580. [Google Scholar] [CrossRef] [PubMed]
- Rothwell, C.T.; Singh, D.; Dracatos, P.M.; Park, R.F. Inheritance and Characterization of Rph27: A Third Race-Specific Resistance Gene in the Barley Cultivar Quinn. Phytopathology 2020, 110, 1067–1073. [Google Scholar] [CrossRef] [PubMed]
- Mehnaz, M.; Dracatos, P.; Pham, A.; March, T.; Maurer, A.; Pillen, K.; Forrest, K.; Kulkarni, T.; Pourkheirandish, M.; Park, R.F.; et al. Discovery and fine mapping of Rph28: A new gene conferring resistance to Puccinia hordei from wild barley. Theor. Appl. Genet. 2021, 134, 2167–2179. [Google Scholar] [CrossRef] [PubMed]
- Ziems, L.A.; Hickey, L.T.; Hunt, C.H.; Mace, E.S.; Platz, G.J.; Franckowiak, J.D.; Jordan, D.R. Association mapping of resistance to Puccinia hordei in Australian barley breeding germplasm. Theor. Appl. Genet. 2014, 127, 1199–1212. [Google Scholar] [CrossRef] [PubMed]
- Rogozhina, E.M.; Trofimovskaya, L.Y. Resistance of barley varieties to races of dwarf rust. In Bulletin of VIR; Brezhnev, D.D.L., Ed.; Leningrad: Leningrad City, Soviet Union, 1968; Volume 13, pp. 58–63. [Google Scholar]
- Shchelko, L.G. Racial differentiation of the pathogen and sources of immunity to dwarf rust. Proc. Appl. Bot. Genet. Breed. 1974, 53, 105–112. [Google Scholar]
- Tyryshkin, L.G. The influence of environmental factors on virulence and aggressiveness of barley leaf rust. Izv. St. Petersburg State Agrar. Univ. 2016, 45, 90–94. [Google Scholar]
- Tyryshkin, L.G. Genetic Diversity of Wheat and Barley in Terms of Effective Disease Resistance and Potential for Expansion. Ph.D. thesis, N. I. Vavilov All-Russian Research Institute of Plant Industry, St. Petersburg, Russia, 2007. [Google Scholar]
- Tyryshkin, L.G.; Gashimov, M.E.; Petrova, N.S.; Zveynek, I.A.; Kovaleva, O.N.; Chernov, V.E. Effective resistance of barley leaf diseases (leaf rust, powdery mildew, spot bloth). Proc. Appl. Bot. Genet. Breed. 2013, 171, 57–60. [Google Scholar]
- Kilat, N.S.; Sidorov, A.V.; Kolesova, M.A.; Tyryshkin, L.G. Juvenile resistance to leaf diseases in barley local samples. Bull. Michurinsk State Agrar. Univ. 2015, 4, 32–36. [Google Scholar]
- Tyryshkin, L.G. Juvenile resistance of cereal cultivars to diseases. Izv. St. Petersburg State Agrar. Univ. 2018, 1, 37–41. [Google Scholar]
- Abdullayev, R.; Radchenko, E.; Batasheva, B. Leaf rust resistance in barley accessions from Ethiopia. Plant Prot. News 2020, 103, 262–264. [Google Scholar] [CrossRef]
- Misrieva, B.I. Resistance of Barley (Hordeum vulgare L.) to Barley Leaf Rust (Puccinia hordei Otth.) in the North Caucasus. Ph.D. thesis, N. I. Vavilov All-Russian Research Institute of Plant Industry, St. Petersburg, Russia, 2000. [Google Scholar]
- Kuznetsova, T.E. Barley Breeding for Disease Resistance in a Condition of the North Caucasus. Ph.D. thesis, P. P. Lukyanenko Krasnodar Research Institute of Agriculture, Krasnodar, Russia, 2006. [Google Scholar]
- Anpilogova, L.K.; Volkova, G.V. Methods for Creating Artificial Infectious Backgrounds and Assessing Wheat Cultivars for Resistance to Harmful Diseases (Fusarium Ear Blight, Rust, Powdery Mildew); Russian Agricultural Academy: Krasnodar, Russia, 2000; 28p. [Google Scholar]
- Roelfs, A.P.; Singh, R.P.; Saari, E.E. Rust Diseases of Wheat: Concept and Methods of Disease Management; CIMMYT: Veracruz, Mexico, 1992; 81p. [Google Scholar]
- Koishybaev, M.; Mumindzhanov, K. Guidelines for Monitoring Diseases, Pests and Weeds on Grain Crops; FAO: Ankara, Turkey, 2016; 42p. [Google Scholar]
- Duveiller, E.; Singh, R.P.; Singh, P.K.; Dababat, A.A.; Mezzalama, M. Wheat Diseases and Pests: A Guide for Field Identification; CIMMYT: Veracruz, Mexico, 2012; 138p. [Google Scholar]
- Levine, M.N.; Cherewick, W.J. Studies on Dwarf Leaf Rust of Barley; Technical Bulletin; US Department of Agriculture: Washington, DC, USA, 1952; Volume 1056, pp. 1–17. [Google Scholar]
- Babayants, L.T. Methods of Breeding and Estimation of Wheat and Barley Resistance to Diseases; Prague: Prague City, Czech Republic, 1988; 321p. [Google Scholar]
- Danilova, A.V.; Volkova, G.V. Short communication: Virulence of barley leaf rust in the South of Russia in 2017–2019. Span. J. Agric. Res. 2022, 20, e10SC01. [Google Scholar] [CrossRef]
- Dyck, P.L.; Johnson, R. Temperature sensitivity of genes for resistance in wheat to Puccinia recondita. Can. J. Plant. Pathol. 1983, 5, 229–234. [Google Scholar] [CrossRef]
- Sandhu, K.S.; Singh, D.; Park, R.F. Characterising seedling and adult plant resistance to Puccinia hordei in Hordeum vulgare. Ann. Appl. Biol. 2014, 165, 117–129. [Google Scholar] [CrossRef]
- Singh, D.; Macaigne, N.; Park, R.F. Rph20: Adult plant resistance gene to barley leaf rust can be detected at early growth stages. Eur. J. Plant. Pathol. 2013, 137, 719–725. [Google Scholar] [CrossRef]
- Singh, L.; Park, R.F.; Dracatos, P.; Ziems, L.; Singh, D. Understanding the expression and interaction of Rph genes conferring seedling and adult plant resistance to Puccinia hordei in barley. Can. J. Plant Pathol. 2021, 43, S218–S226. [Google Scholar] [CrossRef]
- Singh, D.; Dracatos, P.; Derevnina, L.; Zhou, M.; Park, R.F. Rph23: A new designated additive adult plant resistance gene to leaf rust in barley on chromosome 7H. Plant Breed. 2015, 134, 62–69. [Google Scholar] [CrossRef]
- Singh, D.; Mehnaz, M.; Dracatos, P.; Park, R.F. Australian barley cultivar pedigree and leaf rust seedling and adult plant resistance genotype information. Cereal Rust Rep. 2020, 17, 1–9. [Google Scholar]
- Park, R.F. Pathogenic specialization and pathotype distribution of Puccinia hordei in Australia, 1992 to 2001. Plant Dis. 2003, 87, 1311–1316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandhu, K.S.; Singh, D.; Park, R.F. Characterization of leaf rust resistance in international barley nurseries. J. Plant Breed. Crop Sci. 2016, 8, 117–125. [Google Scholar]
- Khokhlova, A.P. Resistance genes against barley leaf rust. Proc. Appl. Bot. Genet. Breed. 1982, 71, 63–68. [Google Scholar]
- Tyryshkin, L.G. Genetic control of effective leaf rust resistance in collection accessions of barley Hordeum vulgare L. Genetics 2009, 45, 376–378. [Google Scholar] [CrossRef]
- Abdullaev, R.A. Genetic Diversity of Barley Landraces from Dagestan for Adaptively Important Traits. Ph.D. Thesis, N. I. Vavilov All-Russian Research Institute of Plant Industry, St. Petersburg, Russia, 2015. [Google Scholar]
- Golan, T.; Anikster, Y.; Moseman, J.G.; Wahl, I. A new virulent strain of Puccinia hordei. Euphytica 1978, 27, 185–189. [Google Scholar] [CrossRef]
- Parlevliet, J.E.; Van Der Beek, J.G.; Pieters, R. Presence in Morocco of brown rust, Puccinia hordei, with a wide range of virulence to barley. Cereal Rusts Bull. 1981, 9, 3–8. [Google Scholar]
- Steffenson, B.J.; Jin, Y.; Griffey, C.A. Pathotypes of Puccinia hordei with virulence for the barley leaf rust resistance gene Rph7 in the United States. Plant Dis. 1993, 77, 867–869. [Google Scholar] [CrossRef]
- Dinh, H.X.; Singh, D.; Periyannan, S.; Park, R.F.; Pourkheirandish, M. Molecular genetics of leaf rust resistance in wheat and barley. Theor. Appl. Genet. 2020, 133, 2035–2050. [Google Scholar] [PubMed]
- Hickey, L.T.; Lawson, W.; Platz, G.J.; Dieters, M.; Arief, V.N.; Germán, S.; Fletcher, S.; Park, R.F.; Singh, D.; Pereyra, S.; et al. Mapping Rph20: A gene conferring adult plant resistance to Puccinia hordei in barley. Theor. Appl. Genet. 2011, 123, 55–68. [Google Scholar] [CrossRef] [PubMed]
- Ziems, L.A.; Hickey, L.T.; Platz, G.J.; Franckowiak, J.D.; Dracatos, P.M.; Singh, D.; Park, R.F. Characterization of Rph24: A gene conferring adult plant resistance to Puccinia hordei in barley. Phytopathology 2017, 107, 834–841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Rph Gene(s) | Variety/Line | Disease Development, % and Plant Infection Types by Year | ||
---|---|---|---|---|
2019 | 2020 | 2021 | ||
Rph1 | Sudan | 1MR 1 | 1MR | 10MR |
Rph2 | Peruvian | 20MS | 40MS | 40MS |
Rph3 | Estate | 10MS | 10MS | 50S |
Rph4 | Gold | 10MS | 30MS | 40S |
Rph5 | Magnif 102 INTA | 25MS | 30MS | 50MS |
Rph6+2 | Bolivia | 5MR | 15MS | 60S |
Rph7 | Cebada Capa | 1R | 1R | 1R |
Rph8 | Egypt 4 | 10MR | 20MR | 30MS |
Rph9 | Abyssinian | 15MS | 15MS | 60S |
Rph12 | Trumpf | 5MR | 30MR | 40S |
Rph13 | PI 531849 | 1R | 1R | 5R |
Rph14 | PI 584760 | - ** | - | 20MR |
Rph19 | Prior | 10MR | 10MS | 40MS |
Rph20 | Vada | - | - | 10MR |
Rph21+2 | Ricardo | 25MS | 30MS | 60S |
Rph23+2 | Yerong | 5MR | 20MR | 20MR |
Rph25 (RphFT) | Fong Tien | - | - | 15MS |
absent | L-94 | 60S | 60S | 80S |
Rph Gene(s) | Variety/Line | Frequency of Virulent Isolates, % | |
---|---|---|---|
2020 | 2021 | ||
Rph1 | Sudan | 91.9 | 96.6 |
Rph2 | Peruvian | 73.0 | 96.6 |
Rph3 | Estate | 59.5 | 98.3 |
Rph4 | Gold | 89.2 | 93.1 |
Rph5 | Magnif 102 INTA | 48.6 | 94.8 |
Rph6+2 | Bolivia | 100 | 82.8 |
Rph7 | Cebada Capa | 0.0 | 0.0 |
Rph8 | Egypt 4 | 94.6 | 91.4 |
Rph9 | Abyssinian | 91.9 | 17.2 |
Rph12 | Trumpf | 91.9 | 94.8 |
Rph13 | PI 531849 | 0.0 | 0.0 |
Rph14 | PI 584760 | - 1 | 1.7 |
Rph19 | Prior | 27.0 | 32.8 |
Rph21+2 | Ricardo | 97.3 | 91.4 |
Rph25 (RphFT) | Fong Tien | - | 94.8 |
Number of isolates | - | 37 | 58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Danilova, A.; Volkova, G. Efficiency of Rph genes against Puccinia hordei in Southern Russia in 2019–2021. Agronomy 2023, 13, 1046. https://doi.org/10.3390/agronomy13041046
Danilova A, Volkova G. Efficiency of Rph genes against Puccinia hordei in Southern Russia in 2019–2021. Agronomy. 2023; 13(4):1046. https://doi.org/10.3390/agronomy13041046
Chicago/Turabian StyleDanilova, Anastasia, and Galina Volkova. 2023. "Efficiency of Rph genes against Puccinia hordei in Southern Russia in 2019–2021" Agronomy 13, no. 4: 1046. https://doi.org/10.3390/agronomy13041046
APA StyleDanilova, A., & Volkova, G. (2023). Efficiency of Rph genes against Puccinia hordei in Southern Russia in 2019–2021. Agronomy, 13(4), 1046. https://doi.org/10.3390/agronomy13041046