Effect of Fertilization and Weed Management Practices on Weed Diversity and Hemp Agronomic Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Weather Conditions
2.2. Experimental Design and Plant Material
2.3. Measurements and Calculations
2.4. Statistical Analysis
3. Results
3.1. Agronomic Traits, Yield, and Yield Contributing Characteristics of Hemp
3.2. Weed Species Composition, Weed Density, and Above-Ground Biomass
3.3. Weed Diversity Indices
3.4. Hemp/Weed Competition
4. Discussion
4.1. Agronomic Traits of Hemp
4.2. Yield and Yield Contributing Characteristics of Hemp
4.3. Weed Species Composition, Weed Density, and Above-Ground Biomass
4.4. Weed Diversity Indices
4.5. Hemp/Weed Competition
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Karche, T.; Singh, M.R. The application of hemp (Cannabis sativa L.) for a green economy: A review. Turk. J. Bot. 2019, 43, 710–723. [Google Scholar] [CrossRef]
- Krüger, M.; van Eeden, T.; Beswa, D. Cannabis sativa cannabinoids as functional ingredients in snack foods–Historical and developmental aspects. Plants 2022, 11, 3330. [Google Scholar] [CrossRef] [PubMed]
- Hesami, M.; Pepe, M.; Baiton, A.; Jones, A.M.P. Current status and future prospects in cannabinoid production through in vitro culture and synthetic biology. Biotechnol. Adv. 2023, 62, 108074. [Google Scholar] [CrossRef] [PubMed]
- Kovalchuk, I.; Pellino, M.; Rigault, P.; van Velzen, R.; Ebersbach, J.; Ashnest, J.R.; Mau, M.; Schranz, M.E.; Alcorn, J.; Laprairie, R.B.; et al. The genomics of Cannabis and its close relatives. Annu. Rev. Plant Biol. 2020, 71, 713–739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hesami, M.; Pepe, M.; Alizadeh, M.; Rakei, A.; Baiton, A.; Jones, A.M.P. Recent advances in cannabis biotechnology. Ind. Crops Prod. 2020, 158, 213026. [Google Scholar] [CrossRef]
- Amaducci, S.; Scordia, D.; Liu, F.H.; Zhang, Q.; Guo, H.; Testa, G.; Cosentino, S.L. Key cultivation techniques for hemp in Europe and China. Ind. Crops Prod. 2015, 68, 2–16. [Google Scholar] [CrossRef]
- Johnson, R. Hemp as an Agricultural Commodity; Congressional Research Service: Washington, DC, USA, 2014. [Google Scholar]
- Schluttenhofer, C.; Yuan, L. Challenges towards Revitalizing Hemp: A Multifaceted Crop. Trends Plant Sci. 2017, 22, 917–929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andre, C.M.; Hausman, J.F.; Guerriero, G. Cannabis sativa: The plant of the thousand and one molecules. Front Plant Sci. 2016, 7, 19. [Google Scholar] [CrossRef] [Green Version]
- Tsaliki, E.; Kalivas, A.; Jankauskiene, Z.; Irakli, M.; Cook, C.; Grigoriadis, I.; Panoras, I.; Vasilakoglou, I.; Dhima, K. Fibre and Seed Productivity of Industrial Hemp (Cannabis sativa L.) varieties under Mediterranean Conditions. Agronomy 2021, 11, 171. [Google Scholar] [CrossRef]
- Bilalis, D.; Karidogianni, S.; Roussis, I.; Kouneli, V.; Kakabouki, I.; Folina, A. Cannabis sativa L.: A new promising crop for medical and industrial use. Bull. Univ. Agric. Sci. Vet. Med. 2019, 76, 145–150. [Google Scholar] [CrossRef]
- Alexander, S.P.H. Therapeutic potential of cannabis-related drugs. Prog. Neuropsychopharmacol. Biol. Psychiatry 2016, 64, 157–166. [Google Scholar] [CrossRef]
- Rodriguez-Leyva, D.; Pierce, G.N. The Cardiac and Haemostatic Effects of Dietary Hempseed. Nutr. Metab. 2010, 7, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lukin, A.; Bitiutskikh, K. Investigation on the use of hemp flour in cookie production. Bulg. J. Agric. Sci. 2017, 23, 664–667. [Google Scholar]
- Gorelick, J.; Bernstein, N. Chemical and physical elicitation for enhanced cannabinoid production in cannabis. In Cannabis sativa L.—Botany and Biotechnology; Chandra, S., Lata, H., ElSohly, M.A., Eds.; Springer International Publishing: Basel, Switzerland, 2017; pp. 439–456. [Google Scholar]
- Salentijn, E.M.J.; Zhang, Q.; Amaducci, S.; Yang, M.; Trindade, L.M. New developments in fiber hemp (Cannabis sativa L.) breeding. Ind. Crops Prod. 2015, 68, 32–41. [Google Scholar] [CrossRef]
- Zatta, A.; Monti, A.; Venturi, G. Eighty years of studies on industrial hemp in the Po valley (1930–2010). J. Nat. Fibers 2012, 9, 80–196. [Google Scholar] [CrossRef]
- European Commission. Common Catalogue of Varieties of Agricultural Plant Species. Available online: https://op.europa.eu/ (accessed on 10 December 2022).
- European Commission. Delegated Regulation (EU) No 639/2014. Available online: https://eur-lex.europa.eu/ (accessed on 10 December 2022).
- Ascrizzi, R.; Ceccarini, L.; Tavarini, S.; Flamini, G.; Angelini, L.G. Valorisation of hemp inflorescence after seed harvest: Cultivation site and harvest time influence agronomic characteristics and essential oil yield and composition. Ind. Crops Prod. 2019, 139, 111541. [Google Scholar] [CrossRef]
- Sebastian, J.S.V.; Dong, X.; Trostle, C.; Pham, H.; Joshi, M.V.; Jessup, R.W.; Burow, M.D.; Provin, T.L. Hemp agronomy: Current advances, questions, challenges, and opportunities. Agronomy 2023, 13, 475. [Google Scholar] [CrossRef]
- Welling, M.T.; Liu, L.; Shapter, T.; Raymond, C.A.; King, G.J. Characterization of cannabinoid composition in a diverse Cannabis sativa L. germplasm collection. Euphytica 2017, 208, 463–475. [Google Scholar] [CrossRef] [Green Version]
- Calzolari, D.; Magagnini, G.; Lucini, L.; Grassi, G.; Appendino, G.B.; Amaducci, S. High added-value compounds from Cannabis threshing residues. Ind. Crops Prod. 2017, 108, 558–563. [Google Scholar] [CrossRef]
- Baldini, M.; Ferfuia, C.; Piani, B.; Sepulcri, A.; Dorigo, G.; Zuliani, F.; Danuso, F.; Cativello, C. The performance and potentiality of monoecius hemp (Cannabis sativa L.) cultivars as a multipurpose crop. Agronomy 2018, 8, 162. [Google Scholar] [CrossRef] [Green Version]
- Papastylianou, P.; Kakabouki, I.; Travlos, I. Effect of nitrogen fertilization on growth and yield of industrial hemp (Cannabis sativa L.). Not. Bot. Horti Agrobot. 2017, 46, 197–201. [Google Scholar] [CrossRef] [Green Version]
- Campiglia, E.; Radicetti, E.; Mancinelli, R. Plant density and nitrogen fertilization affect agronomic performance of industrial hemp (Cannabis sativa L.) in Mediterranean environment. Ind. Crops Prod. 2017, 100, 246–254. [Google Scholar] [CrossRef]
- Adesina, I.; Bhowmik, A.; Sharma, H.; Shahbazi, A. A review of the current state of knowledge of growing conditions, agronomic soil health practices and utilities of hemp in the United States. Agriculture 2020, 10, 129. [Google Scholar] [CrossRef] [Green Version]
- Masclaux-Daubresse, C.; Daniel-Vedele, F.; Dechorgnat, J.; Chardon, F.; Gaufichon, L.; Suzuki, A. Nitrogen uptake, assimilation, and remobilization in plants: Challenges for sustainable and productive agriculture. Ann. Bot. 2010, 105, 1141–1157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curci, P.L.; Cigliano, R.A.; Zuluaga, D.L.; Janni, M.; Sanseverino, W.; Sonnante, G. Transcriptomic response of durum wheat to nitrogen starvation. Sci. Rep. 2017, 7, 1176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogden, M.; Hoefgen, R.; Roessner, U.; Persson, S.; Khan, G.A. Feeding the walls: How does nutrient availability regulate cell wall composition? Int. J. Mol. Sci. 2018, 19, 2691. [Google Scholar] [CrossRef] [Green Version]
- Vera, C.L.; Malhi, S.S.; Raney, J.P.; Wang, Z.H. The effect of N and P fertilization on growth, seed yield and quality of industrial hemp in the Parkland region of Saskatchewan. Can. J. Plant Sci. 2004, 84, 939–947. [Google Scholar] [CrossRef]
- Caplan, D.; Dixon, M.; Zheng, Y. Optimal rate of organic fertilizer during the flowering stage for Cannabis grown in two coir-based substrates. HortScience 2017, 52, 1796–1803. [Google Scholar] [CrossRef]
- Kakabouki, I.; Kousta, A.; Folina, A.; Karydogianni, S.; Zisi, C.; Kouneli, V.; Papastylianou, P. Effect of Fertilization with Urea and Inhibitors on Growth, Yield and CBD Concentration of Hemp (Cannabis sativa L.). Sustainability 2021, 13, 2157. [Google Scholar] [CrossRef]
- Rioba, N.B.; Itulya, F.M.; Saidi, M.; Dudai, N.; Bernstein, N. Effects of nitrogen, phosphorus and irrigation frequency on essential oil content and composition of sage (Salvia officinalis L.). J. Appl. Res. Med. Aromat. Plants 2015, 2, 21–29. [Google Scholar] [CrossRef]
- Tang, K.; Struik, P.C.; Yin, X.; Calzolari, D.; Musio, S.; Thouminot, C.; Bjelková, M.; Stramkale, V.; Magagnini, G.; Amaducci, S. A comprehensive study of planting density and nitrogen fertilization effect on dual-purpose hemp (Cannabis sativa L.) cultivation. Ind Crops Prod. 2017, 107, 427–438. [Google Scholar] [CrossRef]
- Blackshaw, R.E.; Brandt, R.N.; Janzen, H.H.; Entz, T.; Grant, C.A.; Derksen, D.A. Differential response of weed species to added nitrogen. Weed Sci. 2003, 51, 532–539. [Google Scholar] [CrossRef]
- Dhima, K.V.; Eleftherohorinos, I.G. Influence of nitrogen on competition between winter cereals and sterile oat. Weed Sci. 2001, 49, 77–82. [Google Scholar] [CrossRef]
- Sweeney, A.E.; Renner, K.A.; Laboski, C.; Davis, A. Effect of fertilizer nitrogen on weed emergence and growth. Weed Sci. 2008, 56, 714–721. [Google Scholar] [CrossRef]
- Travlos, I.; Papastylianou, P.; Alexos, A.; Kanatas, P.; Bilalis, D.; Tsekoura, A.; Kakabouki, I.; Cheimona, N. Changes of weed flora due to nitrogen addition in sunflower. Not. Bot. Horti Agrobot. 2019, 47, 1337–1339. [Google Scholar] [CrossRef] [Green Version]
- Gurmani, A.R.; Khan, S.U.; Mehmood, T.; Ahmed, W.; Rafique, M. Exploring the Allelopathic Potential of Plant Extracts for Weed Suppression and Productivity in Wheat (Triticum aestivum L.). Gesunde Pflanz. 2021, 73, 29–37. [Google Scholar] [CrossRef]
- Struik, P.C.; Amaducci, S.; Bullard, M.J.; Stutterheim, N.C.; Venturi, G.; Cromack, H.T.H. Agronomy of fibre hemp (Cannabis sativa L.) in Europe. Ind. Crops Prod. 2000, 11, 107–118. [Google Scholar] [CrossRef]
- Small, E.; Pocock, T.; Cavers, P.B. The biology of Canadian weeds. 119. Cannabis sativa L. Can. J. Plant Sci. 2003, 83, 217–237. [Google Scholar] [CrossRef] [Green Version]
- Kostuik, J.; Williams, D.W. Hemp agronomy–Grain and Fiber Production. In Industrial Hemp as a Modern Commodity Crop; Fike, J., Riddle, T., Nelson, J., Flaherty, P., Williams, D.W., Eds.; American Society of Agronomy, Crop Science Society: Madison, WI, USA, 2019; pp. 59–72. [Google Scholar]
- Ganavan, S.; Brym, Z.T.; Brundu, G.; Dehnen-Schmutz, K.; Lieurance, D.; Petri, T.; Wadlington, W.H.; Wilson, J.R.U.; Flory, S.L. Cannabis de-domestication and invasion risk. Biol. Conserv. 2022, 274, 109709. [Google Scholar]
- Hall, J.; Bhattarai, S.P.; Midmore, D.J. Effect of industrial hemp (Cannabis sativa L.) planting density on weed suppression, crop growth, physiological responses, and fibre yield in the subtropics. Renew. Bioresour. 2014, 2, 1. [Google Scholar]
- Ameh, S.J.; Obodozie, O.O.; Inyang, U.S.; Abubakar, M.S.; Garba, M. Current phytotherapy—A perspective on the science and regulation of herbal medicine. J. Med. Plant Res. 2010, 4, 72–81. [Google Scholar]
- Pudelko, K.; Majchrzak, L.; Narozna, D. Allelopathic effect of fibre hemp (Cannabis sativa L.) on monocot and dicot plant species. Ind Crops Prod. 2014, 56, 191–199. [Google Scholar] [CrossRef]
- Deeley, M.R. Could cannabis provide an answer to climate change? J. Ind. Hemp 2002, 7, 133–138. [Google Scholar] [CrossRef]
- Robson, M.C.; Fowler, S.M.; Lampkin, N.H.; Leifert, C.; Leitch, M.; Robinson, D.; Watson, C.A.; Litterick, A.M. The Agronomic and Economic Potential of Break Crops for Ley/Arable Rotations in Temperate Organic Agriculture. Adv. Agron. 2002, 77, 369–427. [Google Scholar]
- Jankauskiené, Z.; Gruzdeviené, E.; Lazauskas, S. Potential of industrial hemp (Cannabis sativa L.) genotypes to suppress weeds. Zemdirbyste 2014, 101, 265–270. [Google Scholar] [CrossRef]
- Cole, C.; Zurbo, B. Industrial hemp– a new crop for NSW. Primefacts 2008, 801, 1–6. [Google Scholar]
- Kousta, A.; Papastylianou, P.; Cheimona, N.; Travlos, I.; Kakabouki, I.; Bilalis, D. Effect of Fertilization and Weed Management on Weed Flora of Hemp Crop. Bull. Univ. Agric. Sci. Vet. Med. 2020, 77, 45–51. [Google Scholar] [CrossRef]
- Flessner, M.; Bryd, J.; Bamber, K.; Fike, J. Evaluating herbicide tolerance of industrial hemp (Cannabis sativa L.). Crop Sci. 2020, 60, 419–427. [Google Scholar] [CrossRef]
- Nkoa, R.; Owen, M.D.K.; Swanton, C.J. Weed abundance, distribution, diversity, and community analyses. Weed Sci. 2015, 63, 64–90. [Google Scholar] [CrossRef] [Green Version]
- Shanon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Magurran, A.E. Ecological Diversity and its Measurement; Princeton University Press: Princeton, NJ, USA, 1988. [Google Scholar]
- Berger, W.; Parker, F.L. Diversity of planktonic Forminifera in deep-sea sediments. Science 1970, 168, 1345–1347. [Google Scholar] [CrossRef]
- Williams, I.I.; Mortensen, M.M.; Doran, D.A.J.W. Assessment of weed and crop fitness in cover crop residues for integrated weed management. Weed Sci. 1998, 46, 595–603. [Google Scholar] [CrossRef]
- Campiglia, E.; Radicetti, E.; Brunetti, P.; Mancinelli, R. Do cover crop species and residue management play a leading role in pepper productivity? Sci. Hortic. 2014, 166, 97–104. [Google Scholar] [CrossRef]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research, 2nd ed.; John Wiley and Sons: New York, NY, USA, 1984; p. 680. [Google Scholar]
- Van der Werf, H.M.G.; Mathijsen, W.W.J.M.; Havenkort, A.J. The potential of hemp (Cannabis sativa L.) for sustainable fibre production. A crop physiological appraisal. Ann. Appl. Bot. 1996, 129, 109–123. [Google Scholar] [CrossRef]
- Tang, K.; Struik, P.C.; Yin, X.; Thouminot, C.; Bjelková, M.; Stramkale, V.; Amaducci, S. Comparing hemp (Cannabis sativa L.) cultivars for dual-purpose production under contrasting environments. Ind. Crops Prod. 2016, 87, 33–44. [Google Scholar] [CrossRef]
- Tang, K.; Wang, J.; Yang, Y.; Deng, G.; Yu, J.; Hu, W.; Guo, L.; Du, G.; Liu, F. Fiber Hemp (Cannabis sativa L.) Yield and Its Response to Fertilization and Planting Density in China. Ind. Crops Prod. 2022, 177, 114542. [Google Scholar] [CrossRef]
- Finnan, J.; Burke, B. Potassium fertilization of hemp (Cannabis sativa). Ind. Crop. Prod. 2013, 41, 419–422. [Google Scholar] [CrossRef]
- Aubin, M.; Seguin, P.; Vanasse, A.; Gaetan, F.T.; Mustafa, A.F.; Charron, J. Industrial hemp response to nitrogen, phosphorus, and potassium fertilization. Crop For. Turfgrass Manag. 2015, 1, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Ivonyi, I.; Izsoki, Z.; van der Werf, H.M. Influence of nitrogen supply and P and K levels of the soil on dry matter and nutrient accumulation of fiber hemp. J. Int. Hemp Assoc. 1997, 4, 84–90. [Google Scholar]
- Wogiatzi, E.; Gougoulias, N.; Giannoulis, K.D.; Kamvoukou, C.-A. Effect of Irrigation and Fertilization Levels on Mineral Composition of Cannabis sativa L. Leaves. Not. Bot. Horti Agrobot. 2019, 47, 1073–1080. [Google Scholar] [CrossRef] [Green Version]
- Deng, G.; Du, G.; Yang, Y.; Bao, Y.; Liu, F. Planting density and fertilization evidently influence the fiber yield of hemp (Cannabis sativa L.). Agronomy 2019, 9, 368. [Google Scholar] [CrossRef] [Green Version]
- Maxwell, B.A. Effects of Herbicides on Industrial Hemp (Cannabis sativa) Phytotoxicity, Biomass, and Seed Yield. Master’s Thesis, Western Kentucky University, Bowling Green, KY, USA, 2016. [Google Scholar]
- Ortmeier-Clarke, H.J.; Oliveira, M.C.; Arneson, N.J.; Conley, S.P.; Werle, R. Dose–response screening of industrial hemp to herbicides commonly used in corn and soybean. Weed Technol. 2022, 36, 245–252. [Google Scholar] [CrossRef]
- Baldini, M.; Ferfuia, C.; Zuliani, F.; Danuso, F. Suitability assessment of different hemp (Cannabis sativa L.) varieties to the cultivation environment. Ind. Crops Prod. 2020, 143, 111860. [Google Scholar] [CrossRef]
- Faux, A.-M.; Draye, X.; Lambert, R.; d’Andrimont, R.; Raulier, P.; Bertin, P. The Relationship of Stem and Seed Yields to Flowering Phenology and Sex Expression in Monoecious Hemp (Cannabis sativa L.). Eur. J. Agron. 2013, 47, 11–22. [Google Scholar] [CrossRef]
- Gorchs, G.; Lloveras, J.; Serrano, L.; Cela, S. Hemp yields and its rotation effects on wheat under rainfed mediterranean conditions. Agron. J. 2017, 109, 1551–1560. [Google Scholar] [CrossRef] [Green Version]
- Mediavilla, V.; Jonquera, M.; Schmid-Slembrouck, I.; Soldati, A. Decimal Code for Growth Stages of Hemp (Cannabis sativa L.). J. Int. Hemp Assoc. 1998, 5, 68–74. [Google Scholar]
- Vogl, C.R.; Mölleken, H.; Lissek-Wolf, G.; Surböck, A.; Kobert, J. Hemp (Cannabis sativa L.) as a resource for green cosmetics: Yield of seed and fatty acid compositions of 20 varieties under the growing conditions of organic farming in Austria. J. Ind. Hemp 2004, 9, 51–68. [Google Scholar] [CrossRef]
- Stafecka, I.; Stramkale, V.; Stramkalis, A.; Kroica, I.; Ivanovs, S. Impact of the agro-environmental factors on the seed yield and yields components productivity of Latvian original hemp. J. Res. Appl. Agric. Eng. 2016, 61, 164–167. [Google Scholar]
- Papastylianou, P.; Kousta, A.; Kakabouki, I.; Travlos, I.; Iliadi, D. Nitrogen utilization efficiency and yield traits of dual-purpose industrial hemp cultivars in a Mediterranean environment. Arch. Agron. Soil Sci. 2021, 69, 104–118. [Google Scholar] [CrossRef]
- Maļceva, M.; Vikmane, M.; Stramkale, V. Changes of photosynthesis related parameters and productivity of Cannabis sativa under different nitrogen supply. Environ. Exp. Biol. 2011, 9, 61–69. [Google Scholar]
- Dan, A.; Duda, M.M.; Moldova, C.; Florian, T. The influence of different seeding space and organic fertilization level upon production and mass of 1000 seeds, recorded in some hemp varieties. Bull. Univ. Agric. Sci. Vet. Med. 2015, 72, 57–60. [Google Scholar] [CrossRef]
- Sandler, L.N.; Gibson, K.A. A all for weed research in industrial hemp (Cannabis sativa L.). Weed Res. 2019, 59, 255–259. [Google Scholar] [CrossRef]
- Grozi, D.; Delchev, G.D.; Stayanova, A.K. Stability of vegetation-applied herbicides and their mixtures with complex foliar fertilizer lactofol B at oil-bearing sunflower by influence of different meteorological conditions. J. Int. Sci. Publ. Agric. Food 2014, 2, 1314–8591. [Google Scholar]
- Tataridas, A.; Jabran, K.; Kanatas, P.; Oliveira, R.S.; Freitas, H.; Travlos, I. Early detection, herbicide resistance screening, and integrated management of Invasive Plant Species: A review. Pest Manag. Sci. 2022, 78, 3957–3972. [Google Scholar] [CrossRef]
- Uludag, A.; Gbehounou, G.; Kashefi, J.; Bouhache, M.; Bon, M.C.; Bell, C.; Lagopodi, A.L. Review of the current situation for Solanum elaeagnifolium in the Mediterranean Basin. EPPO Bull. 2016, 46, 139–147. [Google Scholar] [CrossRef]
- Schütte, G.; Eckerstorfer, M.; Rastelli, V.; Reichenbecher, W.; Restrepo-Vassalli, S.; Ruohonen-Lehto, M.; Saucy, W.A.G.; Mertens, M. Herbicide resistance and biodiversity: Agronomic and environmental aspects of genetically modified herbicide-resistant plants. Environ. Sci. Eur. 2017, 29, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Pyšek, P.; Lepš, J. Response of a weed community to nitrogen fertilization: A multivariate analysis. J. Veg. Sci. 1991, 2, 237–244. [Google Scholar] [CrossRef]
- Inouye, R.; Tilman, D. Convergence and divergence of old-field vegetation after 11 year of nitrogen addition. Ecology 1995, 76, 1872–1887. [Google Scholar] [CrossRef]
- Grundy, A.C.; Mead, A.; Bond, W.; Clark, G.; Burston, S. The impact of herbicide management on long-term changes in the diversity and species composition of weed populations. Weed Res. 2010, 51, 187–200. [Google Scholar] [CrossRef] [Green Version]
- Alebrahim, M.T.; Majd, R.; Rashed Mohassel, M.H.; Wilkakson, S.; Baghestani, M.A.; Ghorbani, R.; Kudsk, P. Evaluating the efficacy of pre- and post-emergence herbicides for controlling Amaranthus retroflexus L. and Chenopodium album L. in potato. Crop Protect. 2012, 42, 345–350. [Google Scholar] [CrossRef]
Height (m) | Above-Ground Biomass (g m−2) | ||||||
---|---|---|---|---|---|---|---|
2019 | |||||||
Cultivar | Fertilization | Weed-Free | Weedy | Weed-Free | Weedy | ||
Uso 31 | Control | 1.27 | 0.72 | 345.4 | 151.5 | ||
F1 | 1.21 | 0.73 | 472.6 | 148.9 | |||
F2 | 1.65 | 0.82 | 517.4 | 234.7 | |||
Mean | 1.38 | 0.76 | 445.1 | 178.3 | |||
Fedora 17 | Control | 1.28 | 1.26 | 447.2 | 367.3 | ||
F1 | 1.51 | 1.42 | 750.1 | 408.2 | |||
F2 | 1.82 | 1.42 | 804.7 | 390.9 | |||
Mean | 1.54 | 1.37 | 667.3 | 388.8 | |||
LSDC×F (0.05) | 0.063 | 14.6 | |||||
LSDF×W (0.05) | 0.077 | 16.3 | |||||
LSDC×W (0.05) | 0.074 | 13.3 | |||||
Analysis of variance | C | *** | *** | ||||
F | *** | *** | |||||
C × F | *** | *** | |||||
WM | *** | *** | |||||
C × WM | *** | * | |||||
F × WM | *** | *** | |||||
C × F × WM | ns | *** | |||||
2020 | |||||||
Cultivar | Fertilization | Weed-Free | Weedy | Herbicide-Treated | Weed-Free | Weedy | Herbicide-Treated |
Uso 31 | Control | 1.12 | 1.0 | 0.58 | 717.4 | 240.3 | 126.9 |
F1 | 1.26 | 1.05 | 0.75 | 801.3 | 257.3 | 131.5 | |
F2 | 1.40 | 1.01 | 0.93 | 932.7 | 278.8 | 286.7 | |
Mean | 1.26 | 1.02 | 0.75 | 817.1 | 258.8 | 181.7 | |
Fedora 17 | Control | 1.24 | 1.14 | 1.19 | 878.3 | 279.9 | 460.1 |
F1 | 1.30 | 1.22 | 1.28 | 1014.3 | 488.5 | 529.3 | |
F2 | 1.48 | 1.29 | 1.38 | 1081.2 | 503.2 | 660.7 | |
Mean | 1.34 | 1.22 | 1.28 | 991.3 | 423.9 | 550.0 | |
LSDC×F (0.05) | 0.072 | 164.6 | |||||
LSDF×W (0.05) | 0.11 | 135.3 | |||||
LSDC×W (0.05) | 0.077 | 201.4 | |||||
Analysis of variance | C | *** | * | ||||
F | *** | * | |||||
C × F | * | * | |||||
WM | *** | *** | |||||
C × WM | *** | * | |||||
F × WM | * | * | |||||
C × F × WM | ns | ns |
2020 | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Inflorescence Length (cm) | Inflorescence Weight (g) | Seed Number Inflorescence | Seed Weight Inflorescence (g) | Yield (kg ha−1) | ||||||||||||
Cultivar | Fertilization | WF | W | HT | WF | W | HT | WF | W | HT | WF | W | HT | WF | W | HT |
Uso 31 | Control | 17.2 | 12.9 | 17.0 | 3.03 | 1.21 | 2.19 | 126.7 | 44.2 | 92.5 | 1.23 | 0.91 | 1.07 | 1828.1 | 1356.2 | 1162.9 |
F1 | 23.7 | 18.8 | 14.1 | 4.12 | 3.82 | 1.10 | 220.8 | 120.3 | 51 | 1.64 | 1.27 | 0.20 | 1929 | 1649.1 | 894.3 | |
F2 | 21.3 | 13.8 | 13.4 | 3.24 | 1.36 | 1.06 | 133 | 69.2 | 47.1 | 1.37 | 0.31 | 0.20 | 1827.9 | 1017.7 | 873.1 | |
Mean | 20.7 | 15.2 | 14.8 | 3.46 | 2.13 | 1.45 | 160.2 | 77.9 | 63.5 | 1.41 | 0.83 | 0.49 | 1861.7 | 1341 | 976.8 | |
Fedora 17 | Control | 27.0 | 18.2 | 28.5 | 8.27 | 2.69 | 6.38 | 121.3 | 73.8 | 138.7 | 1.0 | 0.66 | 1.07 | 3483 | 1526.2 | 3761.8 |
F1 | 27.8 | 26.5 | 28.7 | 8.39 | 7.36 | 6.73 | 137.7 | 126.7 | 153.8 | 1.15 | 1.18 | 1.27 | 3629.9 | 2865.3 | 3538 | |
F2 | 35.3 | 23.2 | 31.1 | 11.1 | 4.0 | 10.0 | 212 | 83.7 | 220.2 | 1.96 | 0.86 | 1.45 | 3998.6 | 2723.7 | 3698.1 | |
Mean | 30.1 | 22.6 | 29.4 | 9.25 | 4.68 | 7.71 | 157 | 94.7 | 170.9 | 1.37 | 0.90 | 1.27 | 3703.8 | 2371.7 | 3666 | |
LSDC×F (0.05) | 4.55 | 2.41 | 45.4 | 0.27 | 312.1 | |||||||||||
LSDF×W (0.05) | 2.89 | 2.35 | 43.6 | 0.20 | 436.7 | |||||||||||
LSDC×W (0.05) | 4.22 | 2.15 | 35.5 | 0.27 | 620.2 | |||||||||||
Analysis of variance | C | * | ** | ** | * | ** | ||||||||||
F | ns | ns | ns | ns | ns | |||||||||||
C × F | * | * | * | *** | ** | |||||||||||
WM | *** | *** | *** | *** | *** | |||||||||||
C × WM | *** | * | *** | *** | *** | |||||||||||
F × WM | *** | * | * | *** | * | |||||||||||
C × F × WM | ns | ns | * | *** | ns |
2019 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cultivar | Fertilization | Weed Density (Number m−2) | Weed Above-Ground Biomass (g m−2) | ||||||||||
AMRE | ECCR | POOL | MASY | SOEL | COAR | AMRE | ECCR | POOL | MASY | SOEL | COAR | ||
Uso 31 | Control | 6 | 8 | 0 | 4 | 182 | 8 | 20.4 | 34.8 | 0 | 3.78 | 82.3 | 9.82 |
F1 | 10 | 26 | 0 | 8 | 210 | 36 | 17.4 | 31.0 | 0 | 3.86 | 71.1 | 14.0 | |
F2 | 26 | 36 | 98 | 58 | 114 | 0 | 11.4 | 22.5 | 132 | 20.7 | 50.9 | 0 | |
Mean | 14 | 23.3 | 32.7 | 23.3 | 168.7 | 14.7 | 16.4 | 29.4 | 44 | 9.46 | 68.1 | 7.94 | |
Fedora 17 | Control | 16 | 8 | 6 | 18 | 204 | 12 | 10.1 | 1.60 | 5.20 | 11.0 | 100.8 | 1.68 |
F1 | 16 | 16 | 0 | 0 | 234 | 0 | 6.68 | 49.2 | 0 | 0 | 27.9 | 0 | |
F2 | 0 | 18 | 24 | 2 | 84 | 0 | 0 | 21.7 | 57.1 | 6.84 | 24.8 | 0 | |
Mean | 10.7 | 14 | 10 | 6.67 | 174 | 4 | 5.59 | 24.2 | 20.8 | 5.95 | 51.2 | 0.56 | |
LSDC×F (0.05) | 2.72 | 7.15 | 5.77 | 5.24 | 12.2 | 2.05 | 1.93 | 8.43 | 19.0 | 3.68 | 14.5 | 0.82 | |
LSDC×W (0.05) | 3.06 | 5.47 | 7.16 | 4.29 | 35.7 | 3.92 | 6.39 | 8.97 | 22.2 | 3.31 | 16.8 | 0.61 | |
Analysis of variance | C | ns | * | ** | ** | ns | ** | ns | ns | ns | * | ns | *** |
F | ns | ** | *** | *** | *** | *** | *** | ** | *** | ** | *** | *** | |
C × F | *** | * | *** | *** | ** | *** | * | ** | * | ** | * | *** | |
W | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | |
C × WM | * | * | *** | *** | ns | *** | *** | ns | * | * | * | *** | |
F × W | * | *** | *** | *** | *** | *** | ** | *** | *** | *** | *** | *** | |
C × F × W | *** | ns | *** | *** | ns | *** | ns | *** | ** | ** | * | *** |
2020 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AMRE | ECCR | POOL | MASY | SOEL | COAR | ||||||||
Weedy | HT | Weedy | HT | Weedy | HT | Weedy | HT | Weedy | HT | Weedy | HT | ||
Cultivar | Fertilization | Weed Density (Number m−2) | |||||||||||
Uso 31 | Control | 7.33 | 4 | 17.3 | 0 | 2.67 | 0.67 | 0 | 0 | 40 | 37.3 | 5.33 | 0 |
F1 | 18.7 | 6.67 | 22.7 | 10.7 | 5.33 | 1.33 | 2.67 | 0 | 49.3 | 33.3 | 10.7 | 18.7 | |
F2 | 20 | 13.3 | 37.3 | 13.3 | 22.7 | 9.33 | 4 | 0 | 52 | 37.3 | 5.33 | 10.7 | |
Mean | 15.3 | 8 | 25.8 | 8 | 10.2 | 3.78 | 2.22 | 0 | 47.1 | 36 | 7.11 | 9.78 | |
Fedora 17 | Control | 13.3 | 10.7 | 12 | 4 | 0 | 0 | 0 | 0 | 1.33 | 2.67 | 2.67 | 5.33 |
F1 | 28 | 13.3 | 14 | 9.33 | 4 | 0 | 0 | 0 | 0 | 4 | 16 | 8 | |
F2 | 22.7 | 14.7 | 18.7 | 7.33 | 12 | 2.67 | 0 | 0 | 10.7 | 2.67 | 8 | 4 | |
Mean | 21.3 | 12.9 | 14.9 | 6.89 | 5.33 | 0.89 | 0 | 0 | 4 | 3.11 | 8.89 | 5.78 | |
LSDC×F (0.05) | 4.80 | 7.23 | 3.56 | 0.63 | 6.73 | 3.74 | |||||||
LSDF×W (0.05) | 5.84 | 10.6 | 4.43 | 0.90 | 6.24 | 5.61 | |||||||
LSDC×W (0.05) | 5.86 | 7.84 | 3.80 | 1.04 | 7.32 | 6.07 | |||||||
Analysis of variance | C | ns | * | * | ns | *** | ns | ||||||
F | ** | * | *** | * | ns | *** | |||||||
C × F | * | * | * | * | * | * | |||||||
W | *** | *** | *** | *** | *** | *** | |||||||
C × W | * | * | * | *** | *** | ns | |||||||
F × W | ** | * | *** | * | * | * | |||||||
C × F × W | ns | ns | ns | * | ns | ns | |||||||
Cultivar | Fertilization | Weed Above-Ground Biomass (g m−2) | |||||||||||
Uso 31 | Control | 62.9 | 54.6 | 17.8 | 0 | 1.73 | 1 | 0 | 0 | 740.5 | 666.6 | 3.81 | 0 |
F1 | 213.6 | 83.2 | 41.0 | 12.4 | 5.12 | 1.27 | 1.43 | 0 | 806.4 | 759.2 | 19.4 | 25.6 | |
F2 | 353.1 | 244.9 | 55.1 | 24.3 | 30.4 | 12.1 | 2.2 | 0 | 1023.7 | 811.2 | 5.07 | 9.24 | |
Mean | 209.9 | 127.5 | 38 | 12.2 | 12.4 | 4.8 | 1.21 | 0 | 856.7 | 745.7 | 9.41 | 11.6 | |
Fedora 17 | Control | 182 | 113.9 | 27.5 | 5.43 | 0A | 0 | 0 | 0 | 24.7 | 47.6 | 1.91 | 20.2 |
F1 | 228.1 | 200.9 | 28.6 | 10.9 | 3.84 | 0 | 0 | 0 | 0 | 91.1 | 29 | 11 | |
F2 | 400.2 | 269.4 | 36.5 | 13.2 | 15.7 | 3.6 | 0 | 0 | 209.9 | 57.9 | 7.6 | 3.47 | |
Mean | 270.1 | 194.7 | 30.9 | 9.85 | 6.52 | 1.2 | 0 | 0 | 78.2 | 65.6 | 12.8 | 11.5 | |
LSDC×F (0.05) | 53.4 | 12.1 | 4.23 | 0.35 | 88.4 | 6.24 | |||||||
LSDC×W (0.05) | 61.8 | 19.2 | 5.51 | 0.50 | 79.3 | 8.45 | |||||||
LSDF×W (0.05) | 96.5 | 17.1 | 5.16 | 0.58 | 82.1 | 9.81 | |||||||
Analysis of variance | C | ns | ns | ns | ns | *** | ns | ||||||
F | *** | * | *** | * | ** | *** | |||||||
C × F | * | * | * | * | * | * | |||||||
W | *** | *** | *** | *** | *** | *** | |||||||
C × W | ns | ns | * | *** | *** | ns | |||||||
F × W | *** | * | *** | * | *** | ** | |||||||
C × F × W | ns | ns | ns | * | ns | ** |
Relative Response Index Hemp (RRIH) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
2019 | 2020 | |||||||||
Weed-Free | Weedy | Weed-Free | Weedy | HT | ||||||
Cultivar | F1 | F2 | F1 | F2 | F1 | F2 | F1 | F2 | F1 | F2 |
Uso 31 | −0.16Aa | −0.20Ba | 0.009Aa | −0.22Ba | −0.009Aa | −0.12Aa | 0.014Aa | −0.044Aa | −0.017Aa | −0.31Ba |
Fedora 17 | −0.25Ab | −0.29Bb | −0.053Ab | −0.03Ab | −0.060Aa | −0.10Aa | −0.24Ab | 0.28Ab | −0.070Aa | −0.16Aa |
LSDFert (0.05) | 0.028 | 0.15 | ||||||||
LSDCult (0.05) | 0.043 | 0.23 |
Relative Response Index Weeds (RRIW) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2019 | 2020 | |||||||||||
Weedy | Weedy | HT | ||||||||||
Nitrophilous Weeds | Non-Nitrophilous Weeds | Nitrophilous Weeds | Non-Nitrophilous Weeds | Nitrophilous Weeds | Non-Nitrophilous Weeds | |||||||
Cultivar | F1 | F2 | F1 | F2 | F1 | F2 | F1 | F2 | F1 | F2 | F1 | F2 |
Uso 31 | 0.063Aa | −0.50Ba | 0.043Aa | 0.30Ba | −0.42Aa | −0.68Ba | −0.067Aa | −0.18Aa | −0.32Aa | −0.73Ba | −0.095Aa | −0.11Aa |
Fedora 17 | −0.33Aa | −0.34Aa | 0.51Aa | 0.61Aa | −0.17Ab | −0.38Ab | 0.18Ab | −0.15Ba | −0.37Aa | −0.47Aa | −0.13Aa | −0.16Aa |
LSDFert (0.05) | 0.21 | 0.25 | 0.17 | |||||||||
LSDCult (0.05) | 0.48 | 0.21 | 0.50 |
Uso 31 | Fedora 17 | |||||||
---|---|---|---|---|---|---|---|---|
RRIH | RRIW | RRINW | RRINNW | RRIH | RRIW | RRINW | RRINNW | |
Height | −0.54 | −0.05 | 0.62 | −0.54 | −0.10 | −0.50 | −0.43 | −0.14 |
Infl L | 0.29 | 0.68 | 0.93 *** | 0.30 | −0.38 | 0.29 | 0.05 | 0.20 |
Infl W | 0.41 | 0.73 * | 0.93 *** | 0.35 | 0.12 | 0.58 | 0.26 | 0.51 |
Seed N | 0.62 | 0.85 ** | 0.80 * | 0.56 | 0.62 | 0.47 | 0.41 | 0.22 |
Seed W | 0.46 | 0.94 *** | 0.79 * | 0.63 | 0.48 | 0.46 | 0.31 | 0.31 |
Yield | 0.52 | 0.90 ** | 0.56 | 0.65 | 0.79 * | 0.22 | 0.38 | −0.02 |
Uso 31 HT | Fedora 17 HT | |||||||
Height | −0.46 | −0.77 * | −0.12 | −0.52 | −0.32 | −0.19 | −0.28 | 0.12 |
Infl L | −0.21 | 0.05 | −0.45 | 0.59 | −0.04 | −0.58 | −0.60 | −0.06 |
Infl W | −0.25 | −0.36 | −0.02 | −0.22 | 0.15 | −0.79 * | −0.79 * | −0.33 |
Seed N | −0.30 | −0.08 | −0.09 | 0.21 | 0.08 | −0.64 | −0.70 | −0.01 |
Seed W | −0.24 | 0.03 | −0.38 | 0.52 | 0.26 | −0.84 ** | −0.87 ** | −0.28 |
Yield | −0.16 | −0.08 | −0.06 | 0.04 | 0.53 | −0.91 ** | −0.95 *** | −0.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kousta, A.; Papastylianou, P.; Travlos, I.; Mavroeidis, A.; Kakabouki, I. Effect of Fertilization and Weed Management Practices on Weed Diversity and Hemp Agronomic Performance. Agronomy 2023, 13, 1060. https://doi.org/10.3390/agronomy13041060
Kousta A, Papastylianou P, Travlos I, Mavroeidis A, Kakabouki I. Effect of Fertilization and Weed Management Practices on Weed Diversity and Hemp Agronomic Performance. Agronomy. 2023; 13(4):1060. https://doi.org/10.3390/agronomy13041060
Chicago/Turabian StyleKousta, Angeliki, Panayiota Papastylianou, Ilias Travlos, Antonios Mavroeidis, and Ioanna Kakabouki. 2023. "Effect of Fertilization and Weed Management Practices on Weed Diversity and Hemp Agronomic Performance" Agronomy 13, no. 4: 1060. https://doi.org/10.3390/agronomy13041060