Use of Medicinal and Aromatic Plant Residues for Partial Peat Substitution in Growing Media for Sonchus oleraceus Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growing Media Preparation
2.2. Growing Media Characteristics
2.3. Plant Growth, Physiology, and Mineral Analysis
2.4. Total Phenolics, Total Flavonoids, and Antioxidant Activity
2.5. Lipid Peroxidation, Hydrogen Peroxide Content, and Enzyme Antioxidant Activity
2.6. Statistical Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ma, J.; Chen, Y.; Wang, K.; Huang, Y.; Wang, H. Re-utilization of Chinese medicinal herbal residues improved soil fertility and maintained maize yield under chemical fertilizer reduction. Chemosphere 2021, 283, 131262. [Google Scholar] [CrossRef] [PubMed]
- Tzortzakis, N.; Chrysargyris, A.; Sivakumar, D.; Loulakakis, K. Vapour or dipping applications of methyl jasmonate, vinegar and sage oil for pepper fruit sanitation towards grey mould. Postharvest Biol. Technol. 2016, 118, 120–127. [Google Scholar] [CrossRef]
- Skotti, E.; Anastasaki, E.; Kanellou, G.; Polissiou, M.; Tarantilis, P.A. Total phenolic content, antioxidant activity and toxicity of aqueous extracts from selected Greek medicinal and aromatic plants. Ind. Crops Prod. 2014, 53, 46–54. [Google Scholar] [CrossRef] [Green Version]
- Skendi, A.; Irakli, M.; Chatzopoulou, P.; Bouloumpasi, E.; Biliaderis, C.G. Phenolic extracts from solid wastes of the aromatic plant essential oil industry: Potential uses in food applications. Food Chem. Adv. 2022, 1, 100065. [Google Scholar] [CrossRef]
- Ferhat, M.A.; Meklati, B.Y.; Chemat, F. Comparison of different isolation methods of essential oil from Citrus fruits: Cold pressing, hydrodistillation and microwave ‘dry’ distillation Mohamed. Flavour Fragr. J. 2008, 22, 494–504. [Google Scholar] [CrossRef]
- Chrysargyris, A.; Evangelides, E.; Tzortzakis, N. Seasonal variation of antioxidant capacity, phenols, minerals and essential oil components of sage, spearmint and sideritis plants grown at different altitudes. Agronomy 2021, 11, 1766. [Google Scholar] [CrossRef]
- Sayed-Ahmad, B.; Talou, T.; Saad, Z.; Hijazi, A.; Merah, O. The Apiaceae: Ethnomedicinal family as source for industrial uses. Ind. Crops Prod. 2017, 109, 661–671. [Google Scholar] [CrossRef] [Green Version]
- Saha, A.; Basak, B.B. Scope of value addition and utilization of residual biomass from medicinal and aromatic plants. Ind. Crops Prod. 2020, 145, 111979. [Google Scholar] [CrossRef]
- Li, X.; Wei, Y.; Xu, J.; Xu, N.; He, Y. Quantitative visualization of lignocellulose components in transverse sections of moso bamboo based on ftir macro- and micro-spectroscopy coupled with chemometrics. Biotechnol. Biofuels 2018, 11, 263. [Google Scholar] [CrossRef] [Green Version]
- Baranauskiene, R.; Kazernavičiute, R.; Pukalskiene, M.; Maždžieriene, R.; Venskutonis, P.R. Agrorefinery of Tanacetum vulgare L. into valuable products and evaluation of their antioxidant properties and phytochemical composition. Ind. Crops Prod. 2014, 60, 113–122. [Google Scholar] [CrossRef]
- Ilangovan, M.; Guna, V.; Hu, C.; Nagananda, G.S.; Reddy, N. Curcuma longa L. plant residue as a source for natural cellulose fibers with antimicrobial activity. Ind. Crops Prod. 2018, 112, 556–560. [Google Scholar] [CrossRef]
- Xiao, D.; Shao, H.; Huo, Y.; Agung Nugroho, W.; Ifeoluwa Ogunniran, B.; Fan, W.; Huo, M. Reclamation of ginseng residues using two-stage fermentation and evaluation of their beneficial effects as dietary feed supplements for piglets. Waste Manag. 2022, 154, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Ratiarisoa, R.V.; Magniont, C.; Ginestet, S.; Oms, C.; Escadeillas, G. Assessment of distilled lavender stalks as bioaggregate for building materials: Hygrothermal properties, mechanical performance and chemical interactions with mineral pozzolanic binder. Constr. Build. Mater. 2016, 124, 801–815. [Google Scholar] [CrossRef]
- Singh, P.; Hundal, J.S.; Patra, A.K.; Wadhwa, M.; Sharma, A. Sustainable utilization of Aloe vera waste in the diet of lactating cows for improvement of milk production performance and reduction of carbon footprint. J. Clean. Prod. 2021, 288, 125118. [Google Scholar] [CrossRef]
- Smeti, S.; Hajji, H.; Khmiri, H.; Bouzid, K.; Atti, N. Effects of partial substitution of rosemary distillation residues to oat hay on digestive aspects, milk production, and metabolic statute of Tunisian local goats. Trop. Anim. Health Prod. 2021, 53, 473. [Google Scholar] [CrossRef]
- Hua, M.; Lu, J.; Qu, D.; Liu, C.; Zhang, L.; Li, S.; Chen, J.; Sun, Y. Structure, physicochemical properties and adsorption function of insoluble dietary fiber from ginseng residue: A potential functional ingredient. Food Chem. 2019, 286, 522–529. [Google Scholar] [CrossRef]
- Zhou, Y.; Manu, M.K.; Li, D.; Johnravindar, D.; Selvam, A.; Varjani, S.; Wong, J. Effect of Chinese medicinal herbal residues compost on tomato and Chinese cabbage plants: Assessment on phytopathogenic effect and nutrients uptake. Environ. Res. 2023, 216, 114747. [Google Scholar] [CrossRef]
- Gruda, N.S. Increasing sustainability of growing media constituents and stand-alone substrates in soilless culture systems. Agronomy 2019, 9, 298. [Google Scholar] [CrossRef] [Green Version]
- Chrysargyris, A.; Antoniou, O.; Xylia, P.; Petropoulos, S.; Tzortzakis, N. The use of spent coffee grounds in growing media for the production of Brassica seedlings in nurseries. Environ. Sci. Pollut. Res. 2021, 28, 24279–24290. [Google Scholar] [CrossRef]
- Chrysargyris, A.; Antoniou, O.; Athinodorou, F.; Vassiliou, R.; Papadaki, A.; Tzortzakis, N. Deployment of olive-stone waste as a substitute growing medium component for Brassica seedling production in nurseries. Environ. Sci. Pollut. Res. 2019, 26, 35461–35472. [Google Scholar] [CrossRef]
- Patsalou, M.; Chrysargyris, A.; Tzortzakis, N.; Koutinas, M. A biorefinery for conversion of citrus peel waste into essential oils, pectin, fertilizer and succinic acid via different fermentation strategies. Waste Manag. 2020, 113, 469–477. [Google Scholar] [CrossRef] [PubMed]
- Bustamante, M.A.; Paredes, C.; Moral, R.; Agulló, E.; Pérez-Murcia, M.D.; Abad, M. Composts from distillery wastes as peat substitutes for transplant production. Resour. Conserv. Recycl. 2008, 52, 792–799. [Google Scholar] [CrossRef]
- Giménez, A.; Fernández, J.A.; Pascual, J.A.; Ros, M.; Saez-Tovar, J.; Martinez-Sabater, E.; Gruda, N.S.; Egea-Gilabert, C. Promising composts as growing media for the production of baby leaf lettuce in a floating system. Agronomy 2020, 10, 1540. [Google Scholar] [CrossRef]
- Ceglie, F.G.; Bustamante, M.A.; Ben Amara, M.; Tittarelli, F. The challenge of peat substitution in organic seedling production: Optimization of growing media formulation through mixture design and response surface analysis. PLoS ONE 2015, 10, e0128600. [Google Scholar] [CrossRef] [PubMed]
- Chrysargyris, A.; Antoniou, O.; Tzionis, A.; Prasad, M.; Tzortzakis, N. Alternative soilless media using olive-mill and paper waste for growing ornamental plants. Environ. Sci. Pollut. Res. 2018, 25, 35915–35927. [Google Scholar] [CrossRef]
- Petropoulos, S.; Fernandes, Â.; Stojković, D.; Pereira, C.; Taofiq, O.; Di Gioia, F.; Tzortzakis, N.; Soković, M.; Barros, L.; Ferreira, I.C.F.R. Cotton and cardoon byproducts as potential growing media components for Cichorium spinosum L. commercial cultivation. J. Clean. Prod. 2019, 240, 118254. [Google Scholar] [CrossRef] [Green Version]
- Chrysargyris, A.; Stamatakis, A.; Moustakas, K.; Prasad, M.; Tzortzakis, N. Evaluation of Municipal Solid Waste Compost and/or Fertigation as Peat Substituent for Pepper Seedlings Production. Waste Biomass Valorization 2018, 9, 2285–2294. [Google Scholar] [CrossRef]
- Chrysargyris, A.; Tzortzakis, N. Municipal solid waste compost as a peat substitute for vegetable seedling production. A case study on cucumber and endive seedlings. In Municipal Solid Waste: Management Strategies, Challenges and Future Directions; Tzortzakis, Ν., Ed.; Nova Science Publishers Inc.: Hauppauge, NY, USA, 2017; pp. 367–386. [Google Scholar]
- Mill, L.A.; Najar, B.; Demasi, S.; Caser, M.; Gaino, W.; Cioni, P.L.; Pistelli, L.; Scariot, V. Cultivation substrate composition influences morphology, volatilome and essential oil of Lavandula angustifolia Mill. Agronomy 2019, 9, 411. [Google Scholar]
- Fan, R.; Luo, J.; Yan, S.; Zhou, Y.; Zhang, Z. Effects of Biochar and Super Absorbent Polymer on Substrate Properties and Water Spinach Growth. Pedosphere 2015, 25, 737–748. [Google Scholar] [CrossRef]
- Chrysargyris, A.; Saridakis, C.; Tzortzakis, N. Use of Municipal Solid Waste Compost as Growing Medium Component for Melon Seedlings Production. J. Plant Biol. Soil Health 2013, 2, 1–5. [Google Scholar]
- Chrysargyris, A.; Prasad, M.; Kavanagh, A.; Tzortzakis, N. Biochar type, ratio, and nutrient levels in growing media affects seedling production and plant performance. Agronomy 2020, 10, 1421. [Google Scholar] [CrossRef]
- Warman, P.R.; Rodd, A.V.; Hicklenton, P. The effect of MSW compost and fertilizer on extractable soil elements and the growth of winter squash in Nova Scotia. Agric. Ecosyst. Environ. 2009, 133, 98–102. [Google Scholar] [CrossRef]
- Pecorini, I.; Peruzzi, E.; Albini, E.; Doni, S.; Macci, C.; Masciandaro, G.; Iannelli, R. Evaluation of MSW Compost and Digestate Mixtures for a Circular Economy Application. Sustainability 2020, 12, 3042. [Google Scholar] [CrossRef] [Green Version]
- Lakhdar, A.; Hafsi, C.; Rabhi, M.; Debez, A.; Montemurro, F.; Abdelly, C.; Jedidi, N.; Ouerghi, Z. Application of municipal solid waste compost reduces the negative effects of saline water in Hordeum maritimum L. Bioresour. Technol. 2008, 99, 7160–7167. [Google Scholar] [CrossRef]
- Hernández-Lara, A.; Ros, M.; Pérez-Murcia, M.D.; Bustamante, M.Á.; Moral, R.; Andreu-Rodríguez, F.J.; Fernández, J.A.; Egea-Gilabert, C.; Antonio Pascual, J. The influence of feedstocks and additives in 23 added-value composts as a growing media component on Pythium irregulare suppressivity. Waste Manag. 2021, 120, 351–363. [Google Scholar] [CrossRef] [PubMed]
- Lasaridi, K.; Protopapa, I.; Kotsou, M.; Pilidis, G.; Manios, T.; Kyriacou, A. Quality assessment of composts in the Greek market: The need for standards and quality assurance. J. Environ. Manag. 2006, 80, 58–65. [Google Scholar] [CrossRef]
- Pardo, T.; Martínez-Fernández, D.; Clemente, R.; Walker, D.J.; Bernal, M.P. The use of olive-mill waste compost to promote the plant vegetation cover in a trace-element-contaminated soil. Environ. Sci. Pollut. Res. 2014, 21, 1029–1038. [Google Scholar] [CrossRef]
- De Corato, U.; Viola, E.; Arcieri, G.; Valerio, V.; Zimbardi, F. Use of composted agro-energy co-products and agricultural residues against soil-borne pathogens in horticultural soil-less systems. Sci. Hortic. 2016, 210, 166–179. [Google Scholar] [CrossRef]
- Tubeileh, A.M.; Souikane, R.T. Effect of olive vegetation water and compost extracts on seed germination of four weed species. Curr. Plant Biol. 2020, 22, 100150. [Google Scholar] [CrossRef]
- Kelepesi, S.; Tzortzakis, N.G. Olive mill wastesA growing medium component for seedling and crop production of lettuce and chicory. Int. J. Veg. Sci. 2009, 15, 325–339. [Google Scholar] [CrossRef]
- Kuczmarski, D. Amending the cost of media. Am. Nurs. Manag. 1994, 179, 47–52. [Google Scholar]
- Tsakaldimi, M. Kenaf (Hibiscus cannabinus L.) core and rice hulls as components of container media for growing Pinus halepensis M. seedlings. Bioresour. Technol. 2006, 97, 1631–1639. [Google Scholar] [CrossRef] [PubMed]
- Chrysargyris, A.; Hajisolomou, E.; Xylia, P.; Tzortzakis, N. Olive-mill and grape-mill waste as a substitute growing media component for unexploded vegetables production. Sustain. Chem. Pharm. 2023, 31, 100940. [Google Scholar] [CrossRef]
- Tebenkova, D.N.; Lukina, N.V.; Vorobyev, R.A.; Orlova, M.A.; Gagarin, Y.N. Germination and biometric parameters of seedlings grown on solid pulp and paper waste medium. Contemp. Probl. Ecol. 2015, 8, 892–900. [Google Scholar] [CrossRef]
- Gatto, M.A.; Ippolito, A.; Linsalata, V.; Cascarano, N.A.; Nigro, F.; Vanadia, S.; Di Venere, D. Activity of extracts from wild edible herbs against postharvest fungal diseases of fruit and vegetables. Postharvest Biol. Technol. 2011, 61, 72–82. [Google Scholar] [CrossRef]
- Khan, R.A. Evaluation of flavonoids and diverse antioxidant activities of Sonchus arvensis. Chem. Cent. J. 2012, 6, 126. [Google Scholar] [CrossRef] [Green Version]
- Petropoulos, S.A.; Fernandes, Â.; Tzortzakis, N.; Sokovic, M.; Ciric, A.; Barros, L.; Ferreira, I.C.F.R. Bioactive compounds content and antimicrobial activities of wild edible Asteraceae species of the Mediterranean flora under commercial cultivation conditions. Food Res. Int. 2019, 119, 859–868. [Google Scholar] [CrossRef] [Green Version]
- Huo, B.-S.; Qin, M.-J. Content analysis of flavonoids in five species of. J. Plant Resour. Environ. 2008, 17, 77–78. [Google Scholar]
- Nobela, O.; Ndhlala, A.R.; Tugizimana, F.; Njobeh, P.; Raphasha, D.G.; Ncube, B.; Madala, N.E. Tapping into the realm of underutilised green leafy vegetables: Using LC-IT-Tof-MS based methods to explore phytochemical richness of Sonchus oleraceus (L.) L. S. Afr. J. Bot. 2022, 145, 207–212. [Google Scholar] [CrossRef]
- Huyan, T.; Li, Q.; Wang, Y.L.; Li, J.; Zhang, J.Y.; Liu, Y.X.; Shahid, M.R.; Yang, H.; Li, H.Q. Anti-tumor effect of hot aqueous extracts from Sonchus oleraceus (L.) L. and Juniperus sabina L.—Two traditional medicinal plants in China. J. Ethnopharmacol. 2016, 185, 289–299. [Google Scholar] [CrossRef]
- Mawalagedera, S.M.M.R. Antioxidant activities of Sonchus oleraceus L. Ph.D. Thesis, Te Herenga Waka—Victoria University of Wellington, Wellington, New Zealand, 2014; pp. 1–197. [Google Scholar]
- De Paula Filho, G.X.; Barreira, T.F.; Pinheiro-Sant’Ana, H.M. Chemical Composition and Nutritional Value of Three Sonchus Species. Int. J. Food Sci. 2022, 2022, 4181656. [Google Scholar] [CrossRef] [PubMed]
- Puri, A.V.; Khandagale, P.D.; Ansari, Y.N. A Review On Ethnomedicinal, Pharmacological And Phytochemical Aspects Of Sonchus oleraceus Linn. (Asteraceae). Int. J. Pharm. Biol. Sci. 2018, 8, 1–9. [Google Scholar]
- European Standard EN 13041; Soil Improvers and Growing Media—Determination of Physical Properties—Dry Bulk Density, Air Volume, Water Volume, Shrinkage Value and Total Pore Space. European Committee for Standardization: Brussels, Belgium, 1999.
- Chrysargyris, A.; Nikolaidou, E.; Stamatakis, A.; Tzortzakis, N. Vegetative, physiological, nutritional and antioxidant behavior of spearmint (Mentha spicata L.) in response to different nitrogen supply in hydroponics. J. Appl. Res. Med. Aromat. Plants 2017, 6, 52–61. [Google Scholar] [CrossRef]
- Tzortzakis, N.; Pitsikoulaki, G.; Stamatakis, A.; Chrysargyris, A. Ammonium to Total Nitrogen Ratio Interactive Effects with Salinity Application on Solanum lycopersicum Growth, Physiology, and Fruit Storage in a Closed Hydroponic System. Agronomy 2022, 12, 386. [Google Scholar] [CrossRef]
- Meyers, K.J.; Watkins, C.B.; Pritts, M.P.; Liu, R.H. Antioxidant and antiproliferative activities of strawberries. J. Agric. Food Chem. 2003, 51, 6887–6892. [Google Scholar] [CrossRef]
- Loreto, F.; Velikova, V. Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol. 2001, 127, 1781–1787. [Google Scholar] [CrossRef]
- De Azevedo Neto, A.D.; Prisco, J.T.; Enéas-Filho, J.; De Abreu, C.E.B.; Gomes-Filho, E. Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environ. Exp. Bot. 2006, 56, 87–94. [Google Scholar] [CrossRef]
- Rinaldi, S.; De Lucia, B.; Salvati, L.; Rea, E. Understanding complexity in the response of ornamental rosemary to different substrates: A multivariate analysis. Sci. Hortic. 2014, 176, 218–224. [Google Scholar] [CrossRef]
- Chand, S.; Anwar, M.; Patra, D.D.; Khanuja, S.P.S. Effect of Mint Distillation Waste on Soil Microbial Biomass in a Mint-Mustard Cropping Sequence. Commun. Soil Sci. Plant Anal. 2004, 35, 243–254. [Google Scholar] [CrossRef]
- Abad, M.; Noguera, P.; Burés, S. National inventory of organic wastes for use as growing media for ornamental potted plant production: Case study in Spain. Bioresour. Technol. 2001, 77, 197–200. [Google Scholar] [CrossRef]
- Zhou, Y.; Selvam, A.; Wong, J.W.C. Effect of Chinese medicinal herbal residues on microbial community succession and anti-pathogenic properties during co-composting with food waste. Bioresour. Technol. 2016, 217, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Zhan, S.; Yu, H.; Xue, X.; Hong, N. The effects of temperature and catalysts on the pyrolysis of industrial wastes (herb residue). Bioresour. Technol. 2010, 101, 3236–3241. [Google Scholar] [CrossRef] [PubMed]
- Bolechowski, A.; Moral, R.; Bustamante, M.A.; Bartual, J.; Paredes, C.; Pérez-Murcia, M.D.; Carbonell-Barrachina, A.A. Winery-distillery composts as partial substitutes of traditional growing media: Effect on the volatile composition of thyme essential oils. Sci. Hortic. 2015, 193, 69–76. [Google Scholar] [CrossRef]
- Ribeiro, H.M.; Romero, A.M.; Pereira, H.; Borges, P.; Cabral, F.; Vasconcelos, E. Evaluation of a compost obtained from forestry wastes and solid phase of pig slurry as a substrate for seedlings production. Bioresour. Technol. 2007, 98, 3294–3297. [Google Scholar] [CrossRef]
- Patra, D.D.; Anwar, M.; Chand, S. Integrated nutrient management and waste recycling for restoring soil fertility and productivity in Japanese mint and mustard sequence in Uttar Pradesh, India. Agric. Ecosyst. Environ. 2000, 80, 267–275. [Google Scholar] [CrossRef]
- Handreck, K.A.; Black, N.D. Growing Media for Ornamental Plants and Turf; New South Wales University Press: Randwick, Australia, 1994; 448p. [Google Scholar]
- Papafotiou, M.; Kargas, G.; Lytra, I. Olive-mill waste compost as a growth medium component for foliage potted plants. HortScience 2005, 40, 1746–1750. [Google Scholar] [CrossRef] [Green Version]
- Ouzounidou, G.; Asfi, M.; Sotirakis, N.; Papadopoulou, P.; Gaitis, F. Olive mill wastewater triggered changes in physiology and nutritional quality of tomato (Lycopersicon esculentum Mill.) depending on growth substrate. J. Hazard. Mater. 2008, 158, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.V. Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Sci. Hortic. 2004, 103, 93–99. [Google Scholar] [CrossRef]
- Tripathi, A.K.; Gautam, M. Biochemical parameters of plants as indicators of air pollution. J. Environ. Biol. 2007, 28, 127–132. [Google Scholar]
- Jalal, K.C.A.; Shamsuddm, A.A.; Rahman, M.F.; Nurzatul, N.Z.; Rozihan, M. Growth and total carotenoid, chlorophyll a and chlorophyll b of tropical microalgae (Isochrysis sp.) in laboratory cultured conditions. J. Biol. Sci. 2013, 13, 10–17. [Google Scholar] [CrossRef] [Green Version]
- Colom, M.R.; Vazzana, C. Photosynthesis and PSII functionality of drought-resistant and drought-sensitive weeping lovegrass plants. Environ. Exp. Bot. 2003, 49, 135–144. [Google Scholar] [CrossRef]
- Kiarostami, K.; Mohseni, R.; Saboora, A. Biochemical changes of Rosmarinus officinalis under salt stress. J. Stress Physiol. Biochem. 2010, 6, 114–122. [Google Scholar]
- Carmona, E.; Moreno, M.T.; Avilés, M.; Ordovas, J. Composting of wine industry wastes and their use as a substrate for growing soilless ornamental plants. Span. J. Agric. Res. 2012, 10, 482. [Google Scholar] [CrossRef]
- Chrysargyris, A.; Papakyriakou, E.; Petropoulos, S.A.; Tzortzakis, N. The combined and single effect of salinity and copper stress on growth and quality of Mentha spicata plants. J. Hazard. Mater. 2019, 368, 584–593. [Google Scholar] [CrossRef]
- Chavez, W.; Di Benedetto, A.; Civeira, G.; Lavado, R. Alternative soilless media for growing Petunia × hybrida and Impatiens wallerana: Physical behavior, effect of fertilization and nitrate losses. Bioresour. Technol. 2008, 99, 8082–8087. [Google Scholar] [CrossRef]
Peat 100% | ODR 5% | ODR 10% | ODR 20% | ODR 40% | ODR 100% | |
---|---|---|---|---|---|---|
pH | 6.32 ± 0.31 b | 6.39 ± 0.09 b | 6.31 ± 0.16 b | 6.63 ± 0.02 b | 7.51 ± 0.28 a | 5.95 ± 0.15 c |
EC (mS/cm) | 0.84 ± 0.08 c | 1.14 ± 0.13 bc | 0.89 ± 0.04 bc | 1.12 ± 0.07 b | 1.70 ± 0.32 a | 1.92 ± 0.23 a |
Organic matter (%) | 72.39 ± 2.23 cd | 73.03 ± 0.63 c | 73.30 ± 1.27 c | 70.16 ± 0.66 d | 76.92 ± 1.88 b | 92.80 ± 0.43 a |
Organic C (%) | 41.99 ± 1.28 cd | 42.37 ± 0.37 c | 42.52 ± 0.73 c | 40.70 ± 0.38 d | 44.62 ± 1.09 b | 53.83 ± 0.25 a |
C/N ratio | 50.37 ± 3.68 a | 42.91 ± 1.72 b | 40.92 ± 5.81 b | 26.22 ± 1.16 c | 28.34 ± 1.38 c | 51.21 ± 0.41 a |
N (g/kg) | 8.35 ± 0.34 c | 9.88 ± 0.35 b | 10.52 ± 1.33 b | 15.54 ± 0.58 a | 15.78 ± 0.0.58 a | 10.51 ± 0.08 b |
K (g/kg) | 2.03 ± 0.07 d | 3.86 ± 0.55 c | 3.97 ± 0.72 c | 4.70 ± 0.22 c | 7.36 ± 0.53 b | 13.46 ± 0.19 a |
P (g/kg) | 1.13 ± 0.07 c | 1.61 ± 0.50 bc | 1.73 ± 0.16 b | 1.92 ± 0.31 b | 2.62 ± 0.32 a | 2.83 ± 0.05 a |
Ca (g/kg) | 15.02 ± 0.79 b | 21.52 ± 4.21 a | 17.62 ± 1.71 b | 20.41 ± 0.36 a | 20.51 ± 0.85 a | 7.66 ± 0.47 c |
Mg (g/kg) | 0.79 ± 0.06 e | 1.51 ± 0.36 d | 1.51 ± 0.16 d | 2.23 ± 0.04 c | 3.29 ± 0.11 a | 2.68 ± 0.17 b |
Na (g/kg) | 0.97 ± 0.04 c | 1.13 ± 0.08 b | 1.19 ± 0.05 ab | 1.17 ± 0.02 ab | 1.32 ± 0.06 a | 1.22 ± 0.14 ab |
Total porosity (% v/v) | 84.97 ± 1.07 a | 72.68 ± 5.74 b | 77.19 ± 7.76 ab | 53.32 ± 2.31 c | 48.60 ± 6.36 c | 69.87 ± 5.50 b |
Air filled porosity (% v/v) | 18.43 ± 1.41 a | 10.48 ± 4.14 b | 9.14 ± 3.92 b | 7.90 ± 0.87 b | 5.51 ± 1.72 bc | 1.57 ± 1.01 c |
Bulk density (g/cm) | 0.15 ± 0.00 c | 0.17 ± 0.01 bc | 0.17 ± 0.01 b | 0.17 ± 0.01 b | 0.18 ± 0.01 b | 0.29 ± 0.01 a |
Container capacity (% v/v) | 66.55 ± 2.48 a | 62.21 ± 2.23 a | 68.05 ± 4.46 a | 45.41 ± 3.19 b | 43.08 ± 5.20 b | 68.31 ± 4.49 a |
Peat 100% | SCR 5% | SCR 10% | SCR 20% | SCR 40% | SCR 100% | |
---|---|---|---|---|---|---|
pH | 6.32 ± 0.31 d | 6.27 ± 0.21 d | 6.53 ± 0.01 cd | 6.91 ± 0.07 b | 7.54 ± 0.02 a | 6.71 ± 0.12 bc |
EC (mS/cm) | 0.84 ± 0.08 b | 1.27 ± 0.13 a | 1.25 ± 0.19 a | 1.10 ± 0.02 a | 1.19 ± 0.05 a | 1.23 ± 0.19 a |
Organic matter (%) | 72.39 ± 2.22 b | 77.64 ± 3.92 b | 75.38 ± 4.58 b | 75.22 ± 2.51 b | 76.11 ± 2.12 b | 92.80 ± 0.43 a |
Organic C (%) | 41.99 ± 1.28 b | 45.03 ± 2.28 b | 43.73 ± 2.65 b | 43.63 ± 1.45 b | 44.15 ± 1.23 b | 53.83 ± 0.25 a |
C/N ratio | 50.37 ± 3.68 a | 50.89 ± 2.49 a | 38.38 ± 2.09 bc | 36.34 ± 2.67 c | 30.05 ± 1.53 d | 42.57 ± 2.07 b |
N (g/kg) | 8.35 ± 0.34 c | 8.87 ± 0.78 c | 11.41 ± 0.79 b | 12.04 ± 0.77 b | 14.73 ± 1.13 a | 12.66 ± 0.65 b |
K (g/kg) | 2.03 ± 0.07 f | 3.12 ± 0.45 e | 4.20 ± 0.56 d | 6.32 ± 0.44 c | 8.75 ± 0.44 b | 14.60 ± 0.61 a |
P (g/kg) | 1.13 ± 0.07 c | 1.39 ± 0.10 bc | 1.70 ± 0.10 b | 1.76 ± 0.12 b | 2.52 ± 0.49 a | 1.65 ± 0.17 b |
Ca (g/kg) | 15.02 ± 0796 b | 16.37 ± 2.06 b | 20.02 ± 0.57 a | 22.57 ± 1.86 a | 21.27 ± 1.27 a | 11.58 ± 0.87 c |
Mg (g/kg) | 0.79 ± 0.06 d | 1.02 ± 0.13 d | 1.31 ± 0.06 c | 1.82 ± 0.13 b | 2.25 ± 0.11 a | 1.70 ± 0.18 b |
Na (g/kg) | 0.97 ± 0.04 e | 1.03 ± 0.12 e | 1.20 ± 0.09 d | 1.65 ± 0.05 c | 2.03 ± 0.02 b | 5.79 ± 0.07 a |
Total porosity (% v/v) | 84.97 ± 1.07 ab | 91.82 ± 6.70 a | 77.64 ± 5.91 bc | 69.00 ± 6.42 cd | 62.88 ± 9.15 d | 98.19 ± 2.29 a |
Air filled porosity (% v/v) | 18.43 ± 1.41 a | 15.52 ± 3.83 ab | 14.29 ± 2.53 ab | 13.43 ± 4.59 ab | 9.62 ± 5.04 b | 17.14 ± 2.02 ab |
Bulk density (g/cm) | 0.15 ± 0.00 b | 0.16 ± 0.00 a | 0.17 ± 0.00 a | 0.17 ± 0.00 a | 0.15 ± 0.00 b | 0.12 ± 0.00 c |
Container capacity (% v/v) | 66.54 ± 2.48 b | 76.30 ± 2.91 a | 63.35 ± 4.44 b | 55.58 ± 2.50 c | 53.26 ± 4.11 c | 81.05 ± 0.26 a |
Height | Leaf No | Fresh Weight | Dry Weight | |
---|---|---|---|---|
Peat 100% | 13.52 ± 3.21 a | 10.70 ± 1.44 ab | 4.65 ± 2.11 a | 0.44 ± 0.16 ab |
ODR 5% | 15.10 ± 2.43 a | 12.40 ± 1.34 a | 5.37 ± 1.28 a | 0.54 ± 0.06 a |
ODR 10% | 13.78 ± 1.70 a | 11.60 ± 2.19 ab | 3.90 ± 1.94 a | 0.34 ± 0.03 ab |
ODR 20% | 9.22 ± 3.92 b | 9.20 ± 2.58 bc | 1.57 ± 1.66 b | 0.21 ± 0.20 bc |
ODR 40% | 4.02 ± 1.23 c | 7.20 ± 0.83 c | 0.52 ± 0.07 b | 0.07 ± 0.02 c |
Peat 100% | 13.52 ± 3.21 ab | 10.70 ± 1.44 ab | 4.64 ± 2.11 a | 0.44 ± 0.16 ab |
SCR 5% | 15.88 ± 3.91 a | 12.60 ± 1.67 a | 5.60 ± 3.81 a | 0.66 ± 0.41 a |
SCR 10% | 14.30 ± 2.45 ab | 12.80 ± 2.77 a | 4.33 ± 1.84 a | 0.44 ± 0.19 ab |
SCR 20% | 11.50 ± 2.84 b | 13.20 ± 1.78 a | 3.96 ± 1.87 ab | 0.38 ± 0.16 ab |
SCR 40% | 7.10 ± 1.56 c | 8.20 ± 2.38 b | 0.69 ± 0.34 b | 0.10 ± 0.13 b |
Stomatal Conductance | Chlorophyll Fluorescence | SPAD | Chl a | Chl b | Total Chls | Carotenoids | Chla:Chlb | Carotenoids: Total Chls | |
---|---|---|---|---|---|---|---|---|---|
Peat 100% | 960.00 ± 144.08 a | 0.80 ± 0.01 a | 34.95 ± 3.24 ab | 0.87 ± 0.04 a | 0.36 ± 0.05 a | 1.24 ± 0.07 a | 0.18 ± 0.01 a | 2.40 ± 0.19 b | 0.15 ± 0.00 cd |
ODR 5% | 651.25 ± 229.28 b | 0.79 ± 0.01 a | 37.42 ± 5.14 a | 1.01 ± 0.06 a | 0.35 ± 0.02 a | 1.36 ± 0.08 a | 0.20 ± 0.01 a | 2.83 ± 0.10 ab | 0.14 ± 0.00 d |
ODR 10% | 626.66 ± 191.39 b | 0.80 ± 0.01 a | 38.57 ± 5.25 a | 0.80 ±0.29 a | 0.26 ± 0.08 a | 1.06 ± 0.38 a | 0.17 ± 0.05 a | 2.98 ± 0.10 a | 0.15 ± 0.01 bc |
ODR 20% | 609.00 ± 12.72 b | 0.80 ± 0.00 a | 38.15 ± 4.12 a | 0.77 ±0.01 a | 0.27 ± 0.00 a | 1.04 ± 0.02 a | 0.16 ± 0.00 a | 2.79 ± 0.02 ab | 0.16 ± 0.01 b |
ODR 40% | 175.59 ± 3.67 c | 0.76 ± 0.03 b | 28.70 ± 5.13 b | 0.24 ±0.00 b | 0.09 ± 0.00 b | 0.33 ± 0.00 b | 0.07 ± 0.00 b | 2.59 ± 0.01 ab | 0.21 ± 0.01 a |
Peat 100% | 960.00 ± 144.07 a | 0.80 ± 0.01 a | 34.95 ± 3.24 b | 0.87 ± 0.04 ab | 0.36 ± 0.05 a | 1.24 ± 0.07 a | 0.18 ± 0.01 a | 2.40 ± 0.19 b | 0.15 ± 0.00 b |
SCR 5% | 713.33 ± 87.36 b | 0.82 ± 0.00 a | 49.60 ± 13.05 a | 0.99 ± 0.19 a | 0.35 ± 0.08 a | 1.35 ± 0.27 a | 0.20 ± 0.03 a | 2.84 ± 0.12 ab | 0.15 ± 0.00 b |
SCR 10% | 523.33 ± 106.92 b | 0.80 ± 0.02 a | 44.37 ± 3.64 a | 0.84 ± 0.03 ab | 0.28 ± 0.01 ab | 1.12 ± 0.02 ab | 0.17 ± 0.01 ab | 3.03 ± 0.18 a | 0.15 ± 0.01 b |
SCR 20% | 542.00 ± 166.45 b | 0.74 ± 0.05 b | 35.55 ± 3.65 b | 0.64 ± 0.03 b | 0.21 ± 0.02 b | 0.85 ± 0.05 b | 0.13 ± 0.00 b | 2.99 ± 0.07 a | 0.16 ± 0.00 ab |
SCR 40% | 292.33 ± 59.75 c | 0.64 ± 0.00 c | 22.72 ± 1.18 c | 0.88 ± 0.01 ab | 0.26 ± 0.00 ab | 1.14 ± 0.01 ab | 0.19 ± 0.03 a | 3.36 ± 0.00 a | 0.17 ± 0.00 a |
N | K | P | Na | Ca | Mg | |
---|---|---|---|---|---|---|
Peat 100% | 46.41 ± 0.17 b | 48.57 ± 1.59 b | 8.44 ± 1.17 a | 12.65 ± 035 bc | 11.77 ± 0.29 a | 1.23 ± 0.09 b |
ODR 5% | 43.70 ± 0.29 c | 49.21 ± 1.45 b | 7.23 ± 0.22 ab | 12.99 ± 0.55 bc | 11.74 ± 0.14 a | 1.34 ± 0.11 b |
ODR 10% | 48.64 ± 0.68 a | 43.72 ± 0.45 c | 5.82 ± 1.57 b | 13.33 ± 0.22 ab | 11.73 ± 0.19 a | 1.55 ± 0.06 a |
ODR 20% | 37.17 ± 0.77 d | 60.83 ± 2.09 a | 5.27 ± 0.18 b | 11.99 ± 0.41 c | 9.04 ± 0.31 b | 1.38 ± 0.04 ab |
ODR 40% | 22.01 ± 0.46 e | 49.64 ± 1.71 b | 7.14 ± 0.24 ab | 14.06 ± 0.48 a | 7.98 ± 0.27 c | 1.02 ± 0.03 c |
Peat 100% | 46.41 ± 0.17 a | 48.57 ± 1.59 b | 8.44 ± 1.17 a | 12.65 ± 0.35 b | 11.77 ± 0.29 b | 1.23 ± 0.09 |
SCR 5% | 45.60 ± 5.19 a | 52.94 ± 3.30 b | 6.23 ± 1.09 ab | 14.62 ± 0.27 a | 11.06 ± 0.79 b | 1.09 ± 0.10 |
SCR 10% | 43.43 ± 0.59 ab | 52.49 ± 7.87 b | 9.47 ± 2.79 a | 15.19 ± 1.06 a | 13.92 ± 1.44 a | 1.32 ± 0.17 |
SCR 20% | 38.16 ± 0.79 bc | 50.81 ± 3.43 b | 4.48 ± 0.59 bc | 15.24 ± 0.43 a | 11.43 ± 0.46 b | 1.09 ± 0.03 |
SCR 40% | 31.42 ± 0.65 c | 71.69 ± 2.47 a | 2.58 ± 0.08 c | 15.54 ± 0.53 a | 10.21 ± 0.35 b | 1.31 ± 0.04 |
H2O2 | MDA | SOD | CAT | POD | |
---|---|---|---|---|---|
Peat 100% | 0.09 ± 0.01 cd | 14.97 ± 0.92 b | 0.89 ± 0.11 b | 17.56 ± 3.02 a | 1.57 ± 0.11 |
ODR 5% | 0.18 ± 0.02 b | 15.68 ± 2.16 b | 0.87 ± 0.07 b | 17.39 ± 2.76 a | 1.47 ± 0.24 |
ODR 10% | 0.07 ± 0.01 d | 14.30 ± 3.14 b | 1.05 ± 0.15 b | 10.60 ± 1.19 b | 1.23 ± 0.15 |
ODR 20% | 0.12 ± 0.02 c | 14.15 ± 1.17 b | 0.79 ± 0.09 b | 8.23 ± 2.37 b | 1.24 ± 0.27 |
ODR 40% | 0.23 ± 0.02 a | 38.24 ± 4.61 a | 1.56 ± 0.33 a | 7.49 ± 1.18 b | 1.39 ± 0.22 |
Peat 100% | 0.09 ± 0.02 c | 14.97 ± 0.92 b | 0.89 ± 0.11 b | 17.56 ± 3.02 a | 1.57 ± 0.11 a |
SCR 5% | 0.11 ± 0.02 c | 11.40 ± 0.40 c | 0.86 ± 0.04 b | 11.56 ± 0.77 b | 0.89 ± 0.08 bc |
SCR 10% | 0.14 ± 0.05 c | 14.98 ± 2.21 b | 0.85 ± 0.04 b | 12.16 ± 0.78 b | 0.81 ± 0.04 c |
SCR 20% | 0.21 ± 0.01 b | 17.61 ± 0.47 b | 1.14 ± 0.03 a | 13.93 ± 0.80 ab | 1.08 ± 0.15 b |
SCR 40% | 0.44 ± 0.03 a | 22.56 ± 2.92 a | 0.96 ± 0.15 b | 13.73 ± 3.72 ab | 0.55 ± 0.08 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chrysargyris, A.; Goumenos, C.; Tzortzakis, N. Use of Medicinal and Aromatic Plant Residues for Partial Peat Substitution in Growing Media for Sonchus oleraceus Production. Agronomy 2023, 13, 1074. https://doi.org/10.3390/agronomy13041074
Chrysargyris A, Goumenos C, Tzortzakis N. Use of Medicinal and Aromatic Plant Residues for Partial Peat Substitution in Growing Media for Sonchus oleraceus Production. Agronomy. 2023; 13(4):1074. https://doi.org/10.3390/agronomy13041074
Chicago/Turabian StyleChrysargyris, Antonios, Christos Goumenos, and Nikolaos Tzortzakis. 2023. "Use of Medicinal and Aromatic Plant Residues for Partial Peat Substitution in Growing Media for Sonchus oleraceus Production" Agronomy 13, no. 4: 1074. https://doi.org/10.3390/agronomy13041074
APA StyleChrysargyris, A., Goumenos, C., & Tzortzakis, N. (2023). Use of Medicinal and Aromatic Plant Residues for Partial Peat Substitution in Growing Media for Sonchus oleraceus Production. Agronomy, 13(4), 1074. https://doi.org/10.3390/agronomy13041074