Research Progress and Development Trends of Greenhouse Gas Emissions from Cereal–Legume Intercropping Systems
Abstract
:1. Introduction
2. Analysis of the Development Trend of Cereal–Legume Intercropping
2.1. Annual Trend in Publications and the Top Contributing Institutions
2.2. Research Hotspots and Trend Analysis
3. Effects of Intercropping on Soil Greenhouse Gas Emissions
3.1. Effects of Intercropping on Soil N2O Emissions
3.2. Effects of Intercropping on Soil CO2 Emissions
4. Effects of Diversified Intercropping on GHG Emissions
4.1. Effects of Spatial Arrangements on GHG Emissions in Intercropping Systems
4.2. Effects of Nitrogen Fertilizer Management on GHG Emissions from Intercropping Systems
4.3. Effects of No-Tillage on GHG Emissions from Intercropping Systems
4.4. Effects of Crop Residue Retention on GHG Emissions in Intercropping Systems
5. Problems and Prospects
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bongaarts, J. Intergovernmental panel on cimate change special report on global warming of 1.5 °C Switzerland: IPCC, 2018. Popul. Dev. Rev. 2019, 45, 251–252. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, N.C.; Tenesaca, C.G.; VanLoocke, A.; Hall, S.J. Nitrous oxide emissions from agricultural soils challenge climate sustainability in the US Corn Belt. Proc. Natl. Acad. Sci. USA 2021, 118, e2112108118. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, H.; Rosado, P.; Roser, M. Environmental Impacts of Food Production; Our World in Data: Oxford, UK, 2022; Available online: https://ourworldindata.org/environmental-impacts-of-food (accessed on 6 April 2023).
- Snyder, C.S.; Bruulsema, T.W.; Jensen, T.L.; Fixen, P.E. Review of Greenhouse gas emissions from crop production systems and fertilizer management effects. Agric. Ecosyst. Environ. 2009, 133, 247–266. [Google Scholar] [CrossRef]
- Cong, W.; Zhang, C.; Li, C.; Wang, G.; Zhang, F. Designing diversified cropping systems in china: Theory, approaches, and implementation. Front. Agric. Sci. Eng. 2021, 8, 362–372. [Google Scholar]
- Feng, C.; Sun, Z.; Zhang, L.; Feng, L.; Zheng, J.; Bai, W.; Gu, C.; Wang, Q.; Xu, Z.; Werf, W.V.D. Maize/peanut intercropping increases land productivity: A meta-analysis. Field Crop. Res. 2021, 270, 108208. [Google Scholar] [CrossRef]
- Kermah, M.; Franke, A.C.; Adjei-Nsiah, S.; Ahiabor, B.D.K.; Abaidoo, R.C.; Giller, K.E. Maize-grain legume intercropping for enhanced resource use efficiency and crop productivity in the Guinea savanna of northern Ghana. Field Crop. Res. 2017, 213, 38–50. [Google Scholar] [CrossRef]
- Glaze-Corcoran, S.; Hashemi, M.; Sadeghpour, A.; Jahanzad, E.; Afshar, R.K.; Liu, X.B.; Herbert, S.J. Understanding intercropping to improve agricultural resiliency and environmental sustainability—ScienceDirect. Adv. Agron. 2020, 162, 199–256. [Google Scholar]
- Xu, Z.; Li, C.; Zhang, C.; Yu, Y.; Werf, W.V.D.; Zhang, F. Intercropping maize and soybean increases efficiency of land and fertilizer nitrogen use; A meta-analysis. Field Crop. Res. 2020, 246, 107661. [Google Scholar] [CrossRef]
- Raji, S.G.; Dörsch, P. Effect of legume intercropping on N2O emissions and CH4 uptake during maize production in the Great Rift Valley, Ethiopia. Biogeosciences 2020, 17, 345–359. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Peng, S.; Huang, J.; Dong, W.; Chen, Y. Greenhouse gas emissions from soil under maize–soybean intercrop in the North China Plain. Nutr. Cycl. Agroecosys. 2018, 110, 451–465. [Google Scholar] [CrossRef]
- Hu, F.; Chai, Q.; Yu, A.; Yin, W.; Cui, H.; Gan, Y. Less carbon emissions of wheat–maize intercropping under reduced tillage in arid areas. Agron. Sustain. Dev. 2015, 35, 701–711. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Wu, H.; Yang, G.; Zhang, X.; Chai, Y.; Yang, H.; Sun, Q.; Zhang, Q.; Shen, W. Effects of cultivation patterns on greenhouse gases emissions and yield in corn field. Environ. Sci. Technol. 2020, 43, 71–77. [Google Scholar]
- Liu, Y.; Zhang, Y.; Li, Z.; Guo, H. Research status analysis of global greenhouse gas emission based on bibliometrics. Acta Sci. Circumst. 2021, 41, 4740–4751. [Google Scholar]
- Lv, W.; Zhao, X.; Wu, P.; Lv, J.; He, H. A Scientometric analysis of worldwide intercropping research based on web of science database between 1992 and 2020. Sustainability 2021, 13, 2430. [Google Scholar] [CrossRef]
- Chen, C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Chen, C. CiteSpace: Text Mining and Visualization in Scientific Literature, 3rd ed.; The Capital University of Economics and Business Press: Beijing, China, 2022; pp. 226–228. [Google Scholar]
- Baggs, E.M. Soil microbial sources of nitrous oxide: Recent advances in knowledge, emerging challenges, and future direction. Curr. Opin. Environ. Sustain. 2011, 3, 321–327. [Google Scholar] [CrossRef]
- Thompson, K.A.; Bent, E.; Abalos, D.; Wagner-Riddle, C.; Dunfield, K.E. Soil microbial communities as potential regulators of in situ N2O fluxes in annual and perennial cropping systems. Soil Biol. Biochem. 2016, 103, 262–273. [Google Scholar] [CrossRef]
- Linton, N.F.; Machado, P.; Deen, B.; Wagner-Riddle, C.; Dunfield, K.E. Long-term diverse rotation alters nitrogen cycling bacterial groups and nitrous oxide emissions after nitrogen fertilization. Soil Biol. Biochem. 2020, 149, 107917. [Google Scholar] [CrossRef]
- Pappa, V.A.; Rees, R.M.; Walker, R.L.; Baddeley, J.A.; Watson, C.A. Nitrous oxide emissions and nitrate leaching in an arable rotation resulting from the presence of an intercrop. Agric. Ecosyst. Environ. 2011, 141, 153–161. [Google Scholar] [CrossRef]
- Stern, W.R. Nitrogen fixation and transfer in intercrop systems. Field Crop. Res. 1993, 34, 335–356. [Google Scholar] [CrossRef]
- Chen, J.; Amin, A.S.; Hamani, A.K.M.; Wang, G.; Zhang, Y.; Liu, K.; Gao, Y. Effects of maize (Zea mays L.) intercropping with legumes of nitrous oxide (N2O) emissions. Appl. Ecol. Environ. Res. 2021, 19, 1589–1623. [Google Scholar] [CrossRef]
- Huang, J.; Chen, Y.; Peng, S.; Nie, S.W.; Gao, W. Soil Nitrous oxide emissions under maize-legume intercropping system in the North China Plain. J. Integr. Agric. 2014, 13, 1363–1372. [Google Scholar] [CrossRef] [Green Version]
- Senbayram, M.; Wenthe, C.; Lingner, A.; Isselstein, J.; Steinmann, H.; Kaya, C.; Köbke, S. Legume-based mixed intercropping systems may lower agricultural born N2O emissions. Energy Sustain. Soc. 2015, 6, 2. [Google Scholar] [CrossRef] [Green Version]
- Graf, D.R.H.; Saghaï, A.; Zhao, M.; Carlsson, G.; Jones, C.M.; Hallin, S. Lucerne (Medicago sativa) alters N2O-reducing communities associated with cocksfoot (Dactylis glomerata) roots and promotes N2O production in intercropping in a greenhouse experiment. Soil Biol. Biochem. 2019, 137, 107547. [Google Scholar] [CrossRef]
- He, J.; Qu, L.; Zhou, H.; Bo, L.; Du, P.; Wang, Z. Research progress on main factors of dry farmland cropping and carbon emission reduction measures. Modern Agri. Sci. Tech. 2020, 9, 184–186. [Google Scholar]
- Dyer, L.; Oelbermann, M.; Echarte, L. Soil carbon dioxide and nitrous oxide emissions during the growing season from temperate maize-soybean intercrops. J. Plant Nutr. Soil Sc. 2012, 175, 394–400. [Google Scholar] [CrossRef]
- Huang, J.; Sui, P.; Gao, W.; Chen, Y. Effect of maize-soybean intercropping on greenhouse gas emission and the assessment of net greenhouse gas balance in North China Plain. J. China Agric. Univ. 2015, 20, 66–74. [Google Scholar]
- Wang, X.; Chen, Y.; Yang, K.; Duan, F.; Liu, P.; Wang, Z.; Wang, J. Effects of legume intercropping and nitrogen input on net greenhouse gas balances, intensity, carbon footprint and crop productivity in sweet maize cropland in South China. J. Clean. Prod. 2021, 314, 127997. [Google Scholar] [CrossRef]
- Astiko, W.; Ernawati, N.; Silawibawa, I.P.J.I.C.S.E.; Science, E. The effect of row proportion of maize and soybean intercropping on growth and yield of component crops in sandy soil North Lombok, Indonesia. Earth Environ. Sci. 2021, 637, 012005. [Google Scholar] [CrossRef]
- Wang, R.; Sun, Z.; Zhang, L.; Yang, N.; Feng, L.; Bai, W.; Zhang, D.; Wang, Q.; Evers, J.; Liu, Y.; et al. Border-row proportion determines strength of interspecific interactions and crop yields in maize/peanut strip intercropping. Field Crop. Res. 2020, 253, 107819. [Google Scholar] [CrossRef]
- Zhang, N.; Miao, S.; Qiao, Y.; Chen, Z.; Ding, W. N2O emissions from black soils in Northeast China. Acta Pedol. Sin. 2022, 59, 809–909. [Google Scholar]
- Chen, Y.; Yang, K.; Duan, F.; Liu, P.; Wang, Z.; Wang, J. Effect of reduced nitrogen application on nodulation characteristics of soybean in sweet maize//soybean intercropping system. Ecol. Sci. 2022, 41, 1–8. [Google Scholar]
- Zhang, D.; Sun, Z.; Feng, L.; Bai, W.; Yang, N.; Zhang, Z.; Du, G.; Feng, C.; Cai, Q.; Wang, Q.; et al. Maize plant density affects yield, growth and source-sink relationship of crops in maize/peanut intercropping. Field Crop. Res. 2020, 257, 107926. [Google Scholar] [CrossRef]
- Yang, C.; Fan, Z.; Chai, Q. Agronomic and economic benefits of pea/maize intercropping systems about N fertilizer and maize density. Agronomy 2018, 8, 52. [Google Scholar] [CrossRef] [Green Version]
- Luo, S.; Yu, L.; Liu, Y.; Zhang, Y.; Yang, W.; Li, Z.; Wang, J. Effects of reduced nitrogen input on productivity and N2O emissions in a sugarcane/soybean intercropping system. Eur. J. Agron. 2016, 81, 78–85. [Google Scholar] [CrossRef]
- Yang, H.; Hu, F.; Yin, W.; Chai, Q.; Zhao, C.; Yu, A.; Fan, Z.; Fan, H.; Ren, X. Integration of tillage and planting density improves crop production and carbon mitigation of maize/pea intercropping in the oasis irrigation area of northwestern China. Field Crop. Res. 2021, 272, 108281. [Google Scholar] [CrossRef]
- Cui, X.; Zhou, F.; Ciais, P.; Davidson, E.A.; Tubiello, F.N.; Ju, X.; Canadell, J.G.; Bouwman, A.F.; Jackson, R.B.; Mueller, N.D.; et al. Global mapping of crop-specific emission factors highlights hotspots of nitrous oxide mitigation. Nat. Food 2021, 2, 886–893. [Google Scholar] [CrossRef]
- Tang, Y.; Yu, L.; Guan, A.; Zhou, X.; Wang, Z.; Guo, Y.; Wang, J. Soil mineral nitrogen and yield-scaled soil N2O emissions lowered by reducing nitrogen application and intercropping with soybean for sweet maize production in southern China. J. Integr. Agric. 2017, 16, 2586–2596. [Google Scholar] [CrossRef] [Green Version]
- Fu, Z.; Du, Q.; Chen, P.; Pang, T.; Ye, X.; Yang, W.; Yong, T. Effects of long-term located nitrogen application on greenhouse gas emissions and grain yield in a relay intercropped Soybean. J. Sichuan Agric. Univ. 2017, 35, 491–498. [Google Scholar]
- Alskaf, K.; Mooney, S.J.; Sparkes, D.L.; Wilson, P.; Sjögersten, S. Short-term impacts of different tillage practices and plant residue retention on soil physical properties and greenhouse gas emissions. Soil Till. Res. 2021, 206, 104803. [Google Scholar] [CrossRef]
- Yue, K.; Fornara, D.A.; Heděnec, P.; Wu, Q.; Peng, Y.; Peng, X.; Ni, X.; Wu, F.; Peñuelaset, J. No tillage decreases GHG emissions with no crop yield tradeoff at the global scale. Soil Till. Res. 2023, 228, 105643. [Google Scholar] [CrossRef]
- Odhiambo, J.A.; Basweti, E.A. Soil Nitrogen and Greenhouse Gas Fluxes in Response to Reduced Tillage Practices under Maize-Bean Intercropping in Western Kenya. Ajausud 2022, 1, 46–59. [Google Scholar]
- Fatumah, N.; Munishi, L.K.; Ndakidemi, P.A. The effect of land-use systems on greenhouse gas production and crop yields in Wakiso District, Uganda. Environ. Dev. 2021, 37, 100607. [Google Scholar] [CrossRef]
- Bayer, C.; Gomes, J.; Zanatta, J.A.; Vieira, F.C.B.; Dieckow, J. Mitigating greenhouse gas emissions from a subtropical Ultisol by using long-term no-tillage in combination with legume cover crops. Soil Till. Res. 2016, 161, 86–94. [Google Scholar] [CrossRef]
- Zhang, J.; Hao, Q.; Jiang, C. The emission and influencing factors of greenhouse gases in soil under the no-tillage cultivation: A review. Chin. J. Soil Sci. 2011, 42, 236–242. [Google Scholar]
- Abalos, D.; Recous, S.; Butterbach-Bahl, K.; De Notaris, C.; Rittl, T.F.; Topp, C.F.E.; Petersen, S.O.; Hansen, S.; Bleken, M.A.; Rees, R.M. A review and meta-analysis of mitigation measures for nitrous oxide emissions from crop residues. Sci. Total. Environ. 2022, 828, 154388. [Google Scholar] [CrossRef]
- Wang, X.; Jia, Z.; Liang, L.; Zhao, Y.; Yang, B.; Ding, R.; Wang, J.; Nie, J. Changes in soil characteristics and maize yield under straw returning system in dryland farming. Field Crop. Res. 2018, 218, 11–17. [Google Scholar] [CrossRef]
- Solanki, M.K.; Wang, F.; Wang, Z.; Li, C.; Lan, T.; Singh, R.K.; Singh, P.; Yang, L.; Li, Y. Rhizospheric and endospheric diazotrophs mediated soil fertility intensification in sugarcane-legume intercropping systems. J. Soil Sediment. 2019, 19, 1911–1927. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, X.; Liang, A.; Jia, S.; Zhang, S.; Sun, B.; Cheng, S.; Yang, X. Effects of corn and soybean straws returning on CO2 efflux at initial stage in black soil. Chin. J. Ecol. 2015, 26, 2421–2427. [Google Scholar]
- Li, B.; Wu, L. Soil greenhouse gases emission in response to the C/N. J. Agro-Environ. Sci. 2015, 37, 2067–2078. [Google Scholar]
- He, J.; Li, H.; Fang, M.; Kong, W. Influence of straw application on agricultural greenhouse gas emissions in China. Chin. Agric. Sci. Bull. 2011, 27, 246–250. [Google Scholar]
- Jiang, C.; Yu, W. Maize production and field CO2 emission under different straw return rates in Northeast China. Plant Soil Environ. 2019, 65, 198–204. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Tu, X.; Meng, H.; Chen, C.; Chen, Y.; Elrys, A.S.; Cheng, Y.; Zhang, J.B.; Cai, Z.C. Microbial process-oriented understanding of stimulation of soil N2O emission following the input of organic materials. Environ. Pollut. 2021, 284, 117176. [Google Scholar] [CrossRef]
- Zhang, R.; Zhao, X.; Pu, C.; Liu, S.; Xue, J.; Zhang, X.; Chen, F.; Zhang, H. Meta-analysis on effects of residue retention on soil N2O emissions and influence factors in China. Trans. Chin. Soc. Agric. Eng. 2015, 31, 1–6. [Google Scholar]
- Chen, H.; Li, X.; Hu, F.; Shi, W. Soil nitrous oxide emissions following crop residue addition: A meta-analysis. Glob. Chang. Biol. 2013, 19, 2956–2964. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; An, J.; Ma, L.; Chen, S.; Li, J.; Zou, H.; Zhang, Y. Effects of different straw returning depths on soil greenhouse gas emission and maize yield. Sci. Agri. Sin. 2020, 53, 977–989. [Google Scholar]
- Li, X.; Wang, Z.; Bao, X.; Sun, J.; Yang, S.; Wang, P.; Wang, C.; Wu, J.; Liu, X.; Tian, X.; et al. Long-term increased grain yield and soil fertility from intercropping. Nat. Sustain. 2021, 4, 943–950. [Google Scholar] [CrossRef]
- Degani, E.; Leigh, S.G.; Barber, H.M.; Jones, H.E.; Lukac, M.; Sutton, P.; Potts, S.G. Crop rotations in a climate change scenario: Short-term effects of crop diversity on resilience and ecosystem service provision under drought. Agric. Ecosyst. Environ. 2019, 285, 106625. [Google Scholar] [CrossRef]
- Chai, Q.; Nemecek, T.; Liang, C.; Zhao, C.; Yu, A.; Coulter, J.A.; Wang, Y.; Hu, F.; Wang, L.; Kadambot, H.M.; et al. Integrated farming with intercropping increases food production while reducing environmental footprint. Proc. Natl. Acad. Sci. USA 2021, 118, e2106382118. [Google Scholar] [CrossRef]
- Ananthi, T.; Amanullah, M.M.; Al-Tawaha, A.R.M.S. A review on maize-legume intercropping for enhancing the productivity and soil fertility for sustainable agriculture in India. Adv. Environ. Biol. 2017, 11, 49–64. [Google Scholar]
- Maitra, S.; Shankar, T.; Banerjee, P. Potential and advantages of maize-legume intercropping system. In Maize-Production and Use; Hossain, A., Ed.; Intechopen: London, UK, 2020. [Google Scholar]
- Ngwira, A.R.; Aune, J.B.; Mkwinda, S. On-farm evaluation of yield and economic benefit of short term maize legume intercropping systems under conservation agriculture in Malawi. Field Crop. Res. 2012, 132, 149–157. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, W.; Li, L. Intercropping: Feed more people and build more sustainable agroecosystems. Front. Agric. Sci. Eng. 2021, 8, 373–386. [Google Scholar]
- Guenet, B.; Gabrielle, B.; Chenu, C.; Arrouays, D.; Balesdent, J.; Bernoux, M.; Bruni, E.; Caliman, J.P.; Cardinael, R.; Chen, S. Can N2O emissions offset the benefits from soil organic carbon storage? Global Chang. Biol. 2021, 27, 237–256. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Chen, F.; Kong, F.; Fan, S. The carbon footprint of winter wheat-summer maize cropping pattern on North China Plain. China Popul. Resour. Environ. 2011, 21, 93–98. [Google Scholar]
- Guinee, J.B. Handbook on Life Cycle Assessment Operational Guide to the ISO Standards; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Geng, C.; Ren, J.; Ma, X.; Long, G.; Lu, Y.; Tang, L. Yield improvement and greenhouse effect of different intercropping systems based on life cycle assessment. Chin. J. Eco-Agricul. 2020, 28, 159–167. [Google Scholar]
- Qin, A.; Huang, G.; Chai, Q.; Yu, A.; Huang, P. Grain yield and soil respiratory response to intercropping systems on arid land. Field Crop. Res. 2013, 144, 1–10. [Google Scholar] [CrossRef]
- Sun, T.; Zhao, C.; Feng, X.; Yin, W.; Gou, Z.; Lal, R.; Deng, A.; Chai, Q.; Song, Z.; Zhang, W. Maize-based intercropping systems achieve higher productivity and profitability with lesser environmental footprint in a water-scarce region of northwest China. Food Energy Secur. 2020, 10, e260. [Google Scholar] [CrossRef]
- Yao, F.; Wang, L.; Duo, X.; Liu, Z.; Lv, Y.; Cao, Y.; Wei, W.; Wang, Y. Effects of different nitrogen fertilizers on annual emissions of greenhouse gas from maize field in Northeast China. Chin. J. Ecol. 2019, 30, 1303–1311. [Google Scholar]
- Wen, D.; Liang, W. Soil fertility quality and agricultural sustainable development in the black soil region of northeast China. Environ. Dev. Sustain. 2001, 3, 31–43. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, Y.; Zhang, Y.; Huang, D.; Gregorich, E.; McLaughlin, N.; Zhang, X.; Chen, X.; Zhang, S.; Liang, A.; et al. Effect of long-term tillage and cropping system on portion of fungal and bacterial necromass carbon in soil organic carbon. Soil Till. Res. 2022, 218, 105307. [Google Scholar] [CrossRef]
- Yu, R.; Yang, H.; Xing, Y.; Zhang, W. Belowground processes and sustainability in agroecosystems with intercropping. Plant Soil 2022, 476, 63–288. [Google Scholar] [CrossRef]
Keywords | Strength | Begin | End | 2005–2021 |
---|---|---|---|---|
cereal | 8.18 | 2005 | 2011 | ▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂ |
weed | 4.15 | 2005 | 2015 | ▃▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂ |
density | 3.97 | 2006 | 2008 | ▂▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂ |
nitrogen fixation | 2.79 | 2006 | 2010 | ▂▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂ |
inorganic nitrogen | 6.21 | 2007 | 2011 | ▂▂▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂ |
crude protein | 2.83 | 2007 | 2011 | ▂▂▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂ |
forage | 2.89 | 2008 | 2010 | ▂▂▂▃▃▃▂▂▂▂▂▂▂▂▂▂▂ |
N2 fixation | 3.60 | 2009 | 2010 | ▂▂▂▂▃▃▂▂▂▂▂▂▂▂▂▂▂ |
nutrient acquisition | 3.21 | 2011 | 2014 | ▂▂▂▂▂▂▃▃▃▃▂▂▂▂▂▂▂ |
nitrogen fertilization | 2.86 | 2011 | 2013 | ▂▂▂▂▂▂▃▃▃▂▂▂▂▂▂▂▂ |
tillage | 4.85 | 2012 | 2015 | ▂▂▂▂▂▂▂▃▃▃▃▂▂▂▂▂▂ |
greenhouse gas emission | 3.21 | 2013 | 2015 | ▂▂▂▂▂▂▂▂▃▃▃▂▂▂▂▂▂ |
rhizosphere | 2.93 | 2014 | 2018 | ▂▂▂▂▂▂▂▂▂▃▃▃▃▃▂▂▂ |
yield advantage | 3.50 | 2015 | 2019 | ▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▂▂ |
interspecific interaction | 3.69 | 2017 | 2019 | ▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▂▂ |
intensification | 2.58 | 2017 | 2021 | ▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃ |
soybean | 3.27 | 2018 | 2021 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃ |
light | 4.13 | 2019 | 2021 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃ |
crop productivity | 3.94 | 2019 | 2021 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃ |
climate change | 3.13 | 2019 | 2021 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, F.; Wu, Y.; Liu, X.; Cao, Y.; Lv, Y.; Wei, W.; Xu, W.; Liu, Z.; Liang, J.; Wang, Y. Research Progress and Development Trends of Greenhouse Gas Emissions from Cereal–Legume Intercropping Systems. Agronomy 2023, 13, 1085. https://doi.org/10.3390/agronomy13041085
Yao F, Wu Y, Liu X, Cao Y, Lv Y, Wei W, Xu W, Liu Z, Liang J, Wang Y. Research Progress and Development Trends of Greenhouse Gas Emissions from Cereal–Legume Intercropping Systems. Agronomy. 2023; 13(4):1085. https://doi.org/10.3390/agronomy13041085
Chicago/Turabian StyleYao, Fanyun, Yang Wu, Xiaodan Liu, Yujun Cao, Yanjie Lv, Wenwen Wei, Wenhua Xu, Zhiming Liu, Jie Liang, and Yongjun Wang. 2023. "Research Progress and Development Trends of Greenhouse Gas Emissions from Cereal–Legume Intercropping Systems" Agronomy 13, no. 4: 1085. https://doi.org/10.3390/agronomy13041085
APA StyleYao, F., Wu, Y., Liu, X., Cao, Y., Lv, Y., Wei, W., Xu, W., Liu, Z., Liang, J., & Wang, Y. (2023). Research Progress and Development Trends of Greenhouse Gas Emissions from Cereal–Legume Intercropping Systems. Agronomy, 13(4), 1085. https://doi.org/10.3390/agronomy13041085