Citrus Canker: A Persistent Threat to the Worldwide Citrus Industry—An Analysis
Abstract
:1. Introduction
2. Origin and History
3. Taxonomy
4. Strains
5. Pathogen Morphology
6. Detection and Identification
7. Pathogenicity
8. Host Range
9. Susceptibility
10. Bacterium Storage
11. Symptomatology
11.1. Leaf Lesions
11.2. Fruit Lesions
11.3. Twig Lesions
12. Disease Cycle and Epidemiology
12.1. Infection
12.2. Survival
12.3. Dispersal
13. Role of Leaf Miner Interaction in Disease Spread
14. Nutrition
15. Integrated Management Programs
15.1. Quarantines
15.2. Field Screening
16. Control
16.1. Cultural Control
16.2. Chemical Control
16.3. Biological Control
16.4. Resistant Varieties
16.5. Induced Systemic Resistance
16.6. Leaf Miner Control
16.7. Control through Plant Extracts
16.8. Control of Citrus Canker through Wind Break Systems
16.9. Factors Affecting Successful Eradication of Citrus Canker
17. Conclusions and Future Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gottwald, T.R.; Sun, X.; Riley, T.; Graham, J.H.; Ferrandino, F.; Taylor, E.L. Geo-referenced spatiotemporal analysis of the urban citrus canker epidemic in Florida. Phytopathology 2002, 92, 361–377. [Google Scholar] [CrossRef] [Green Version]
- Graham, J.H.; Gottwald, T.R.; Cubero, J.; Achor, D.S. Xanthomonas axonopodis pv. citri: Factors affecting successful eradication of citrus canker. Mol. Plant Pathol. 2004, 5, 1–15. [Google Scholar] [CrossRef]
- Ference, C.M.; Gochez, A.M.; Behlau, F.; Wang, N.; Graham, J.H.; Jones, J.B. Recent advances in the understanding of Xanthomonas citri ssp. citri pathogenesis and citrus canker disease management. Mol. Plant Pathol. 2018, 19, 1302–1318. [Google Scholar] [CrossRef] [Green Version]
- Berk, Z. Citrus Fruit Processing. In Crop Protection Compendium, Global Module, 4th ed.; CAB International: Wallingford, UK, 2016. [Google Scholar]
- da Gama, M.A.S.; de Lima Ramos Mariano, R.; da Silva Júnior, W.J.; de Farias, A.R.G.; Barbosa, M.A.G.; da Silva Velloso Ferreira, M.A.; Júnior, C.R.L.C.; Santos, L.A.; de Souza, E.B. Taxonomic Repositioning of Xanthomonas campestris pv. Viticola (Nayudu 1972) Dye 1978 as Xanthomonas citri pv. viticola (Nayudu 1972) Dye 1978 comb. nov. and Emendation of the Description of Xanthomonas citri pv. anacardii to Include Pigmented Isolates Pathogenic to Cashew Plant. Phytopathology 2018, 108, 1143–1153. [Google Scholar]
- Löffler, F.E.; Yan, J.; Ritalahti, K.M.; Adrian, L.; Edwards, E.A.; Konstantinidis, K.T.; Müller, J.A.; Fullerton, H.; Zinder, S.H.; Spormann, A.M. Dehalococcoides mccartyi gen. nov., sp. nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov. and family Dehalococcoidaceae fam. nov., within the phylum Chloroflexi. Int. J. Syst. Evol. 2013, 63, 625–635. [Google Scholar]
- Li, L.; Li, J.; Zhang, Y.; Wang, N. Diffusible signal factor (DSF)-mediated quorum sensing modulates expression of diverse traits in Xanthomonas citri and responses of citrus plants to promote disease. BMC Genom. 2019, 20, 55. [Google Scholar] [CrossRef]
- Ryan, R.P.; Vorhölter, F.J.; Potnis, N.; Jones, J.B.; Van Sluys, M.-A.; Bogdanove, A.J.; Dow, J.M. Pathogenomics of Xanthomonas: Understanding bacterium-plant interactions. Nat. Rev. Microbiol. 2011, 9, 344–355. [Google Scholar] [CrossRef]
- Siddique, M.I.; Garnevska, E. Citrus Value Chain(s): A Survey of Pakistan Citrus Industry. In Agricultural Value Chain; IntechOpen: London, UK, 2017. [Google Scholar]
- Martins, P.M.M.; de Oliveira Andrade, M.; Benedetti, C.E.; de Souza, A.A. Xanthomonas citri subsp. citri: Host interaction and control strategies. Trop. Plant Pathol. 2020, 45, 213–236. [Google Scholar] [CrossRef]
- Bock, C.H.; Parker, P.E.; Gottwald, T.R. Effect of simulated wind-driven rain on duration and distance of dispersal of Xanthomonas axonopodis pv. citri from canker-infected citrus trees. Plant Dis. 2005, 89, 71–80. [Google Scholar]
- Johnson, E.G.; Wu, J.; Bright, D.B.; Graham, J.H. Association of ‘C andidatus L iberibacter asiaticus’ root infection, but not phloem plugging with root loss on huanglongbing-affected trees prior to appearance of foliar symptoms. Plant Pathol. 2014, 63, 290–298. [Google Scholar] [CrossRef]
- Canteros, B.I.; Gochez, A.M.; Moschini, R.C. Management of citrus canker in Argentina, a success story. Plant Pathol. J. 2017, 33, 441. [Google Scholar] [CrossRef] [Green Version]
- Behlau, F.; Fonseca, A.E.; Belasque, J. A comprehensive analysis of the Asiatic citrus canker eradication programme in Sao Paulo state, Brazil, from 1999 to 2009. Plant Pathol. 2016, 65, 1390–1399. [Google Scholar] [CrossRef] [Green Version]
- Richard, D.; Tribot, N.; Boyer, C.; Terville, M.; Boyer, K.; Javegny, S.; Roux-Cuvelier, M.; Pruvost, O.; Moreau, A.; Chabirand, A.; et al. First report of copper-resistant Xanthomonas citri pv. citri pathotype A causing Asiatic citrus canker in Réunion, France. Plant Disease 2017, 101, 503. [Google Scholar] [CrossRef]
- Sun, X.; Stall, R.E.; Cubero, J.; Gottwald, T.R.; Graham, J.H.; Dixon, W.D.; Schubert, T.S.; Peacock, M.E.; Dickstein, E.R.; Chaloux, P.H. Detection of a unique isolate of citrus canker bacterium from Key lime in Wellington and Lake Worth, Florida. (Abstr.). In Proceedings of the International Citrus Canker Research Workshop, Ft. Pierce, FL, USA, 20–22 June 2000; Division of Plant Industry, Florida Department of Agriculture and Consumer Services: Gainesville, FL, USA, 2000. [Google Scholar]
- Bansal, K.; Midha, S.; Kumar, S.; Patil, P.B. Ecological and Evolutionary Insights into Xanthomonas citri pathovar diversity. Appl. Environ. Microbiol. 2017, 17, 83–88. [Google Scholar] [CrossRef] [Green Version]
- Kompas, T.; Ha, P.; Spring, D. Baseline ‘Consequence Measures’ for Australia from the Torres Strait Islands Pathway to Queensland: Papaya Fruit Fly, Citrus Canker and Rabies. A Report Prepared for the Department of Agriculture and Water Resources. CEBRA, ACBEE. 2015, p. 89. Available online: https://cebra.unimelb.edu.au/__data/assets/pdf_file/0004/3045739/1405C-FINAL-Report.pdf (accessed on 2 February 2023).
- Licciardello, G.; Caruso, P.; Bella, P.; Boyer, C.; Smith, M.W.; Pruvost, O.; Robene, I.; Cubero, J.; Catara, V. Pathotyping citrus ornamental relatives with Xanthomonas citri pv. citri and X. citri pv. aurantifolii refines our understanding of their susceptibility to these pathogens. Microorganisms 2022, 10, 986. [Google Scholar] [CrossRef]
- Jenkins, A.E.; Fawcett, H.S. Records of Citrus scab mainly from herbarium specimens of the genus Citrus in England and the United States. Phytopathology 1933, 23, 475–482. [Google Scholar]
- Loucks, K.W. Citrus Canker and its Eradication in Florida. In Unpublished Manuscript Archives of the Florida; Department of Agriculture, Division of Plant Industry: Gainesville, FL, USA, 1934; p. 110. [Google Scholar]
- Gochez, A.M.; Behlau, F.; Singh, R.; Ong, K.; Whilby, L.; Jones, J.B. Panorama of citrus canker in the United States. Trop. Plant Pathol. 2020, 45, 192–199. [Google Scholar] [CrossRef]
- Berger, E. Citrus canker in the Gulf Coast country, with notes on the extent of citrus culture in the localities visited. Proc. Fla. State Hortic. Soc. 1914, 27, 120–127. [Google Scholar]
- Stall, R.E.; Civerolo, E.L. Research relating to the recent outbreak of citrus canker in Florida. Annu. Rev. Phytopathol. 1991, 29, 399–420. [Google Scholar] [CrossRef]
- EFSA Panel on Plant Health (PLH). Scientific Opinion on the risk to plant health of Xanthomonas citri pv. citri and Xanthomonas citri pv. aurantifolii for the EU territory. EFSA J. 2014, 12, 3556. [Google Scholar]
- Garnsey, S.M.; Ducharme, E.P.; Lightfied, J.W.; Seymour, C.P.; Griffiths, J.T. Citrus canker. Citrus Ind. 1979, 60, 5–6. [Google Scholar]
- Ngoc, L.; Vernière, C.; Jouen, E.; Ah-You, N.; Lefeuvre, P.; Chiroleu, F.; Gagnevin, L.; Pruvost, O. Amplified fragment length polymorphism and multilocus sequence analysis-based genotypic relatedness among pathogenic variants of Xanthomonas citri pv. citri and Xanthomonas campestris pv. bilvae. Int. J. Syst. Evol. Microbiol. 2010, 60, 515–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, M.; Allayyanavaramath, S.; Kulkarni, Y. Bacterial shot-hole and fruit canker of Aegle marmelos Correa. Curr. Sci. 1953, 22, 216–217. [Google Scholar]
- Favaro, M.A.; Micheloud, N.G.; Roeschlin, R.A.; Chiesa, M.A.; Castagnaro, A.P.; Vojnov, A.A.; Gmitter, F.G., Jr.; Gadea, J.; Rista, L.M.; Gariglio, N.F.; et al. Surface barriers of mandarin ‘Okitsu’ leaves make a major contribution to canker disease resistance. Phytopathology 2014, 104, 970–976. [Google Scholar] [CrossRef] [Green Version]
- Luthra, J.C.; Sattar, A. Citrus canker and its control in Punjab. Punjab Fruit J. 1942, 6, 179–182. [Google Scholar]
- Chowdhury, S. Citrus canker in Assam. Pl. Prot. Bull. 1951, 3, 78–79. [Google Scholar]
- Govinda Rao, P. Citrus diseases and their control in Andhra State. Andhra Agric. J. 1954, 1, 187–192. [Google Scholar]
- Ramakrishnan, T.S. Common Diseases of Citrus in Madras State; Government of Madras Publication: New Delhi, India, 1994. [Google Scholar]
- Aiyappa, K.M. Citrus canker-Xanthomonas citri (Hasse) Dowson. Mysore Agric. J. 1958, 13, 164–167. [Google Scholar]
- Parsai, P.S. Citrus canker. In Proceedings of the Seminar on Diseases of Horticultural Plants, Simla, India, 10–15 June 1959; pp. 91–95. [Google Scholar]
- Prasad, N.; Mathur, R.L.; Sehgal, S.P. Molya disease of wheat and barley in Rajasthan. Curr. Sci. 1959, 28, 453. [Google Scholar]
- Nirvan, R. Citrus canker and its control. Hort. Adv. 1961, 5, 171–175. [Google Scholar]
- Bull, C.T.; De Boer, S.H.; Denny, T.P.; Firrao, G.; Saux, M.F.-L.; Saddler, G.; Scortichini, M.; Stead, D.; Takikawa, Y. List of new names of plant pathogenic bacteria (2008–2010). J. Plant Pathol. 2012, 94, 21–27. [Google Scholar]
- Hasse, C.H. Pseudomonas citri, the cause of citrus canker, a preliminary report. J. Agric. Res. 1915, 4, 97–100. [Google Scholar]
- Dowson, W.J. On the systematic position and generic names of the gram negative bacterial plant pathogens. Zent. Bakteriol. Parasitenkd. Infekt. Hyg. 1939, 100, 177–193. [Google Scholar]
- Bull, C.T.; De Boer, S.H.; Denny, T.P.; Firrao, G.; Saux, M.F.; Saddler, G.S.; Scortichini, M.; Stead, D.E.; Takikawa, Y. Comprehensivelist of names of plant pathogenic bacteria(1980–2007). J. Plant Pathol. 2010, 92, 551–592. [Google Scholar]
- Brunings, A.M.; Gabriel, D.W. Xanthomonas citri: Breaking the surface. Mol. Plant Pathol. 2003, 4, 141–157. [Google Scholar] [CrossRef] [PubMed]
- Gochez, A.M.; Minsavage, G.V.; Potnis, N.; Canteros, B.I.; Stall, R.E.; Jones, J.B. A functional Xop AG homolog in Xanthomonas fuscanspv. aurantifolii strain C limits the host range. Plant Pathol. 2015, 64, 1207–1214. [Google Scholar] [CrossRef]
- Moreira, L.M.; Almeida, N.F., Jr.; Potnis, N.; Digiampietri, L.A.; Adi, S.S.; Bortolossi, J.C.; da Silva, A.C.; da Silva, A.M.; de Moraes, F.E.; de Oliveira, J.C.; et al. Novel insights into the genomic basis of citrus canker based on the genome sequences of two strains of Xanthomonas fuscans subsp. aurantifolii. BMC Genom. 2010, 11, 238. [Google Scholar] [CrossRef]
- da Silva, A.R.; Ferro, J.A.; Reinach, F.d.C.; Farah, C.S.; Furlan, L.R.; Quaggio, R.B.; Monteiro-Vitorello, C.B.; Van Sluys, M.-A.; Almeida, N.A.; Alves, L. Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature 2002, 417, 459–463. [Google Scholar] [CrossRef]
- Moreira, L.M.; de Souza, R.E.; Almeida, N.F.; Setubal, J.C.; Oliveira, J.C.F.; Furlan, L.R.; Ferro, J.A.; da Silva, A.C.R. Comparative genomics analyses of citrus-associated bacteria. Annu. Rev. Phytopathol. 2004, 42, 163–184. [Google Scholar] [CrossRef]
- Moreira, L.M.; De Souza, R.F.; Digiampietri, L.A.; Da Silva, A.C.R.; Setubal, J.C. Comparative analyses of Xanthomonas and Xylella complete genomes. Omics J. Integr. Biol. 2005, 9, 43–76. [Google Scholar] [CrossRef] [Green Version]
- Civerolo, E.L. Bacterial canker disease of citrus. J. Rio Gd. Val. Hortic. Soc. 1984, 37, 127–145. [Google Scholar]
- Namekata, T. Estudoscomparativos Entre Xanthomonas citri (Hasse) Dow., Agente Causal Do Cancrocítrico e Xanthomonas citri (Hasse) Dow., n.f. sp. Aurantifolia, Agente Causal da Cancrose do Limoeiro Galego; University of São Paulo: Piracicaba, Brazil, 1971. [Google Scholar]
- Jaciani, F.J.; Destéfano, S.A.L.; Neto, J.R.; Belasque, J., Jr. Detection of a New Bacterium Related to Xanthomonas fuscans subsp. aurantifolii Infecting Swingle Citrumelo in Brazil. Plant Dis. 2009, 93, 1074. [Google Scholar] [CrossRef] [PubMed]
- Bansal, K.; Kumar, S.; Patil, P.B. Phylogenomic insights into diversity and evolution of nonpathogenic Xanthomonas strains associated with citrus. mSphere 2020, 5, e00087-20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patané, J.S.L.; Martins, J.; Rangel, L.T.; Belasque, J.; Digiampietri, L.A.; Facincani, A.P.; Ferreira, R.M.; Jaciani, F.J.; Zhang, Y.; Varani, A.M.; et al. Origin and diversification of Xanthomonas citri subsp. citri pathotypes revealed by inclusive phylogenomic, dating, and biogeographic analyses. BMC Genom. 2019, 20, 700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, J.M.; Dye, D.W.; Bradbury, J.F.; Panagopoulos, C.G.; Robbs, C.F. Proposed nomenclature and classification for plant pathogenic bacteria. N. Z. J. Agric. 1978, 21, 153–177. [Google Scholar] [CrossRef]
- Jalan, N.; Kumar, D.; Andrade, M.O.; Yu, F.; Jones, J.B.; Graham, J.H.; White, F.F.; Setubal, J.C.; Wang, N. Comparative genomic and transcriptome analyses of pathotypes of Xanthomonas citri subsp. citri provide insights into mechanisms of bacterial virulence and host range. BMC Genom. 2013, 14, 551. [Google Scholar] [CrossRef] [Green Version]
- Ngoc, L.B.T.; Vernière, C.; Pruvost, O.; Kositcharoenkul, N.; Phawichit, S. First report in Thailand of Xanthomonas axonopodis pv. citri-A* causing citrus canker on lime. Plant Dis. 2007, 91, 771. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, D.W.; Kingsley, M.T.; Hunter, J.E.; Gottwald, T.R. Reinstatement of Xanthomonas citri (ex Hasse) and X. phaseoli (ex Smith) to species and reclassification of all X. campestris pv. citri strains. Int. J. Syst. Evol. Microbiol. 1989, 39, 14–22. [Google Scholar]
- Vauterin, L.; Hoste, B.; Kersters, K.; Swings, J. Reclassification of Xanthomonas. Int. J. Syst. Bacteriol. 1995, 45, 472–489. [Google Scholar] [CrossRef] [Green Version]
- Constantin, E.C.; Cleenwerck, I.; Maes, M.; Baeyen, S.; Van Malderghem, C.; De Vos, P.; Cottyn, B. Genetic characterization of strains named as Xanthomonas axonopodis pv. dieffenbachiae leads to a taxonomic revision of the X. axonopodis species complex. Plant Pathol. 2016, 65, 792–806. [Google Scholar] [CrossRef]
- Holland, D.F.V. The families and genera of the bacteria. V. Generic index of the commoner forms of bacteria. J. Bacteriol. 1920, 5, 191–229. [Google Scholar]
- Bergey, D.H.; Harrison, F.C.; Breed, R.S.; Hammer, B.W.; Huntoon, F.M. Bergey’s Manual of Determinative Bacteriology, 1st ed.; Williams Wilkins: Baltimore, MD, USA, 1923. [Google Scholar]
- Namekata, T.; Oliveira, A.D. Comparative serological studies between Xanthomonas citri and a bacterium causing canker on Mexican lime. In Proceedings of the Third International Conference on Plant Pathogenic Bacteria, Wagebingen, The Netherlands, 14–21 April 1971; Maas Geesteranus, H.P., Ed.; Centre of the Agricultural Publication and Documentation: Wageningen, The Netherlands, 1972; pp. 151–152. [Google Scholar]
- Dye, D.W.; Bradbury, J.F.; Goto, M.; Hayward, A.C.; Lelliott, R.A.; Schroth, M.N. International standards for naming pathovars of phytopathogenic bacteria and a list of pathovar names and pathotypes. Rev. Plant Pathol. 1980, 59, 153–168. [Google Scholar]
- Schaad, N.W.; Postnikova, E.; Lacy, G.; Sechler, A.; Agarkova, I.; Stromberg, P.E.; Stromberg, V.K.; Vidaver, A.K. Reclassification of Xanthomonas campestris pv. citri (ex Hasse 1915) Dye 1978 forms A, B/C/D, and E as X. smithii subsp. citri (ex Hasse) sp. nov. nom. rev. comb. nov., X. fuscans subsp. aurantifolii (ex Gabriel 1989) sp. nov. nom. rev. comb. nov., and X. alfalfae subsp. citrumelo (ex Riker and Jones) Gabriel et al., 1989 sp. nov. nom. rev. comb. nov.; X. campestris pv. malvacearum(ex Smith 1901) Dye 1978 as X. smithii subsp. smithii nov. comb. nov. nom. nov.; X. campestris pv. alfalfae (ex Riker and Jones, 1935) Dye 1978 as X. alfalfa subsp. alfalfae (ex Riker et al., 1935) sp. nov. nom. rev.; and ‘‘var. fuscans’’ of X. campestris pv. phaseoli (ex Smith, 1987) Dye 1978 as X. fuscans subsp. fuscans sp. nov. Syst. Appl. Microbiol. 2005, 28, 494–518. [Google Scholar] [PubMed]
- Schaad, N.W.; Postnikova, E.; Lacy, G.; Sechler, A.; Agarkova, I.; Stromberg, P.E.; Stromberg, V.K.; Vidaver, A.K. Emended classification of Xanthomonad pathogens on citrus. Syst. Appl. Microbiol. 2006, 29, 690–695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Euzeby, J. List of new names and new combinations previously effectively, but no validly, published, list. Int. J. Syst. Evol. Microbiol. 2007, 57, 893–897. [Google Scholar]
- Gottwald, T.R.; Graham, J.H.; Schubert, T.S. Citrus canker: The pathogen and its impact. Plant Manag. Netw. 2002. Available online: https://apsjournals.apsnet.org/doi/10.1094/PHP-2002-0812-01-RV (accessed on 30 March 2023). [CrossRef] [Green Version]
- Canteros De Echenique, B.I.; Zagory, D.; Stall, R.E. A medium for cultivation of the B-strain of Xanthomonas campestris pv. citri, cause of cancrosis B in Argentina and Uruguay. Plant Dis. 1985, 69, 122–123. [Google Scholar] [CrossRef]
- Lai, Y.-R.; Lin, C.-H.; Chang, C.-P.; Ni, H.-F.; Tsai, W.-S.; Huang, C.-J. Distribution of copper resistance gene variants of Xanthomonas citri subsp. citri and Xanthomonas euvesicatoria pv. perforans. Plant Prot. Sci. 2021, 57, 206–216. [Google Scholar] [CrossRef]
- Pruvost, O.; Goodarzi, T.; Boyer, K.; Soltaninejad, H.; Escalon, A.; Alavi, S.M.; Javegny, S.; Boyer, C.; Cottyn, B.; Gagnevin, L.; et al. Genetic structure analysis of strains causing citrus canker in I ran reveals the presence of two different lineages of Xanthomonascitri pv. citri pathotype A. Plant Pathol. 2015, 64, 776–784. [Google Scholar] [CrossRef]
- Graham, J.H.; Gottwald, T.R. Research perspectives on eradication of citrus bacterial diseases in Florida. Plant Dis. 1991, 75, 1193–1200. [Google Scholar] [CrossRef]
- Graham, J.H.; Gottwald, T.R.; Fardelmann, D. Cultivar– specific interactions for strains of Xanthomonas campestris from Florida that cause citrus canker and citrus bacterial spot. Plant Dis. 1990, 74, 753–756. [Google Scholar] [CrossRef]
- Graham, J.H.; Hartung, J.S.; Stall, R.E.; Chase, A.R. Pathological, restriction-fragment length polymorphism, and fatty acid profile relationships between Xanthomonas campestris from citrus and noncitrus hosts. Phytopathology 1990, 80, 820–836. [Google Scholar] [CrossRef]
- Humphries, J. Bacteriology. J. Murray. 1974. Available online: https://search.library.uq.edu.au/primo-explore/fulldisplay?vid=61UQ&tab=61uq_all&docid=61UQ_ALMA21106794260003131&lang=en_US&context=L (accessed on 30 March 2023).
- Nguyen, H.T.; Yu, N.H.; Jeon, S.J.; Lee, H.W.; Bae, C.-H.; Yeo, J.H.; Lee, H.B.; Kim, I.-S.; Park, H.W.; Kim, J.-C. Antibacterial activities of penicillic acid isolated from Aspergillus persii against various plant pathogenic bacteria. Lett. Appl. Microbiol. 2016, 62, 488–493. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, N.J.; Malavolta, V.A.; Victor, O. Meiosimples para isolamento e cultivo de Xanthomonas campestris pv. citri Tipo B. Summa Phytopathol. 1986, 12, 16. [Google Scholar]
- Cubero, J.; Graham, J. Genetic relationship among worldwide strains of Xanthomonas causing canker in citrus species and design of new primers for their identification by PCR. Appl. Environ. Microbiol. 2002, 68, 1257–1264. [Google Scholar] [CrossRef] [Green Version]
- Leite, R.P.; Egel, D.S.; Stall, R.E. Genetic analysis of hrp-related DNA sequences of Xanthomonas campestris strains causing diseases of citrus. Appl. Environ. Microbiol. 1994, 60, 1078–1086. [Google Scholar] [CrossRef] [Green Version]
- Vauterin, L.; Yang, P.; Hoste, B.; Vancanneyt, M.; Civerolo, E.L.; Swings, J.; Kersters, K. Differentiation of Xanthomonas campestris pv. citri Strains by Sodium Dodecyl Sulfate-Polyacrylamide Gel-Electrophoresis of Proteins, Fatty-Acid Analysis, and DNA-DNA Hybridization. Int. J. Bacteriol. 1991, 41, 535–542. [Google Scholar] [CrossRef] [Green Version]
- Gupta, V. Epidemiology and Management of Bacterial Canker of Acid Lime (Citrus aurantifolia) caused by Xanthomonas axonopodis pv. citri. J. Mpuat Udaipur 2016, 51, 124–127. [Google Scholar]
- Chand, J.N.; Pal, V. Citrus canker in India and its management. In Problems of Citrus Diseases in India; Raychaudhuri, S.P., Ahlawat, Y.S., Eds.; Surabhi Printers and Publishers: New Delhi, India, 1982; pp. 21–26. [Google Scholar]
- Goto, M. Citrus canker. In Plant Diseases of International Importance. Volume III. Diseases of Fruit Crops; Kumar, J., Chaube, H.S., Singh, U.S., Mukhopadhyay, A.N., Eds.; The University of Chicago: Chicago, IL, USA, 1992; pp. 170–208. [Google Scholar]
- Behlau, F.; Barelli, N.; Belasque, J., Jr. Lessons from a case of successful eradication of citrus canker in a citrus-producing farm in São Paulo State, Brazil. J. Plant Pathol. 2014, 96, 561–568. [Google Scholar]
- Bradbury, J.F. Isolation and preliminary study of bacteria from plants. PANS Pest Artic. News Summ. 1970, 16, 632–637. [Google Scholar] [CrossRef]
- Daungfu, O.; Youpensuk, S.; Lumyong, S. Endophytic Bacteria Isolated from Citrus Plants for Biological Control of Citrus Canker in Lime Plants. Trop. Life Sci. Res. 2019, 30, 73–88. [Google Scholar] [CrossRef] [PubMed]
- Coletta-Filho, H.D.; Takita, M.A.; Souza, A.A.; Neto, J.R.; Destefano, S.A.L.; Hartung, J.S.; Machado, M.A. Primers based on the rpf gene region provide improved detection of Xanthomonas axonopodis pv. citri in naturally and artificially infected citrus plants. J. Appl. Microbiol. 2006, 100, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Mavrodieva, V.; Levy, L.; Gabriel, D.W. Improved sampling methods for real-time polymerase chain reaction diagnosis of citrus canker from field samples. Phytopathology 2004, 94, 61–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, X.; Stall, R.E.; Jones, J.B.; Cubero, J.; Gottwald, T.R.; Graham, J.H.; Dixon, W.N.; Schubert, T.S.; Chaloux, P.H.; Stromberg, V.K.; et al. Detection and characterization of a new strain of citrus canker bacteria from key Mexican lime and alemow in South Florida. Plant Dis. 2004, 88, 1179–1188. [Google Scholar] [CrossRef] [Green Version]
- Cubero, J.; Graham, J.H. Quantitative real-time polymerase chain reaction for bacterial enumeration and allelic discrimination to differentiate Xanthomonas strains on citrus. Phytopathology 2005, 95, 1333–1340. [Google Scholar] [CrossRef] [Green Version]
- Park, D.S.; Wook Hyun, J.; Jin Park, Y.; Sun Kim, J.; Wan Kang, H.; Ho Hahn, J.; Joo Go, S. Sensitive and specific detection of Xanthomonas axonopodis pv. citri by PCR using pathovar specific primers based on hrpW gene sequences. Microbiol. Res. 2006, 161, 145–149. [Google Scholar] [CrossRef]
- Golmohammadi, M.; Cubero, J.; Penalver, J.; Quesada, J.M.; Lopez, M.M.; Llop, P. Diagnosis of Xanthomonas axonopodis pv. citri, causal agent of citrus canker, in commercial fruits by isolation and PCR-based methods. J. Appl. Microbiol. 2007, 103, 2309–2315. [Google Scholar] [CrossRef]
- Gottwald, T.; Graham, J.; Schubert, T. An epidemiological analysis of the spread of citrus canker in urban Miami, Florida, and synergistic interaction with the Asian citrus leafminer. Fruits 1997, 6, 383–390. [Google Scholar]
- Hartung, J.S.; Pruvost, O.P.; Villemot, I.; Alvarez, A. Rapid and sensitive colorimetric detection of Xanthomonas axonopodis pv. citri by immunocapture and a nested-polymerase chain reaction assay. Phytopathology 1996, 8695, 101. [Google Scholar]
- Gabriel, D.; Gottwald, T.R.; Lopes, S.A.; Wulff, N.A. Bacterial pathogens of citrus: Citrus canker, citrus variegated chlorosis and Huanglongbing. In The Genus Citrus; Woodhead Publishing: Sawston, UK, 2020; pp. 371–389. [Google Scholar]
- Rigano, L.A.; Siciliano, F.; Enrique, R.; Sendín, L.; Filippone, P.; Torres, P.S.; Qüesta, J.; Dow, J.M.; Castagnaro, A.P.; Vojnov, A.A.; et al. Biofilm formation, epiphytic fitness, and canker development in Xanthomonas axonopodis pv. citri. Mol. Plant-Microbe Interact. 2007, 20, 1222–1230. [Google Scholar] [CrossRef] [Green Version]
- Torres, P.S.; Malamud, F.; Rigano, L.A.; Russo, D.M.; Marano, M.R.; Castagnaro, A.P.; Zorreguieta, A.; Bouarab, K.; Dow, J.M.; Vojnov, A.A. Controlled synthesis of the DSF cell–cell signal is required for biofilm formation and virulence in Xanthomonas campestris. Environ. Microbiol. 2007, 9, 2101–2109. [Google Scholar] [CrossRef] [Green Version]
- Malamud, F.; Torres, P.S.; Roeschlin, R.; Rigano, L.A.; Enrique, R.; Bonomi, H.R.; Castagnaro, A.P.; Marano, M.R.; Vojnov, A.A. The Xanthomonas axonopodis pv. citri flagellum is required for mature biofilm and canker development. Microbiology 2011, 157, 819–829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, M.; Yang, Y. Quantification of Magnaporthegrisea during infection of rice plants using real-time polymerase chain reaction and northern blot/phosphoimaging analyses. Phytopathology 2002, 92, 870–876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaad, N.; Berthier-Schaad, Y.; Sechler, A.; Knorr, D. Detection of Clavibacter michiganensis subsp. sepedonicus in potato tubers by BIO-PCR and an automated real-time fluorescence detection system. Plant Dis. 1999, 83, 1095–1100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaad, N.W.; Frederick, R.D. Real-time PCR and its application for rapid plant disease diagnostics. Can. J. Plant Pathol. 2002, 24, 250–258. [Google Scholar] [CrossRef]
- Weller, S.; Elphinstone, J.; Smith, N.; Stead, D. Detection of Ralstonia solanacearum from potato tissue by post-enrichment TaqMan PCR. EPPO Bull. 2000, 30, 381–383. [Google Scholar] [CrossRef]
- Mumford, R.; Walsh, K.; Boonham, N. A comparison of molecular methods for the routine detection of viroids. EPPO Bull. 2000, 30, 431–435. [Google Scholar] [CrossRef]
- Mackay, I.M.; Arden, K.E.; Nitsche, A. Real-time PCR in virology. Nucleic Acids Res. 2002, 30, 1292–1305. [Google Scholar] [CrossRef] [Green Version]
- Al-Saleh, M.A.; Widyawan, A.; Saleh, A.A.; Ibrahim, Y.E. Distribution and pathotype identification of Xanthomonas citri subsp. citri recovered from southwestern region of Saudi Arabia. Afr. J. Microbiol. Res. 2014, 8, 673–679. [Google Scholar]
- Pereira, A.; Carazzolle, M.; Abe, V.; Oliveira, M.; Domingues, M.; Silva, J.; Benedetti, C. Identification of putative TAL effector targets of the citrus canker pathogens shows functional convergence underlying disease development and defense response. BMC Genom. 2014, 15, 157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erbs, G.; Newman, M.A. The role of lipopolysaccharide and peptidoglycan, two glycosylated bacterial microbe-associated molecular patterns (MAMPs), in plant innate immunity. Mol. Plant Pathol. 2012, 13, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.S.; Wang, L.Y.; Chen, Y.J.; Tzeng, K.C.; Chang, S.C.; Chung, K.R.; Lee, M.H. Understanding cellular defence in kumquat and calamondin to citrus canker caused by Xanthomonas citri subsp. citri. Physiol. Mol. 2012, 79, 1–12. [Google Scholar] [CrossRef]
- Mitra, S.K. Postharvest Physiology and Storage of Tropical and Subtropical Fruits; CAB international: New York, NY, USA, 1997; Volume 4, p. 6. [Google Scholar]
- Reddy, G.; Rao, A. Control of canker in citrus nurseries. Agric. J. 1960, 7, 1–13. [Google Scholar]
- Abe, V.Y.; Benedetti, C.E. Additive roles of PthAs in bacterial growth and pathogenicity associated with nucleotide polymorphisms in effector-binding elements of citrus canker susceptibility genes. Mol. Plant Pathol. 2016, 17, 1223–1236. [Google Scholar] [CrossRef] [Green Version]
- Cernadas, R.A.; Camillo, L.R.; Benedetti, C.E. Transcriptional analysis of the sweet orange interaction with the citrus canker pathogens Xanthomonas axonopodis pv. citri and Xanthomonas axonopodis pv. aurantifolii. Mol. Plant Pathol. 2008, 9, 609–631. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, J.; Jia, H.; Sosso, D.; Li, T.; Frommer, W.B.; Yang, B.; White, F.F.; Wang, N.; Jones, J.B. Lateral organ boundaries 1 is a disease susceptibility gene for citrus bacterial canker disease. Proc. Natl. Acad. Sci. USA 2014, 111, 521–529. [Google Scholar] [CrossRef] [Green Version]
- de Souza, T.A.; Soprano, A.S.; de Lira, N.P.; Quaresma, A.J.; Pauletti, B.A.; Paes Leme, A.F.; Benedetti, C.E. The TAL effector PthA4 interacts with nuclear factors involved in RNA-dependent processes including a HMG protein that selectively binds poly(U) RNA. PLoS ONE 2012, 7, e32305. [Google Scholar] [CrossRef] [Green Version]
- Sleesman, J.P.; Leben, C. Preserving phytopathogenic bacteria at −70 °C or with silica gel. Plant Dis. Report. 1978, 62, 910–913. [Google Scholar]
- Pitino, M.; Armstrong, C.M.; Duan, Y. Rapid screening for citrus canker resistance employing pathogen-associated molecular pattern-triggered immunity responses. Hortic. Res. 2015, 2, 15042. [Google Scholar] [CrossRef] [Green Version]
- Grosser, J.W.; Gmitter, F.G. Protoplast fusion for production of tetraploids and triploids: Applications for scion and rootstock breeding in citrus. Plant Cell Tissue Organ Cult. (PCTOC) 2011, 104, 343–357. [Google Scholar] [CrossRef]
- Koizumi, M. Citrus Canker: The World Situation. In Citrus Canker: An International Perspective; Timmer, L.W., Ed.; University of Florida: Lake Alfred, FL, USA, 1985; pp. 2–7. [Google Scholar]
- Vernière, C.; Hartung, J.S.; Pruvost, O.P.; Civerolo, E.L.; Alvarez, A.M.; Maestri, P.; Luisetti, J. Characterization of phenotypically distinct strains of Xanthomonas axonopodis pv. citri from Southwest Asia. Europ. J. Plant Pathol. 1998, 104, 477–487. [Google Scholar] [CrossRef]
- Holt, J.G.; Krieg, N.R.; Sneath, P.H.A.; Staley, J.T.; Williams, S.T. Bergey’s Manual of Determinative Bacteriology, 9th ed.; Williams and Wilkins: Baltimore, MD, USA, 1994. [Google Scholar]
- Hall, D.G.; Gottwald, T.R.; Bock, C.H. Exacerbation of citrus canker by citrus leafminer Phyllocnistis citrella in Florida. Fla. Entomol. 2010, 93, 558–566. [Google Scholar] [CrossRef]
- Chagas, M.; Parra, J.R.; Namekata, T.; Hartung, J.S.; Yamamoto, P.T. Phyllocnistis citrella Stainton (Lepidoptera: Gracillariidae) and its relationship with the citrus canker bacterium Xanthomonas axonopodis pv. citri in Brazil. Neotrop. Entomol. 2001, 30, 55–59. [Google Scholar] [CrossRef]
- Graham, J.; Gottwald, T.; Riley, T.; Achor, D. Penetration through leaf stomata and growth of strains of Xanthomonas campestris in citrus cultivars varying in susceptibility to bacterial diseases. Phytopathology 1992, 82, 1319–1325. [Google Scholar] [CrossRef]
- Das, A. Citrus canker—A review. J. Appl. Hortic. 2003, 5, 52–60. [Google Scholar] [CrossRef]
- Gottwald, T.; Graham, J.H.; Bock, C.; Bonn, G.; Civerolo, E.; Irey, M.; Leite, R.P., Jr.; McCollum, G.; Parker, P.; Ramallo, J.; et al. The epidemiological significance of post-packinghouse survival of Xanthomonas citri subsp. citri for dissemination of asiatic citrus canker via infected fruit. Crop Prot. 2009, 28, 508–524. [Google Scholar] [CrossRef]
- Graham, J.H.; Gerberich, K.M.; Davis, C.L. Injection–infiltration of attached grapefruit with Xanthomonas citri subsp. citri to evaluate seasonal population dynamics in citrus canker lesions. J. Phytopathol. 2016, 164, 528–533. [Google Scholar] [CrossRef]
- Shiotani, H.; Uematsu, H.; Tsukamoto, T.; Shimizu, Y.; Ueda, K.; Mizuno, A.; Sato, S. Survival and dispersal of Xanthomonas citri pv. citri from infected Satsuma mandarin fruit. Crop Prot. 2009, 28, 19–23. [Google Scholar] [CrossRef]
- Bock, C.H.; Gottwald, T.R.; Parker, P.E. Distribution of canker lesions on the surface of diseased grapefruit. Plant Pathol. 2011, 60, 986–991. [Google Scholar] [CrossRef]
- Graham, J.H.; Dewdney, M.M.; Yonce, H.D. Comparison of copper formulations for control of citrus canker on “Hamlin” orange. Proc. Fla. State Hortic. Soc. 2011, 124, 79–84. [Google Scholar]
- Graham, J.H.; Dewdney, M.M.; Myers, M.E. Streptomycin and copper formulations for control of citrus canker on grapefruit. Proc. Fla. State Hortic. Soc. 2010, 123, 92–99. [Google Scholar]
- Schubert, T.S.; Rizvi, S.A.; Sun, X.; Gottwald, T.R.; Graham, J.H.; Dixon, W.N. Meeting the challenge of eradicating citrus canker in Florida—Again. Plant Dis. 2001, 85, 340–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stall, R. Xanthomonas campestris pv. citri detection and identification by enzyme-linked immunosorbent assay. Plant Dis. 1982, 231, 231–236. [Google Scholar]
- Bergamin Filho, A.; Hughes, G. Citrus Canker Epidemiology-Methodologies and Approaches: A Moderated Discussion Session. In Proceedings of the International Citrus Canker Research Workshop, Ft. Pierce, FL, USA, 20–22 June 2022; pp. 24–25. [Google Scholar]
- Francis, M.; Redondo, A.; Burns, J.; Graham, J. Soil application of imidacloprid and related SAR-inducing compounds produces effective and persistent control of citrus canker. Eur. J. Plant Pathol. 2009, 124, 283–292. [Google Scholar] [CrossRef]
- Dewdney, M.; Graham, J. Florida Citrus Pest Management Guide: Citrus Canker; Institute of Food and Agricultural Sciences, University of Florida: Gainesville, FL, USA, 2012; p. 4. [Google Scholar]
- Graham, J.; Gottwald, T.; Riley, T.; Cubero, J.; Drouillard, D. Survival of Xanthomonas campestris pv. citri (Xcc) on various surfaces and chemical control of Asiatic Citrus Canker (ACC). In Proceedings of the International Citrus Canker Research Workshop, Ft. Pierce, FL, USA, 20–22 June 2000; p. 7. [Google Scholar]
- Stein, B.; Ramallo, J.; Foguet, L.; Graham, J.H. Citrus leafminer control and copper sprays for management of citrus canker on lemon in Tucuman, Argentina. In Proceedings of the Florida State Horticultural Society; Florida State Horticultural Society: Alexandria, VA, USA, 2007; Volume 120, pp. 127–131. [Google Scholar]
- An, S.Q.; Potnis, N.; Dow, M.; Vorhölter, F.J.; He, Y.Q.; Becker, A.; Teper, D.; Li, Y.; Wang, N.; Bleris, L.; et al. Mechanistic insights into host adaptation, virulence and epidemiology of the phytopathogen Xanthomonas. FEMS Microbiol. Rev. 2020, 44, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Rao, Y.; Hingorani, M. Survival of Xanthomonas citri (Hasse) Dowson in leaves and soil. Indian Phytopath 1963, 16, 362–364. [Google Scholar]
- Verniere, C.; Gottwald, T.; Pruvost, O. Disease development and symptom expression of Xanthomonas axonopodis pv. citri in various citrus plant tissues. Phytopathology 2003, 93, 832–843. [Google Scholar] [CrossRef] [Green Version]
- Goto, M.; Serizawa, S.; Morita, M. Studies on Citrus Canker Disease. III. Survival of Xanthomonas Citri (Hasse) Dowson in Soils and on the Surface of Weeds. Bull. Fac. Agric. Shizuoka Univ. 1970, 20, 21–29. [Google Scholar]
- Leite, R., Jr.; Mohan, S. Evaluation of citrus cultivars for resistance to canker caused by Xanthomonas campestris pv. citri (Hasse) Dye in the State of Paraná, Brazil. Proc. Int. Soc. Citric. 1984, 1, 385–389. [Google Scholar]
- Teper, D.; Pandey, S.S.; Wang, N. The HrpG/HrpX Regulon of Xanthomonads—An Insight to the Complexity of Regulation of Virulence Traits in Phytopathogenic Bacteria. Microorganisms 2021, 9, 187. [Google Scholar] [CrossRef] [PubMed]
- Stall, R.E.; Miller, J.; Marco, G.M.; de Echenique, B.C. Population dynamics of Xanthomonas citri causing cancrosis of citrus in Argentina. In Proceedings of the Florida State Horticultural Society; Florida State Horticultural Society: Alexandria, VA, USA, 1980; pp. 10–14. [Google Scholar]
- Traoré, Y.N.; Ngoc, L.B.T.; Vernière, C.; Pruvost, O. First report of Xanthomonas citri pv. citri causing citrus canker in Mali. Plant Dis. 2008, 92, 977. [Google Scholar] [CrossRef] [PubMed]
- Gottwald, T.R.; Hughes, G.; Graham, J.H.; Sun, X.; Riley, T. The citrus canker epidemic in Florida: The scientific basis of regulatory eradication policy for an invasive species. Phytopathology 2000, 91, 30–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heppner, J.B. Citrus leafminer, Phyllocnistiscitrella, in Florida (Lepidoptera: Gracillariidae: Phyllocnistinae). Trop. Lepid. Res. 1993, 1, 49–64. [Google Scholar]
- Behlau, F. An overview of citrus canker in Brazil. Trop. Plant Pathol. 2021, 46, 1–12. [Google Scholar] [CrossRef]
- Bacon, C.W.; Hinton, D.M. Endophytic and biological control potential of Bacillus mojavensis and related species. Biol. Control 2002, 23, 274–284. [Google Scholar] [CrossRef] [Green Version]
- Knapp, J. Citrus Leafminer, Phyllocnistis citrella Stainton: Current Status in Florida-1995; University of Florida: Gainesville, FL, USA, 1995. [Google Scholar]
- Peña, J.E.; Hunsberger, A.; Schaffer, B. Citrus leafminer (Lepidoptera: Gracillariidae) density: Effect on yield of ‘Tahiti’ lime. J. Econ. Entomol. 2000, 93, 374–379. [Google Scholar] [CrossRef] [Green Version]
- Swarup, S.; De Feyter, R.; Brlansky, R.H.; Gabriel, D.W. A pathogenicity locus from Xanthomonas citri enables strains from several pathovars of X. campestris to elicit cankerlike lesions on citrus. Phytopathology 1991, 81, 802–809. [Google Scholar] [CrossRef]
- Randsborg, K. Introduction. EPPO Bull. 1979, 9, 341–342. [Google Scholar]
- Tan, X.; Huang, S.; Ren, J.; Yan, W.; Cen, Z. Study on a bacterial strain Bt8 for biocontrol against citrus bacterial canker. Wei Sheng Wuxue Bao Acta Microbiol. 2006, 46, 292–296. [Google Scholar]
- Balogh, B.; Canteros, B.I.; Stall, R.E.; Jones, J.B. Control of citrus canker and citrus bacterial spot with bacteriophages. Plant Dis. 2008, 92, 1048–1052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koizumi, M.; Kochinotsu, B. Relation of temperature to the development of citrus canker lesions in the spring. Proc. Int. Soc. Citric. 1977, 3, 924–928. [Google Scholar]
- McCollum, G.; Bowman, K.; Gottwald, T. Screening Citrus Germplasm for Resistance to Xanthomonas axonopodis pv. citri. Hort. Sci. 2006, 41, 1048E–1049E. [Google Scholar]
- Lahaye, T.; Bonas, U. Molecular secrets of bacterial type III effector proteins. Trends Plant Sci. 2001, 6, 479–485. [Google Scholar] [CrossRef]
- Leite, R., Jr.; Mohan, S. Integrated management of the citrus bacterial canker disease caused by Xanthomonas campestris pv. citri in the State of Paraná, Brazil. Crop. Prot. 1990, 9, 3–7. [Google Scholar] [CrossRef]
- Nazaré, A.C.; Polaquini, C.R.; Cavalca, L.B.; Anselmo, D.B.; Saiki, M.D.F.C.; Monteiro, D.A.; Zielinska, A.; Rahal, P.; Gomes, E.; Scheffers, D.-J.; et al. Design of antibacterial agents: Alkyl dihydroxybenzoates against Xanthomonas citri subsp. citri. Int. J. Mol. Sci. 2018, 19, 3050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stall, R.E.; Seymour, C.P. Canker, a threat to citrus in the Gulf-Coast states. Plant Dis. 1983, 67, 581–585. [Google Scholar] [CrossRef]
- Verdejo-Lucas, S.; McKenry, M.V. Management of the citrus nematode, Tylenchulus semipenetrans. J. Nematol. 2004, 36, 424. [Google Scholar]
- Cooksey, D.A.; Azad, H.R.; Cha, J.S.; Lim, C.K. Copper resistance gene homologs in pathogenic and saprophytic bacterial species from Tomato. Appl. Environ. Microbiol. 1990, 56, 431–435. [Google Scholar] [CrossRef] [Green Version]
- Silva, I.C.; Regasini, L.O.; Petrãnio, M.S.; Silva, D.H.S.; Bolzani, B.S.; Belasque, J., Jr.; Sacramento, L.V.S.; Ferreira, H. Antibacterial activity of alkyl gallates against Xanthomonas citri subsp. citri. J. Bacteriol. 2013, 195, 85–94. [Google Scholar] [CrossRef] [Green Version]
- McGuire, R.G. Evaluation of bactericidal chemicals for control of Xanthomonas on citrus. Plant Dis. 1988, 72, 1016–1020. [Google Scholar] [CrossRef]
- Cacciola, S.O.; Lio, G.M.D.S. Management of citrus diseases caused by Phytophthora spp. In Integrated Management of Diseases Caused by Fungi, Phytoplasma and Bacteria; Springer: Dordrecht, The Netherlands, 2008; pp. 61–84. [Google Scholar]
- Talibi, I.; Boubaker, H.; Boudyach, E.H.; Ait Ben Aoumar, A. Alternative methods for the control of postharvest citrus diseases. J. Appl. Microbiol. 2014, 117, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Luiz, M.H.R.; Takahashi, L.T.; Bassanezi, R.C. Optimal control in citrus diseases. Comput. Appl. Math. 2021, 40, 191. [Google Scholar] [CrossRef]
- Paracer, C. Some important diseases of fruit trees. Punjab Hort. J. 1961, 1, 45–47. [Google Scholar]
- Graham, J.H.; Johnson, E.G.; Myers, M.E.; Young, M.; Rajasekaran, P.; Das, S.; Santra, S. Potential of nano-formulated zinc oxide for control of citrus canker on grapefruit trees. Plant Dis. 2016, 100, 2442–2447. [Google Scholar] [CrossRef] [Green Version]
- Patel, R.; Desai, M. Control of Citrus Canker 1. Indian J. Hortic. 1970, 27, 93–98. [Google Scholar]
- Kishun, R.; Chand, R. Studies on germplasm resistance and chemical control of citrus canker. Indian J. Hortic. 1987, 44, 126–132. [Google Scholar]
- Patel, M.; Padhya, A. Sodium arsenite-Copper sulphate spray for the control of citrus canker. Curr. Sci. 1964, 33, 87–88. [Google Scholar]
- Ram, G.; Nirvan, R.; Saxena, M. Control of citrus canker. Prog. Hort. 1972, 12, 240–243. [Google Scholar]
- Rangaswami, G.; Rao, R.R.; Lakshaman, A. Studies on the control of citrus canker with Streptomycin. Phytopathology 1959, 49, 224–226. [Google Scholar]
- Balaraman, K.; Purushotman, R. Control of citrus canker on acid lime. South Indian Hortic. 1981, 29, 175–177. [Google Scholar]
- El-Goorani, M.A. The occurrence of citrus canker disease in United Arab Emirates (UAE). J. Phytopathol. 1989, 125, 257–264. [Google Scholar] [CrossRef]
- Kale, K.; Raut, J.; Ohekar, G. Efficacy of fungicides and antibiotics against acidlime (Citrus aurantifolia (Christm.) swingle) canker. Pesticides 1988, 22, 26–27. [Google Scholar]
- Dakshinamurthi, V.; Rao, D. Preliminary studies on the control of citrus Canker on acid lime. Andhra Agric. J. 1959, 6, 145–148. [Google Scholar]
- Kale, K.; Kolte, S.; Peshney, N. Economics of chemical control of citrus canker caused by Xanthomonas campestris pv. citri under field conditions. Indian Phytopathol. 1994, 47, 253–255. [Google Scholar]
- Kumar, A.; Sharma, N.; Ahmad, M.; Siddiqui, M.W. Climate change, food security, and livelihood opportunities in mountain agriculture. Clim. Dyn. Hortic. Sci. 2015, 28, 349–360. [Google Scholar]
- Timmer, L. Evaluation of bactericides for control of citrus canker in Argentina. In Proceedings of the Florida State Horticultural Society; Florida State Horticultural Society: Alexandria, VA, USA, 1988; pp. 6–9. [Google Scholar]
- Del Campo, R.; Russi, P.; Mara, P.; Mara, H.; Peyrou, M.; De León, I.P.; Gaggero, C. Xanthomonas axonopodis pv. citri enters the VBNC state after copper treatment and retains its virulence. FEMS Microbiol. Lett. 2009, 298, 143–148. [Google Scholar] [CrossRef] [Green Version]
- Das, K.; Datta, K.; Karmakar, S.; Datta, S.K. Antimicrobial peptides—Small but mighty weapons for plants to fight phytopathogens. Protein Pept. Lett. 2019, 26, 720–742. [Google Scholar] [CrossRef]
- Das, R.M.B.; Mondal, P.; Khatua, D.; Mukherjee, N. Biological management of citrus canker on acid lime through Bacillus subtilis (S-12) in West Bengal, India. J. Biopestic. 2013, 7, 38–41. [Google Scholar]
- Ota, T. Interactions in vitro and in vivo between Xanthomonas campestris pv. citri and Antagonistic pseudomonas sp. Jpn. J. Phytopathol. 1983, 49, 308–315. [Google Scholar] [CrossRef]
- Goto, M.; Yaguchi, Y. Relationship between defoliation and disease severity in citrus canker. Jpn. J. Phytopathol. 1979, 45, 689–694. [Google Scholar] [CrossRef]
- Unnamalai, N.; Gnanamanickam, S. Pseudomonas fluorescens is an antagonist to Xanthomonas citri (Hasse) Dye, the incitant of citrus canker. Curr. Sci. 1984, 53, 703–704. [Google Scholar]
- Graham, J.H.; Leite, R.P.; Yonce, H.D.; Myers, A.M. Streptomycin controls citrus canker on sweet orange in Brazil and reduces risk of copper burn on grapefruit in Florida. Proc. Fla. State Hort. Soc. 2008, 121, 118–123. [Google Scholar]
- Chen, X.H.; Scholz, R.; Borriss, M.; Junge, H.; Mogel, G.; Kunz, S.; Borriss, R. Dicidin and bacilysin produced by plant-associated Bacillus amyloliquefaciens are ecient in controlling fire blight disease. J. Biotechnol. 2009, 140, 38–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, B.; Qiao, H.; Huang, L.; Buchenauer, H.; Han, Q.; Kang, Z.; Gong, Y. Biological control of take-all in wheat by endophytic Bacillus subtilis E1R-j and potential mode of action. Biol. Control 2009, 49, 277–285. [Google Scholar] [CrossRef]
- Gouda, S.; Das, G.; Sen, S.K.; Shin, H.S.; Patra, J.K. Endophytes: A treasure house of bioactive compounds of medicinal importance. Front. Microbiol. 2016, 7, 1538. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.H.; Koumoutsi, A.; Scholz, R.; Eisenreich, A.; Schneider, K.; Heinemeyer, I.; Morgenstern, B.; Voss, B.; Hess, W.R.; Reva, O.; et al. Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat. Biotechnol. 2007, 25, 1007–1014. [Google Scholar] [CrossRef] [Green Version]
- Paulsen, I.T.; Press, C.M.; Ravel, J.; Kobayashi, D.Y.; Myers, G.S.A.; Mavrodi, D.V.; DeBoy, R.T.; Seshadri, R.; Ren, Q.; Madupu, R.; et al. Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nat. Biotechnol. 2005, 23, 873–878. [Google Scholar] [CrossRef]
- Strobel, G.; Daisy, B. Bioprospecting for microbial endophytes and their natural products. Microbiol. Mol. Biol. Rev. 2003, 67, 491–502. [Google Scholar] [CrossRef] [Green Version]
- Hallmann, J.; Quadt-Hallmann, A.; Mahaee, W.F.; Kloepper, J.W. Bacterial endophytes in agricultural crops. Can. J. Microbiol. 1997, 43, 895–914. [Google Scholar]
- Nisa, H.; Kamili, A.N.; Nawchoo, I.A.; Shafi, S.; Shameem, N.; Bandh, S.A. Fungal endophytes as prolific source of phytochemicals and other bioactive natural products: A review. Microb. Pathog. 2015, 82, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Hentschel, U.; Steinert, M.; Hacker, J. Common molecular mechanisms of symbiosis and pathogenesis. Trends Microbiol. 2000, 8, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Pi, H.; Chandrangsu, P.; Li, Y.; Wang, Y.; Zhou, H.; Xiong, H.; Helmann, J.D.; Cai, Y. Antagonism of two plant-growth promoting Bacillus velezensis isolates against Ralstonia solanacearum and Fusarium oxysporum. Sci. Rep. 2018, 8, 4360. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Heng, J.; Qin, S.; Bian, K. A comprehensive understanding of the biocontrol potential of Bacillus velezensis LM2303 against Fusarium head blight. PLoS ONE 2018, 13, e0198560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cawoy, H.; Bettiol, W.; Fickers, P.; Ongena, M. Bacillus-based biological control of plant diseases. Pestic. Mordern World-Pestic. Use Manag. 2009, 1849, 273–298. [Google Scholar]
- Marco, G.M.; Stall, R.E. Control of bacterial spot of pepper initiated by strains of Xanthomonas campestris pv. vesicatoria that differ in sensitivity to copper. Plant Dis. 1983, 67, 779–781. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira, A.G.; Spago, F.R.; Simionato, A.S.; Navarro, M.O.; da Silva, C.S.; Barazetti, A.R.; Andrade, G. Bioactive organocopper compound from Pseudomonas aeruginosa inhibits the growth of Xanthomonas citri subsp. citri. Front. Microbiol. 2016, 7, 113. [Google Scholar] [CrossRef] [Green Version]
- Murate, L.S.; de Oliveira, A.G.; Higashi, A.Y.; Barazetti, A.R.; Simionato, A.S.; da Silva, C.S.; Simões, G.C.; Santos, I.M.O.D.; Ferreira, M.R.; Cely, M.V.T.; et al. Activity of secondary bacterial metabolites in the control of citrus canker. In Embrapa Soja-Artigoemanais de congresso (ALICE). Agric. Sci. 2015, 6, 295–303. [Google Scholar]
- Spago, F.R.; Mauro, C.I.; Oliveira, A.G.; Beranger, J.P.O.; Cely, M.V.T.; Stanganelli, M.M.; Andrade, G. Pseudomonas aeruginosa produces secondary metabolites that have biological activity against plant pathogenic Xanthomonas species. Crop Prot. 2014, 62, 46–54. [Google Scholar] [CrossRef]
- Huang, T.P.; Tzeng, D.D.S.; Wong, A.C.L.; Chen, C.H.; Lu, K.M.; Lee, Y.H.; Huang, W.D.; Hwang, B.F.; Tzeng, K.C. DNA polymorphisms and biocontrol of Bacillus antagonistic to citrus bacterial canker with indication of the interference of phyllosphere biofilms. PLoS ONE 2012, 7, e42124. [Google Scholar] [CrossRef]
- Rabbee, M.F.; Ali, M.S.; Baek, K.-H. Endophyte Bacillus velezensis isolated from Citrus spp. Controls streptomycin-resistant Xanthomonas citri subsp. citri that causes citrus bacterial canker. Agronomy 2019, 9, 470. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.; Moon, E. Identification of novel bioactive hexapeptides against phytopathogenic bacteria through rapid screening of a synthetic combinatorial library. J. Microbiol. Biotechnol. 2009, 19, 792–802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gholami, D.; Goodarzi, T.; Aminzadeh, S.; Alavi, S.M.; Kazemipour, N.; Farrokhi, N. Bacterial secretome analysis in hunt for novel bacteriocins with ability to control Xanthomonas citri subsp. citri. Iran J. Biotechnol. 2015, 13, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.A.; Askora, A.; Kawasaki, T.; Fujie, M.; Yamada, T. The filamentous phage XacF1 causes loss of virulence in Xanthomonas axonopodis pv. citri, the causative agent of citrus canker disease. Front. Microbiol. 2014, 5, 321. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, A.S. Phage therapy-constraints and possibilities. Upsala J. Med. Sci. 2014, 119, 192–198. [Google Scholar] [CrossRef]
- Kering, K.K.; Kibii, B.J.; Wei, H. Biocontrol of phytobacteria with bacteriophage cocktails. Pest. Manag. Sci. 2019, 75, 1775–1781. [Google Scholar] [CrossRef]
- Yoshikawa, G.; Askora, A.; Blanc-Mathieu, R.; Kawasaki, T.; Li, Y.; Nakano, M.; Ogata, H.; Yamada, T. Xanthomonas citri jumbo phage XacN1 exhibits a wide host range and high complement of tRNA genes. Sci. Rep. 2018, 8, 4486. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, Y.E.; Saleh, A.A.; Al-Saleh, M.A. Management of Asiatic citrus canker under field conditions in Saudi Arabia using bacteriophages and acibenzolar-s-methyl. Plant Dis. 2017, 101, 761–765. [Google Scholar] [CrossRef] [Green Version]
- Buttimer, C.; McAuliffe, O.; Ross, R.P.; Hill, C.; O’Mahony, J.; Coffey, A. Bacteriophages and bacterial plant diseases. Front. Microbiol. 2017, 8, 34–41. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.F.; Wei, L.G.; Qin, G.M.; Luo, G.F. Resistance of six recommended varieties of Japan navel orange to citrus bacteria. Plant Prot. Q. 1995, 2, 18–19. [Google Scholar]
- Pullaiah, N.; Moses, G.J.; Kumar, P.S.R. Biochemical nature of resistance in citrus canker disease (Xanthomonas campestris pv. citri (Hasse) Dye). Andhra Pradesh J. Agric. Sci. 1993, 21, 172–173. [Google Scholar]
- Viloria, Z.; Drouillard, D.L.; Graham, J.H.; Grosser, J.W. Screening triploid hybrids of ‘Lakeland’ limequat for resistance to citrus canker. Plant Dis. 2004, 88, 1056–1060. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, R. ‘Shiranuhi’, a late-maturing citrus cultivar. Bull. Natl. Instig. Fruit Tree Sci. 2001, 35, 115–120. [Google Scholar]
- Matsumoto, R.; Okudai, N.; Yamamoto, M.; Takahara, T.; Yamada, Y.; Oiyama, I.; Ishiuchi, D.; Asada, K.; Ikemiya, H.; Murata, H.; et al. A new citrus cultivar ‘Youkou’. Bull. Fruit Tree Res. Stn. 1999, 33, 67–76. [Google Scholar]
- Matsumoto, R.; Okudai, N.; Yamamoto, M.; Yamada, Y.; Takahara, T.; Oiyama, I.; Ishiuchi, D.; Asada, K.; Ikemiya, H.; Murata, H.; et al. A new citrus cultivar ‘Miho-core’. Bull. Fruit Tree Res. Stn. 1999, 33, 57–66. [Google Scholar]
- Matsumoto, R.; Okudai, N.; Yamamoto, M.; Yamada, Y.; Takahara, T.; Oiyama, I.; Ishiuchi, D.; Asada, K.; Ikemiya, H.; Murata, H.; et al. A new citrus cultivar ‘Hareyaka’. Bull. Fruit Tree Res. Stn. 1999, 33, 47–56. [Google Scholar]
- Yoshida, T.; Yamada, Y.; Nesumi, H.; Ueno, I.; Ito, Y.; Yoshioka, T.; Hidaka, T.; Ieki, H.; Shichijo, T.; Kihara, T.; et al. New citrus cultivar ‘Harumi’. Bull. Fruit Tree Res. Stn. 2000, 34, 43–52. [Google Scholar]
- Yoshida, T.; Yamada, Y.; Ueno, I.; Shichijo, T.; Nesumi, H.; Hidaka, T.; Ito, Y.; Yoshioka, T.; Kihara, T.; Ieki, H.; et al. New citrus cultivar ‘Akemi’. Bull. Fruit Tree Res. Stn. 2000, 34, 53–62. [Google Scholar]
- Guo, W.W.; Grosser, J.W. Transfer of a potential canker resistance gene into Citrus protoplasts using gfp as the selectable marker. Acta Hortic. 2004, 632, 255–258. [Google Scholar] [CrossRef]
- Graham, J.H.; Leite, J.R.P. Lack of control of citrus canker by induced systemic resistance compounds. Plant Dis. 2004, 88, 745–750. [Google Scholar] [CrossRef] [Green Version]
- Reis, B.; Koller, O.C.; Schwarz, S.F.; Theisen, S.; Sartori, I.A.; Nichele, F.S.; Lorscheiter, R.; Petry, H.B. Fruit production and incidence of citrus canker lesions on ‘Monte Parnaso’ navel orange budded on seven rootstocks. Cienc. Rural. 2008, 38, 672–678. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; He, Z.; Rosskopf, E.N.; Conn, K.L.; Powell, C.A.; Lazarovits, G. A nylon membrane bag assay for determination of the effect of chemicals on soilborne plant pathogens in soil. Plant Dis. 2010, 94, 201–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kessmann, H.; Staub, T.; Hofmann, C.; Maetzke, T.; Herzog, J.; Ward, E.; Uknes, S.; Ryals, J. Induction of systemic acquired disease resistance in plants by chemicals. Annu. Rev. Phytopathol. 1994, 32, 439–459. [Google Scholar] [CrossRef] [PubMed]
- Romero, A.; Kousik, C.; Ritchie, D. Resistance to bacterial spot in bell pepper induced by acibenzolar-S-methyl. Plant Dis. 2001, 85, 189–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, Z.-M.; Laby, R.J.; Zumoff, C.H.; Bauer, D.W.; He, S.Y.; Collmer, A.; Beer, S.V. Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science 1992, 257, 85–88. [Google Scholar] [CrossRef]
- Swarup, S.; Yang, Y.; Kingsley, M.T.; Gabriel, D.W. An Xanthomonas citri pathogenicity gene, pthA, pleiotropically encodes gratuitous avirulence on nonhosts. Mol. Plant Microbe. Interact. 1992, 5, 204–213. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, A.K.; Vieira, L.G.; Bespalhok Filho, J.C.; Leite, R.P.; Pereira, L.F.; Molinari, H.B.; Marques, V.V. Enhanced resistance to citrus canker in transgenic sweet orange expressing the sarcotoxin IA gene. Eur. J. Plant Pathol. 2017, 149, 865–873. [Google Scholar] [CrossRef] [Green Version]
- Zhang, A.G.; O’Leary, C.; Quarles, W. Chinese IPM for citrus leafminer [Phyllocnistiscitrella] (update). IPM Pract. 1994, 16, 10–13. [Google Scholar]
- Liu, J.F.; Wang, C.X.; Yang, W.H.; Liu, Z.C. Field trials on the control of pest insects on vegetable and Citrus with the antibiotic Agrimec. Nat. Enemies Insects 1992, 14, 83–88. [Google Scholar]
- Stelinski, L.L.; Miller, J.R.; Rogers, M.E. Mating disruption of citrus leafminer mediated by a noncompetitive mechanism at a remarkably low pheromone release rate. J. Chem. Ecol. 2008, 34, 1107–1113. [Google Scholar] [CrossRef]
- Smith, J.M.; Hoy, M.A. Rearing methods for Ageniaspis citricola (Hymenoptera: Encyrtidae) and Cirrospilus quadristriatus (Hymenoptera: Eulophidae) released in a classical biological control program for the citrus leafminer Phyllocnistis citrella (Lepidoptera: Gracillariidae). Fla. Entomol. 1995, 78, 600–608. [Google Scholar] [CrossRef]
- Neale, C.; Smith, D.; Beattie, G.A.C.; Miles, M. Importation, host specificity testing, rearing and release of three parasitoids of Phyllocnistis citrella Stainton (Lepidoptera: Gracillariidae) in eastern Australia. Aust. J. Entomol. 1995, 34, 343–348. [Google Scholar] [CrossRef]
- Argov, Y.; Rssler, Y. Introduction, release and recovery of several exotic natural enemies for biological control of the citrus leafminer, Phyllocnistis citrella, in Israel. Phytoparasitica 1996, 24, 33–38. [Google Scholar] [CrossRef]
- Mahajan, A.; Das, S. Plants and microbes-Potential source of pesticide for future use. Pestic. Inf. 2003, 28, 33–38. [Google Scholar]
- Balandrin, M.F.; Klocke, J.A.; Wurtele, E.S.; Bollinger, W.H. Natural plant chemicals: Sources of industrial and medicinal materials. Science 1985, 228, 1154–1160. [Google Scholar] [CrossRef] [PubMed]
- Dorman, H.; Deans, S.G. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol. 2000, 88, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Parameswari, C.; Tulasi Latha, A. Antibacterial activity of Ricinus communis leaf extract. Indian Drugs 2001, 38, 587–588. [Google Scholar]
- Rath, C.; Dash, S.; Mishra, R. In vitro susceptibility of Japanese mint (Mentha arvensis L.) essential oil against five human pathogens. Indian Perfum. 2001, 45, 57–62. [Google Scholar]
- Britto, S.J.; Senthilkumar, S. Antibacterial activity of Solanum incanum L. leaf extracts. Asian J. Microbiol. Biotechnol. Environ. Sci. 2001, 3, 65–66. [Google Scholar]
- Bylka, W.; Szaufer-Hajdrych, M.; Matławska, I.; Goślińska, O. Antimicrobial activity of isocytisoside and extracts of Aquilegia vulgaris L. Lett. Appl. Microbiol. 2004, 39, 93–97. [Google Scholar] [CrossRef]
- Shimpi, S.; Bendre, R. Stability and antibacterial activity of aqueous extracts of Ocimumcanum leaves. Indian Perfum. 2005, 49, 225. [Google Scholar]
- Tahir, H.A.; Sahi, S.T.; Habib, A.; Haq, I.U.; Ahmad, A.; Ashraf, W. Evaluation of plant extracts as biocontrol agents against Xanthomonas axonopodis pv citri the cause of citrus canker. Pak. J. Phytopathol. 2016, 28, 35–43. [Google Scholar]
- Rios, J.L. Essential oils: What they are and how the terms are used and defined. In Essential Oils in Food Preservation, Flavor and Safety; Academic Press: London, UK, 2016; pp. 3–10. [Google Scholar]
- Pandey, A.K.; Kumar, P.; Singh, P.; Tripathi, N.N.; Bajpai, V.K. Essential oils: Sources of antimicrobials and food preservatives. Front. Microbiol. 2017, 7, 2161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirzaei-Najafgholi, H.; Tarighi, S.; Golmohammadi, M.; Taheri, P. The effect of citrus essential oils and their constituents on growth of Xanthomonas citri subsp. citri. Molecules 2017, 22, 591. [Google Scholar] [CrossRef] [Green Version]
- Feng, C.T.; Su, H.J.; Chen, C.T.; Ho, W.C.; Tsou, Y.R.; Chern, L.L. Inhibitory effects of Chinese medicinal herbs on plant-pathogenic bacteria and identification of the active components from gallnuts of Chinese sumac. Plant Dis. 2012, 96, 1193–1197. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.Y.; Fang, H.S.; Shao, W.B.; Zhou, J.; Chen, Z.; Song, B.A.; Yang, S. Synthesis and biological evaluation of pyridiniumfunctionalized carbazole derivatives as promising antibacterial agents. Bioorg. Med. Chem. Lett. 2017, 27, 4294–4297. [Google Scholar] [CrossRef]
- Król, E.; de Sousa Borges, A.; da Silva, I.L.; Polaquini, C.R.; Regasini, L.O.; Ferreira, H.; Scheffers, D.J. Antibacterial activity of alkyl gallates is a combination of direct targeting of FtsZ and permeabilization of bacterial membranes. Front. Microbiol. 2015, 6, 390. [Google Scholar] [CrossRef] [Green Version]
- Mohana, D.; Raveesha, K. Anti-bacterial activity of Caesalpinia coriaria (Jacq.) Willd. against plant pathogenic Xanthomonas pathovars: An eco-friendly approach. J. Agric. Technol. 2006, 2, 317–327. [Google Scholar]
- Akhtar, M.A.; Rahber-Bhatti, M.; Aslam, M. Antibacterial activity of plant diffusate against Xanthomonas campestris pv. citri. Int. J. Pest Manag. 1997, 43, 149–153. [Google Scholar] [CrossRef]
- Bock, C.H.; Graham, J.H.; Gottwald, T.R.; Cook, A.Z.; Parker, P.E. Wind speed effects on the quantity of Xanthomonas citri subsp. citri dispersed downwind from canopies of grapefruit trees infected with citrus canker. Plant Dis. 2010, 94, 725–736. [Google Scholar] [CrossRef] [Green Version]
- Gottwald, T.R.; Timmer, L.W. The efficacy of windbreaks in reducing the spread of citrus canker caused by Xanthomonas campestris pv. citri. Trop Agric. 1995, 72, 194–201. [Google Scholar]
- Canteros, B.I. Ecology of endemic citrus canker: Seasonal fluctuations of disease intensity. Abstract 3.7.41. In Proceedings of the 7th International Plant Pathology Congress (ICPP), Edinburgh, UK, 9–16 August 1998; Volume 3. [Google Scholar]
- Canteros, B.I. Management of citrus Canker in Argentina: A review. Proc. Int. Soc. Citric. 2006, 515–523. [Google Scholar]
- Moschini, R.C.; Canteros, B.I.; Martínez, M.I. Ecuaciones Predictivas de la Intensidad de la Cancrosis de los Cítrus en Base a Variables Meteorológicas. Abstract V Cong; Argentino de Citricultura: Concordia, Argentina, 2005; p. 24. [Google Scholar]
- Moschini, R.C.; Canteros, B.I.; Marcó, G.M.; Cazenave, G. Modelos Logísticos Predictivos de la Cancrosis de los Cítricos en Bella Vista y su Uso en el Área Citrícola Española. Abstract VI Cong; Argentino de Citricultura: Tucumán, Argentina, 2010; p. 79. [Google Scholar]
- Moschini, R.C.; Canteros, B.I.; Martínez, M.I. Quantification of the environmental effect on citrus canker intensity at increasing distances from a natural windbreak in northeastern Argentina. Australas. Plant Pathol. 2014, 43, 653–662. [Google Scholar] [CrossRef]
- Neupane, K.; Baysal-Gurel, F. Automatic Identification and Monitoring of Plant Diseases Using Unmanned Aerial Vehicles: A Review. Remote Sens. 2021, 13, 3841. [Google Scholar] [CrossRef]
Sr.No. | Genus | Specie | *f.sp./**pv/***subsp. | Year | Reference |
---|---|---|---|---|---|
1. | Pseudomonas | citri | not reported | 1915 | [35] |
2. | Xanthomonas | citri | not reported | 1915 | [35] |
3. | Bacterium | citri | not reported | 1916 | [22] |
4. | Bacillus | citri | not reported | 1920 | [51] |
5. | Phytomonas | citri | not reported | 1923 | [52] |
6. | Xanthomonas | citri | not reported | 1939 | [36] |
7. | Xanthomonas | citri | Aurantifolia | 1972 | [53] |
8. | Xanthomonas | campestris | Aurantifolia | 1978 | [47] |
9. | Xanthomonas | campestris | Citri | 1980 | [54] |
10. | Xanthomonas | citri | Aurantifolia | 1989 | [48] |
11. | Xanthomonas | axonopodis | Citri | 1995 | [49] |
12. | Xanthomonas | smithii | Citri | 2005 | [55] |
13. | Xanthomonas | citri | Citri | 2006 | [56] |
14. | Xanthomonas | citri | subsp. citri | 2007 | [57] |
15. | Xanthomonas | citri | subsp. citri | 2016 | [50] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, S.; Hameed, A.; Muhae-Ud-Din, G.; Ikhlaq, M.; Ashfaq, M.; Atiq, M.; Ali, F.; Zia, Z.U.; Naqvi, S.A.H.; Wang, Y. Citrus Canker: A Persistent Threat to the Worldwide Citrus Industry—An Analysis. Agronomy 2023, 13, 1112. https://doi.org/10.3390/agronomy13041112
Ali S, Hameed A, Muhae-Ud-Din G, Ikhlaq M, Ashfaq M, Atiq M, Ali F, Zia ZU, Naqvi SAH, Wang Y. Citrus Canker: A Persistent Threat to the Worldwide Citrus Industry—An Analysis. Agronomy. 2023; 13(4):1112. https://doi.org/10.3390/agronomy13041112
Chicago/Turabian StyleAli, Subhan, Akhtar Hameed, Ghulam Muhae-Ud-Din, Muhammad Ikhlaq, Muhammad Ashfaq, Muhammad Atiq, Faizan Ali, Zia Ullah Zia, Syed Atif Hasan Naqvi, and Yong Wang. 2023. "Citrus Canker: A Persistent Threat to the Worldwide Citrus Industry—An Analysis" Agronomy 13, no. 4: 1112. https://doi.org/10.3390/agronomy13041112
APA StyleAli, S., Hameed, A., Muhae-Ud-Din, G., Ikhlaq, M., Ashfaq, M., Atiq, M., Ali, F., Zia, Z. U., Naqvi, S. A. H., & Wang, Y. (2023). Citrus Canker: A Persistent Threat to the Worldwide Citrus Industry—An Analysis. Agronomy, 13(4), 1112. https://doi.org/10.3390/agronomy13041112