The Impact of Foliar Fertilization on the Physiological Parameters, Yield, and Quality Indices of the Soybean Crop
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Climatic Conditions and Impact on Soybean Crop Development
3.2. Effect of the Fertilization System and Climatic Conditions on the Physiological Parameters
3.3. Effect of the Fertilization System and the Climatic Conditions on Assimilation and Yield
3.4. Interaction between Yield, Assimilation, and Physiological Parameters
3.5. Effect of the Fertilization System and Climatic Conditions on Soybean Quality Indices
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Adamič, S.; Leskovšek, R. Soybean (Glycine max (L.) Merr.) Growth, Yield, and Nodulation in the Early Transition Period from Conventional Tillage to Conservation and No-Tillage Systems. Agronomy 2021, 11, 2477. [Google Scholar] [CrossRef]
- Da Silva, G.F.; Matusevicius, A.P.O.; Calonego, J.C.; Chamma, L.; Luperini, B.C.O.; Alves, M.D.S.; Leite, H.M.F.; Pinto, E.D.J.; Silva, M.D.A.; Putti, F.F. Soil–Plant Relationships in Soybean Cultivated under Crop Rotation after 17 Years of No-Tillage and Occasional Chiseling. Plants 2022, 11, 2657. [Google Scholar] [CrossRef] [PubMed]
- Neupane, D.; Adhikari, P.; Bhattarai, D.; Rana, B.; Ahmed, Z.; Sharma, U.; Adhikari, D. Does Climate Change Affect the Yield of the Top Three Cereals and Food Security in the World? Earth 2022, 3, 45–71. [Google Scholar] [CrossRef]
- Da Silva, G.F.; Calonego, J.C.; Luperini, B.C.O.; Chamma, L.; Alves, E.R.; Rodrigues, S.A.; Putti, F.F.; da Silva, V.M.; Silva, M.D.A. Soil—Plant Relationships in Soybean Cultivated under Conventional Tillage and Long-Term No-Tillage. Agronomy 2022, 12, 697. [Google Scholar] [CrossRef]
- Lemes, E.M.; Coelho, L.; de Andrade, S.L.; Oliveira, A.D.S.; Marques, M.G.; Nascimento, F.M.A.D.; da Cunha, J.P.A.R. Triangular Greenness Index to Evaluate the Effects of Dicamba in Soybean. Agriengineering 2022, 4, 758–769. [Google Scholar] [CrossRef]
- Wenda-Piesik, A.; Ambroziak, K. The Choice of Soybean Cultivar Alters the Underyielding of Protein and Oil under Drought Conditions in Central Poland. Appl. Sci. 2022, 12, 7830. [Google Scholar] [CrossRef]
- Chețan, F.; Chețan, C.; Bogdan, I.; Pop, A.I.; Moraru, P.I.; Rusu, T. The Effects of Management (Tillage, Fertilization, Plant Density) on Soybean Yield and Quality in a Three-Year Experiment under Transylvanian Plain Climate Conditions. Land 2021, 10, 200. [Google Scholar] [CrossRef]
- Mureșan, L.; Clapa, D.; Borsai, O.; Rusu, T.; Wang, T.T.Y.; Park, J.B. Potential Impacts of Soil Tillage System on Isoflavone Concentration of Soybean as Functional Food Ingredients. Land 2020, 9, 386. [Google Scholar] [CrossRef]
- Hooker, J.C.; Nissan, N.; Luckert, D.; Charette, M.; Zapata, G.; Lefebvre, F.; Mohr, R.M.; Daba, K.A.; Warkentin, T.D.; Hadinezhad, M.; et al. A Multi-Year, Multi-Cultivar Approach to Differential Expression Analysis of High- and Low-Protein Soybean (Glycine max). Int. J. Mol. Sci. 2023, 24, 222. [Google Scholar] [CrossRef]
- Kulig, B.; Klimek-Kopyra, A. Sowing Date and Fertilization Level Are Effective Elements Increasing Soybean Productivity in Rainfall Deficit Conditions in Central Europe. Agriculture 2023, 13, 115. [Google Scholar] [CrossRef]
- Halwani, M.; Reckling, M.; Schuler, J.; Bloch, R.; Bachinger, J. Soybean in No-Till Cover-Crop Systems. Agronomy 2019, 9, 883. [Google Scholar] [CrossRef] [Green Version]
- Novikova, L.Y.; Bulakh, P.P.; Nekrasov, A.Y.; Seferova, I.V. Soybean Response to Weather and Climate Conditions in the Krasnodar and Primorye Territories of Russia over the Past Decades. Agronomy 2020, 10, 1278. [Google Scholar] [CrossRef]
- Szpunar-Krok, E.; Wondołowska-Grabowska, A. Quality Evaluation Indices for Soybean Oil in Relation to Cultivar, Application of N Fertiliser and Seed Inoculation with Bradyrhizobium japonicum. Foods 2022, 11, 762. [Google Scholar] [CrossRef] [PubMed]
- Parrini, S.; Aquilani, C.; Pugliese, C.; Bozzi, R.; Sirtori, F. Soybean Replacement by Alternative Protein Sources in Pig Nutrition and Its Effect on Meat Quality. Animals 2023, 13, 494. [Google Scholar] [CrossRef]
- Song, H.; Taylor, D.C.; Zhang, M. Bioengineering of Soybean Oil and Its Impact on Agronomic Traits. Int. J. Mol. Sci. 2023, 24, 2256. [Google Scholar] [CrossRef]
- Șimon, A.; Ceclan, O.A.; Russu, F.; Bărdaș, M.; Chețan, F.; Popa, A. Influence of NP Mineral Fertilization on Soybean Crops. Life Sci. Sustain. Dev. 2022, 3, 84–90. [Google Scholar] [CrossRef]
- Soria-Hernández, C.G.; Serna-Saldívar, S.O.; Chuck-Hernández, C. Comparison of Physicochemical, Functional and Nutritional Properties between Proteins of Soybean and a Novel Mixture of Soybean-Maize. Appl. Sci. 2020, 10, 6998. [Google Scholar] [CrossRef]
- Xu, C.; Wu, T.; Yuan, S.; Sun, S.; Han, T.; Song, W.; Wu, C. Can Soybean Cultivars with Larger Seed Size Produce More Protein, Lipids, and Seed Yield? A Meta-Analysis. Foods 2022, 11, 4059. [Google Scholar] [CrossRef]
- Nair, R.M.; Boddepalli, V.N.; Yan, M.-R.; Kumar, V.; Gill, B.; Pan, R.S.; Wang, C.; Hartman, G.L.; e Souza, R.S.; Somta, P. Global Status of Vegetable Soybean. Plants 2023, 12, 609. [Google Scholar] [CrossRef]
- Bender, F.R.; Alves, L.C.; da Silva, J.F.M.; Ribeiro, R.A.; Pauli, G.; Nogueira, M.A.; Hungria, M. Microbiome of Nodules and Roots of Soybean and Common Bean: Searching for Differences Associated with Contrasting Performances in Symbiotic Nitrogen Fixation. Int. J. Mol. Sci. 2022, 23, 12035. [Google Scholar] [CrossRef]
- Zveushe, O.K.; de Dios, V.R.; Zhang, H.; Zeng, F.; Liu, S.; Shen, S.; Kang, Q.; Zhang, Y.; Huang, M.; Sarfaraz, A.; et al. Effects of Co-Inoculating Saccharomyces spp. with Bradyrhizobium japonicum on Atmospheric Nitrogen Fixation in Soybeans (Glycine max (L.)). Plants 2023, 12, 681. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, V.A.; Crusciol, C.A.C.; Bossolani, J.W.; Moretti, L.G.; Portugal, J.R.; Mundt, T.T.; de Oliveira, S.L.; Garcia, A.; Calonego, J.C.; Lollato, R.P. Magnesium Foliar Supplementation Increases Grain Yield of Soybean and Maize by Improving Photosynthetic Carbon Metabolism and Antioxidant Metabolism. Plants 2021, 10, 797. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Gao, J.; Wang, Q.; Tan, X.; Li, S.; Chen, P.; Yong, T.; Wang, X.; Wu, Y.; Yang, F.; et al. Blue-Light-Dependent Stomatal Density and Specific Leaf Weight Coordinate to Promote Gas Exchange of Soybean Leaves. Agriculture 2023, 13, 119. [Google Scholar] [CrossRef]
- Proietti, S.; Paradiso, R.; Moscatello, S.; Saccardo, F.; Battistelli, A. Light Intensity Affects the Assimilation Rate and Carbohydrates Partitioning in Spinach Grown in a Controlled Environment. Plants 2023, 12, 804. [Google Scholar] [CrossRef]
- Dass, A.; Rajanna, G.A.; Babu, S.; Lal, S.K.; Choudhary, A.K.; Singh, R.; Rathore, S.S.; Kaur, R.; Dhar, S.; Singh, T.; et al. Foliar Application of Macro- and Micronutrients Improves the Productivity, Economic Returns, and Resource-Use Efficiency of Soybean in a Semiarid Climate. Sustainability 2022, 14, 5825. [Google Scholar] [CrossRef]
- Niu, J.; Liu, C.; Huang, M.; Liu, K.; Yan, D. Effects of Foliar Fertilization: A Review of Current Status and Future Perspectives. J. Soil Sci. Plant Nutr. 2020, 21, 104–118. [Google Scholar] [CrossRef]
- Domingos, C.D.S.; Besen, M.R.; Neto, M.E.; Costa, E.J.O.; Scapim, C.A.; Inoue, T.T.; Braccini, A.L. Can Calcium and Boron Leaf Application Increase Soybean Yield and Seed Quality? Acta Agric. Scand. Sect. B Soil Plant Sci. 2021, 71, 171–181. [Google Scholar] [CrossRef]
- Jabborova, D.; Wirth, S.; Kannepalli, A.; Narimanov, A.; Desouky, S.; Davranov, K.; Bahkali, A.H. Co-inoculation of Rhizobacte-ria and Biochar Application Improves Growth and Nutrient in Soybean and Enriches Soil Nutrients and Enzymes. Agronomy 2020, 10, 1142. [Google Scholar] [CrossRef]
- Sharifi, S.K.; Lalitha, B.S.; Prajwal Kumar, G.K.; Qasimullah, R. Effect of Foliar Application of Water Soluble Fertilizer on Nutrient Uptake and Economics of Soybean (Glycine max L. Merrill). Int. J. Chem. Stud. 2018, 6, 2306–2309. [Google Scholar]
- IUSS Working Group WRB. International soil classification system for naming soils and creating legends for soil maps. In World Reference Base for Soil Resources, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022; 192p. [Google Scholar]
- Fehr, W.R.; Caviness, C.E. Stages of Soybean Development; Special Report 80; Iowa State University: Ames, IA, USA, 1977. [Google Scholar]
- CIRAS-2 Operator’s Manual-PP Systems. Available online: https://ppsystems.com›technical_manuals (accessed on 19 March 2023).
- ANOVA and Duncan’s Test PC Program for Variant Analyses Made for Completely Randomized Polyfactorial Experiences, PoliFact 2020 version 4; University of Agricultural Sciences and Veterinary Medicine: Cluj-Napoca, Romania, 2020.
- Bunce, J. Variation among Soybean Cultivars in Mesophyll Conductance and Leaf Water Use Efficiency. Plants 2016, 5, 44. [Google Scholar] [CrossRef] [Green Version]
- Radzka, E.; Rymuza, K.; Wysokiński, A. Weather Conditions and Biostimulants Influence Nitrogen Acquisition from Different Sources by Soybean Plants. Agriculture 2023, 13, 114. [Google Scholar] [CrossRef]
- Gibson, L.R.; Mullen, R.E. Influence of Day and Night Temperature on Soybean Seed Yield. Crop. Sci. 1996, 36, 98–105. [Google Scholar] [CrossRef]
- Wei, Y.; Jin, J.; Jiang, S.; Ning, S.; Liu, L. Quantitative Response of Soybean Development and Yield to Drought Stress during Different Growth Stages in the Huaibei Plain, China. Agronomy 2018, 8, 97. [Google Scholar] [CrossRef] [Green Version]
- Wijewardana, C.; Alsajri, F.A.; Irby, J.T.; Krutz, L.J.; Golden, B.R.; Henry, W.B.; Reddy, K.R. Water Deficit Effects on Soybean Root Morphology and Early-Season Vigor. Agronomy 2019, 9, 836. [Google Scholar] [CrossRef] [Green Version]
- Fatema, M.K.; Al Mamun, M.A.; Sarker, U.; Hossain, M.S.; Mia, M.A.B.; Roychowdhury, R.; Ercisli, S.; Marc, R.A.; Babalola, O.O.; Karim, M.A. Assessing Morpho-Physiological and Biochemical Markers of Soybean for Drought Tolerance Potential. Sustainability 2023, 15, 1427. [Google Scholar] [CrossRef]
- Durigon, A.; Evers, J.; Metselaar, K.; de Jong van Lier, Q. Water Stress Permanently Alters Shoot Architecture in Common Bean Plants. Agronomy 2019, 9, 160. [Google Scholar] [CrossRef] [Green Version]
- Khatun, M.; Sarkar, S.; Era, F.M.; Islam, A.K.M.M.; Anwar, M.P.; Fahad, S.; Datta, R.; Islam, A.K.M.A. Drought Stress in Grain Legumes: Effects, Tolerance Mechanisms and Management. Agronomy 2021, 11, 2374. [Google Scholar] [CrossRef]
- Tavares, C.J.; Junior, W.Q.R.; Ramos, M.L.G.; Pereira, L.F.; Casari, R.A.D.C.N.; Pereira, A.F.; de Sousa, C.A.F.; da Silva, A.R.; Neto, S.P.D.S.; Mertz-Henning, L.M. Water Stress Alters Morphophysiological, Grain Quality and Vegetation Indices of Soybean Cultivars. Plants 2022, 11, 559. [Google Scholar] [CrossRef]
- Shen, L.; Wang, X.; Liu, T.; Wei, W.; Zhang, S.; Zhu, Y.; Tuerti, T.; Li, L.; Zhang, W. Apple–Soybean Mixed Stand Increased Fine Root Distribution and Soil Water Content with Reduced Soil Nitrate Nitrogen. Agronomy 2023, 13, 548. [Google Scholar] [CrossRef]
- De Souza, P.I.; Egli, D.B.; Bruening, W.P. Water Stress during Seed Filling and Leaf Senescence in Soybean. Agron. J. 1997, 89, 807–812. [Google Scholar] [CrossRef]
- Van Heerden, P.D.R.; Krüge, G.H.J. Separately and Simultaneously Induced Dark Chilling and Drought Stress Effects on Photosynthesis, Proline Accumulation and Antioxidant Metabolism in Soybean. J. Plant Physiol. 2002, 159, 1077–1086. [Google Scholar] [CrossRef]
- Santos, R.F.; Carlesso, R. Water Deficit and Morphologic and Physiologic Behavior of the Plants. Rev. Bras. Eng. Agric. Ambient. 1998, 2, 287–294. [Google Scholar] [CrossRef] [Green Version]
- Lobato, A.K.S.; Oliveira Neto, C.F.; Costa, R.C.L.; Santos Filho, B.G.; Cruz, F.J.R.; Laughinghouse, H.D., IV. Biochemical and Physiological Behavior of Vigna unguiculata (L.) Walp. under Waterstress during the Vegetative Phase. Asian J. Plant Sci. 2008, 7, 44–49. [Google Scholar] [CrossRef] [Green Version]
- Raza, M.A.; Gul, H.; Yang, F.; Ahmed, M.; Yang, W. Growth Rate, Dry Matter Accumulation, and Partitioning in Soybean (Glycine max L.) in Response to Defoliation under High-Rainfall Conditions. Plants 2021, 10, 1497. [Google Scholar] [CrossRef]
- Smith, M.R.; Hodecker, B.E.R.; Fuentes, D.; Merchant, A. Investigating Nutrient Supply Effects on Plant Growth and Seed Nutrient Content in Common Bean. Plants 2022, 11, 737. [Google Scholar] [CrossRef]
- Galeriani, T.M.; Neves, G.O.; Ferreira, J.H.S.; Oliveira, R.N.; Oliveira, S.L.; Calonego, J.C.; Crusciol, C.A.C. Calcium and Boron Fertilization Improves Soybean Photosynthetic Efficiency and Grain Yield. Plants 2022, 11, 2937. [Google Scholar] [CrossRef]
- Ribera, L.M.; Aires, E.S.; Neves, C.S.; Fernandes, G.D.C.; Bonfim, F.P.G.; Rockenbach, R.I.; Rodrigues, J.D.; Ono, E.O. Assessment of the Physiological Response and Productive Performance of Vegetable vs. Conventional Soybean Cultivars for Edamame Production. Agronomy 2022, 12, 1478. [Google Scholar] [CrossRef]
- Buczek, J.; Bobrecka-Jamro, D.; Jańczak-Pieniążek, M. Photosynthesis, Yield and Quality of Soybean (Glycine max (L.) Merr.) under Different Soil-Tillage Systems. Sustainability 2022, 14, 4903. [Google Scholar] [CrossRef]
Photosynthesis Parameters | Year | Fertilization System | ||
---|---|---|---|---|
a1 | a2 | a3 | ||
Reference CO2 (CO2 r), μmol mol−1 | 390 | 390 | 390 | |
Sub-stomatal CO2 concentration (Ci), μmol mol−1 | 2021 | 257.0 | 260.0 | 265.5 |
2022 | 178.0 | 197.0 | 204.0 | |
Stomatal conductance (SC), mmol H2O m−2s−1 | 2021 | 500 | 478.5 | 455.0 |
2022 | 217.7 | 195.0 | 191.0 | |
Transpiration (T), mmol H2O m−2s−1 | 2021 | 4.00 | 5.70 | 5.60 |
2022 | 3.50 | 4.30 | 3.70 | |
Photosynthetic water use effciency (WUE), mmol CO2 mol−1 H2O | 2021 | 2.00 | 2.77 | 2.93 |
2022 | 4.83 | 4.97 | 5.30 | |
Leaf-to-air vapor pressure deficit (VPD), kPa | 2021 | 1.30 | 1.23 | 1.07 |
2022 | 2.00 | 1.90 | 1.77 | |
Photosynthetically active radiation internal (PARi), μmol m−2s−1 | 2021 | 1350 | 1500 | 1466 |
2022 | 1122 | 1157 | 1377 | |
Leaf temperature (TLeaf), °C | 2021 | 26.4 | 26.5 | 26.6 |
2022 | 25.9 | 26.9 | 26.1 |
Fertilization System | Assimilation (μmol CO2 m−2s−1) | Difference (±) | Significance | |||
2021 | 2022 | 2021 | 2022 | 2021 | 2022 | |
a1—basic mineral fertilization (BMF) | 21.7 | 21.4 | cv | cv | cv | cv |
a2—BMF + foliar fertilization − pod formation | 23.0 | 22.4 | 1.30 | 1.00 | ** | * |
a3—BMF + foliar fertilization − seeds formation | 22.5 | 22.2 | 0.80 | 0.80 | * | * |
LSD p 5% = 0.71 μmol CO2 m−2s−1; LSD p 1% = 1.14 μmol CO2 m−2s−1; LSD p 0.1 % = 2.03 μmol CO2 m−2s−1 | ||||||
Fertilization System | Yield (kg ha−1) | Difference | Significance | |||
2021 | 2022 | 2021 | 2022 | 2021 | 2022 | |
a1—basic mineral fertilization (BMF) | 3328 | 1444 | cv | cv | cv | cv |
a2—BMF + foliar fertilization − pod formation | 3562 | 1828 | 233.3 | 384.3 | ** | *** |
a3—BMF + foliar fertilization − seeds formation | 3495 | 1745 | 166.7 | 301.3 | * | ** |
LSD p 5% = 122.7 kg ha−1; LSD p 1% = 190.6 kg ha−1; LSD p 0.1% = 321.3 kg ha−1 |
Fertilization System | Protein (%) | Protein (%) | Difference (±) | Significance | ||||
2021 | 2022 | 2021 | 2022 | 2021 | 2022 | 2021 | 2022 | |
a1—basic mineral fertilization (BMF) | 40.00 | 35.50 | 100.0 | 100.0 | cv | cv | cv | cv |
a2—BMF + foliar fertilization − pod formation | 40.73 | 36.20 | 101.9 | 102.0 | 0.73 | 0.70 | * | * |
a3—BMF + foliar fertilization − seeds formation | 41.00 | 36.40 | 102.6 | 102.6 | 1.00 | 0.90 | ** | ** |
LSD p 5% = 0.53%; LSD p 1% = 0.85%; LSD p 0.1% = 1.52% | ||||||||
Fertilization System | Oil (%) | Oil (%) | Difference (±) | Significance | ||||
2021 | 2022 | 2021 | 2022 | 2021 | 2022 | 2021 | 2022 | |
a1—basic mineral fertilization (BMF) | 18.60 | 16.57 | 100.0 | 100.0 | cv | cv | cv | cv |
a2—BMF + foliar fertilization − pod formation | 19.17 | 17.13 | 103.4 | 103.9 | 0.57 | 0.57 | ** | ** |
a3—BMF + foliar fertilization − seeds formation | 19.53 | 17.27 | 105.6 | 104.8 | 0.93 | 0.70 | *** | *** |
LSD p 5% = 0.24%; LSD p 1% = 0.38%; LSD p 0.1% = 0.69% | ||||||||
Fertilization System | MTS (g) | MTS (%) | Difference (±) | Significance | ||||
2021 | 2022 | 2021 | 2022 | 2021 | 2022 | 2021 | 2022 | |
a1—basic mineral fertilization (BMF) | 181.90 | 150.93 | 100.0 | 100.0 | cv | cv | cv | cv |
a2—BMF + foliar fertilization − pod formation | 192.27 | 155.77 | 105.7 | 103.2 | 10.37 | 4.83 | * | - |
a3—BMF + foliar fertilization − seeds formation | 193.73 | 156.00 | 106.5 | 103.4 | 11.83 | 5.07 | * | - |
LSD p 5% = 10.33 g; LSD p 1% = 16.39 g; LSD p 0.1% = 28.66 g |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bărdaş, M.; Rusu, T.; Russu, F.; Șimon, A.; Chețan, F.; Ceclan, O.A.; Rezi, R.; Popa, A.; Cărbunar, M.M. The Impact of Foliar Fertilization on the Physiological Parameters, Yield, and Quality Indices of the Soybean Crop. Agronomy 2023, 13, 1287. https://doi.org/10.3390/agronomy13051287
Bărdaş M, Rusu T, Russu F, Șimon A, Chețan F, Ceclan OA, Rezi R, Popa A, Cărbunar MM. The Impact of Foliar Fertilization on the Physiological Parameters, Yield, and Quality Indices of the Soybean Crop. Agronomy. 2023; 13(5):1287. https://doi.org/10.3390/agronomy13051287
Chicago/Turabian StyleBărdaş, Marius, Teodor Rusu, Florin Russu, Alina Șimon, Felicia Chețan, Ovidiu Adrian Ceclan, Raluca Rezi, Alin Popa, and Mihai Marcel Cărbunar. 2023. "The Impact of Foliar Fertilization on the Physiological Parameters, Yield, and Quality Indices of the Soybean Crop" Agronomy 13, no. 5: 1287. https://doi.org/10.3390/agronomy13051287
APA StyleBărdaş, M., Rusu, T., Russu, F., Șimon, A., Chețan, F., Ceclan, O. A., Rezi, R., Popa, A., & Cărbunar, M. M. (2023). The Impact of Foliar Fertilization on the Physiological Parameters, Yield, and Quality Indices of the Soybean Crop. Agronomy, 13(5), 1287. https://doi.org/10.3390/agronomy13051287