Effect of Mineral or OFMSW Digestate Fertilization on Ryegrass and Nitrogen Leaching
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Analysis
2.2. Characterization of Organic Fraction of Municipal Solid Waste (OFMSW) Digestates
2.3. Pot Study Description
2.4. Simulated Rain Procedure
2.5. Statistical Analysis
3. Results
3.1. Effects of OFMSW Digestate Fertilization on Ryegrass
3.1.1. Crop Productivity
3.1.2. Nitrogen in Ryegrass
3.2. Effect of OFMSW Digestate Fertilization on N Leaching
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Circular economy package-European Commission. Proposal for a Regulation of the European Parliament and of the Council Laying Down Rules on the Making Available on the Market of CE Marked Fertilising Products and Amending Regulations (EC) 2016 No 1069/2009 and (EC) No. 1107/2009. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:52016PC0157 (accessed on 10 February 2023).
- Chojnacka, K.; Moustakas, K.; Witek-Krowiak, A. Bio-based fertilizers: A practical approach towards circular economy. Bioresour. Technol. 2020, 295, 122223. [Google Scholar] [CrossRef] [PubMed]
- Tur-Cardona, J.; Bonnichsen, O.; Speelman, S.; Verspecht, A.; Carpentier, L.; Debruyne, L.; Marchand, F.; Jacobsen, B.H.; Buysse, J. Farmers’ reasons to accept bio-based fertilizers: A choice experiment in seven different European countries. J. Clean. Prod. 2018, 197, 406–416. [Google Scholar] [CrossRef]
- European Commission. Council Directive 1999/31/EC of 26 April 1999 on the Landfill of Waste; European Commission: Brussels, Belgium, 1999. [Google Scholar]
- European Commission. Directive 2018/851/EC of the European Parliament and of the Council of 30 May 2013 on Waste and Repealing Directive 2008/98; European Commission: Brussels, Belgium, 2018. [Google Scholar]
- European Commission. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the Promotion of the Use of Energy from Renewable Sources and Amending and Subsequently Repealing Directives 2001/77/EC and 2003/30/EC; European Commission: Brussels, Belgium, 2009. [Google Scholar]
- Regulation (Eu) 2019/1009 of the European Parliament and of the Council of 5 June 2019 Laying Down Rules on the Making Available on the Market of EU Fertilising Products and Amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and Repealing Regulation (EC) No. 2003/2003. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32019R1009&from=IT (accessed on 8 February 2022).
- Chew, K.W.; Chia, S.R.; Yen, H.W.; Nomanbhay, S.; Ho, Y.C.; Show, P.L. Transformation of Biomass Waste into Sustainable Organic Fertilizers. Sustainability 2019, 11, 2266. [Google Scholar] [CrossRef]
- Ameen, H.A.; Dohuki, M.S.S.M. The effect of leaching and bulking agents on the quality of municipal solid waste compost. Environ Technol. 2022, 20, 2101026. [Google Scholar] [CrossRef]
- Kirk, D.M.; Gould, M.C. Bioenergy and Anaerobic Digestion. In Bioenergy, 2nd ed.; Dahiya, A., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 335–360. ISBN 9780128154977. [Google Scholar] [CrossRef]
- Knoop, C.; Dornack, C.; Raab, T. Effect of drying, composting and subsequent impurity removal by sieving on the properties of digestates from municipal organic waste. Waste Manag. 2018, 72, 168–177. [Google Scholar] [CrossRef]
- Lin, L.; Xu, F.; Ge, X.; Li, Y. Biological treatment of organic materials for energy and nutrients production—Anaerobic digestion and composting. In Advances in Bioenergy; Li, Y., Ge, X., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; ISSN 2468-0125. ISBN 9780128177105. [Google Scholar] [CrossRef]
- Ayilara, M.S.; Olanrewaju, O.S.; Babalola, O.O.; Odeyemi, O. Waste Management through Composting: Challenges and Potentials. Sustainability 2020, 12, 4456. [Google Scholar] [CrossRef]
- Turab Raza, S.; Zhu, B.; Yao, Z.; Wu, J.; Chen, Z.; Ali, Z.; Tang, J.L. Impacts of vermicompost application on crop yield, ammonia volatilization and greenhouse gases emission on upland in Southwest China. Sci. Total Environ. 2023, 860, 160479. [Google Scholar] [CrossRef]
- Turab Raza, S.; Wu, J.; Eldon, R.; Rene, E.R.; Ali, Z.; Chen, Z. Application of wetland plant-based vermicomposts as an organic amendment with high nutritious value. Process Saf. Environ. Prot. 2022, 165, 941–949. [Google Scholar] [CrossRef]
- Lamb, J.J. Anaerobic Digestion–From Biomass to Biogas; SCIO Publishing: Banbury, UK, 2020; 462p, ISBN 978-82-692033-2-5. (ebook). [Google Scholar] [CrossRef]
- Flavel, T.C.; Murphy, D.V. Carbon and Nitrogen Mineralization Rates after Application of Organic Amendments to Soil. J. Environ. Qual. 2006, 35, 183–193. [Google Scholar] [CrossRef]
- Yousaf, B.; Liu, G.; Wang, R.; Abbas, Q.; Imtiaz, M.; Liu, R. Investigating the biochar effects on C-mineralization and sequestration of carbon in soil compared with conventional amendments using the stable isotope (δ13C) approach. GCB Bioenergy 2017, 9, 1085–1099. [Google Scholar] [CrossRef]
- Qiu, Q.; Wu, L.; Ouyang, Z.; Li, B.; Xu, Y.; Wu, S.; Gregorich, E.G. Priming Effect of Maize Residue and Urea N on Soil Organic Matter Changes with Time. Appl. Soil Ecol. 2016, 100, 65–74. [Google Scholar] [CrossRef]
- Liu, X.-J.A.; Jan van Groenigen, K.; Dijkstra, P.; Hungate, B.A. Increased plant uptake of native soil nitrogen following fertilizer addition—not a priming effect? Appl. Soil Ecol. 2017, 114, 105–110. [Google Scholar] [CrossRef]
- Rossi, G.; Beni, C. Effects of Medium-Term Amendment with Diversely Processed Sewage Sludge on Soil Humification—Mineralization Processes and on Cu, Pb, Ni, and Zn Bioavailability. Plants 2018, 7, 16. [Google Scholar] [CrossRef]
- Rossi, G.; Socciarelli, S.; Aromolo, R.; Ciampa, A.; Beni, C. The effects of mineral and organic fertilizers on zucchini (Cucurbita pepo L.) investigated by the multiparameters analyses and magnetic resonance imaging (MRI). Agrochimica 2016, 60, 275–287. [Google Scholar]
- Rossi, G.; Beni, C.; Socciarelli, S. Fertilization with distiller’s residue compost: Effects on nutrients accumulation and yield in consumer vegetables. Agrochimica 2008, 5, 325–336. [Google Scholar]
- Barłóg, P.; Hlisnikovský, L.; Kunzová, E. Effect of Digestate on Soil Organic Carbon and Plant-Available Nutrient Content Compared to Cattle Slurry and Mineral Fertilization. Agronomy 2020, 10, 379. [Google Scholar] [CrossRef]
- Beni, C.; Servadio, P.; Marconi, S.; Neri, U.; Aromolo, R.; Diana, G. Anaerobic digestate administration: Effect on soil physical and mechanical behavior. Commun. Soil Sci. Plant Anal. 2012, 43, 821–834. [Google Scholar] [CrossRef]
- World Bank. What a Waste. A Global Review of Solid Waste Management; World Bank: Washington, DC, USA, 2012. [Google Scholar]
- European Environment Agency. 2020. Available online: https://www.eea.europa.eu/publications/biowaste-in-europe (accessed on 8 February 2023).
- De Medina-Salas, L.; Castillo-González, E.; Giraldi-Díaz, M.R.; Jamed-Boza, L.O. Valorisation of the organic fraction of municipal solid waste. Waste Manag. Res. 2018, 37, 59–73. [Google Scholar] [CrossRef]
- Núñez, F.; Pérez, M.; Leon-Fernández, L.F.; García-Morales, J.L.; Fernández-Morales, F.J. Effect of the mixing ratio on the composting of OFMSW digestate: Assessment of compost quality. J. Mater Cycles Waste Manag. 2022, 24, 1818–1831. [Google Scholar] [CrossRef]
- Makan, A.; Mountadar, M. Effect of C/N ratio on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco. J. Mater Cycles Waste Manag. 2012, 14, 241–249. [Google Scholar] [CrossRef]
- Council Directive 91/676/EEC of 12 December 1991 Concerning the Protection of Waters against Pollution Caused by Nitrates from Agricultural Sources. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:31991L0676 (accessed on 9 February 2022).
- Jabloun, M.; Schelde, K.; Tao, F.; Olesen, J.E. Effect of temperature and precipitation on nitrate leaching from organic cereal cropping systems in Den-mark. Eur. J. Agron. 2015, 62, 55–64. [Google Scholar] [CrossRef]
- Nicholson, F.; Anne Bhogal, A.; Cardenas, L.; Chadwick, D.; Misselbrook, T.; Rollett, A.; Taylor, M.; Thorman, R.; Williams, J. Nitrogen losses to the environment following food-based digestate and compost applications to agricultural land. Environ. Pollut. 2017, 228, 504–516. [Google Scholar] [CrossRef] [PubMed]
- Ministero Politiche Agricole e Forestali (Italy). Metodi Ufficiali di Analisi Chimica del Suolo. Decreto Ministeriale del 13/09/1999; Gazzetta Ufficiale della Repubblica Italiana, n. 248, 21/10/1999 Supplemento Ordinario n. 185. Available online: http://www.gazzettaufficiale.it/eli/gu/1999/10/21/248/so/185/sg/pdf (accessed on 11 January 2022). (In Italian).
- Olsen, S.R.; Sommers, L.E. Phosphorus. In Methods of Soil Analysis: Part 2. Chemical and Microbiological Properties, 2nd ed.; Page, A.L., Ed.; ASA and SSSA: Madison, WI, USA, 1982; pp. 403–430. [Google Scholar]
- USDA; NRCS. Soil Taxonomy, Agricultural Handbook, 2nd ed.; NRCS: Washington, DC, USA, 1999. [Google Scholar]
- Regulation (EC) No 2003/2003 of the European Parliament and of the Council of 13 October 2003 Relating to Fertilisers. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32003R2003&qid=1681737223244 (accessed on 11 January 2022).
- Ministero Politiche Agricole e Forestali (Italy)19 luglio 1989 Approvazione dei “Metodi Ufficiali di Analisi per i Fertilizzanti Supplemento n. 1”. (GU Serie Generale n.196 del 23-08-1989––Suppl. Ordinario n. 64). Available online: https://www.gazzettaufficiale.it/eli/id/1989/08/23/089A3532/sg (accessed on 11 January 2022). (In Italian).
- Grigatti, M.; Di Girolamo, G.; Chincarini, R.; Ciavatta, C.; Barbanti, L. Potential nitrogen mineralization, plant utilization efficiency and soil CO2 emissions following the addition of anaerobic digested slurries. Biomass. Bioenergy 2011, 35, 4619–4629. [Google Scholar] [CrossRef]
- Alburquerque, J.; Gonzalvez, J.; Garcia, D.; Cegarra, J. Effects of a compost made from the solid by-product (“alperujo”) of the two-phase centrifugation system for olive oil extraction and cotton gin waste on growth and nutrient content of ryegrass (Lolium perenne L.). Bioresour. Technol. 2007, 98, 940–945. [Google Scholar] [CrossRef]
- Open Data Latium Region Database (Italy). Available online: https://dati.lazio.it/catalog/it/dataset/serie-storica-dato-pluviometrico (accessed on 11 January 2022).
- Del Pino, A.; Omar Casanova, O.; Mónica Barbazán, M.; Victoria Mancassola, V.; Laura Arló, L.; Borzacconi, L.; Passeggi, M. Agronomic Use of Slurry from Anaerobic Digestion of Agroindustrial Residues: Effects on Crop and Soil. J. Sustain. Bioenergy Syst. 2014, 4, 1. [Google Scholar] [CrossRef]
- Florio, A.; Felici, B.; Migliore, M.; Dell’abate, M.T.; Benedetti, A. Nitrogen losses, uptake and abundance of ammonia oxidizers in soil under mineral and organo-mineral fertilization regimes. J. Sci. Food Agric. 2016, 96, 2440–2450. [Google Scholar] [CrossRef]
- Sharifi, M.; Baker, S.; Hojabri, L.; Hajiaghaei-Kamrani, M. Short-term nitrogen dynamics in a soil amended with anaerobic digestate. Can. J. Soil Sci. 2019, 99, 173–181. [Google Scholar] [CrossRef]
- Wang, H.; Gao, J.-E.; Li, X.-H.; Zhang, S.-L.; Wang, H.J. Nitrate accumulation and leaching in surface and ground water based on simulated rainfall experiments. PLoS ONE 2015, 10, e0136274. [Google Scholar] [CrossRef]
- Van der Sloot, M.; Kleijn, D.; De Deyn, G.B.; Limpens, J. Carbon to nitrogen ratio and quantity of organic amendment interactively affect crop growth and soil mineral N retention. Crop Environ. 2022, 1, 161–167. [Google Scholar] [CrossRef]
- Lazicki, P.; Geisseler, D.; Lloyd, M. Nitrogen mineralization from organic amendments is variable but predictable. J. Environ. Qual. 2020, 49, 483–495. [Google Scholar] [CrossRef]
- Rossi, G.; Neri, U.; Felici, B.; Benedetti, A. Effects of Different Zootechnical Digestates on Fertilization And Nitrogen Leaching. Agrochimica 2020, LXIV, 2. [Google Scholar] [CrossRef]
- Masunga, R.H.; Nwakaego Uzokwe, V.; Deusdedit Mlay, P.; Odeh, I.; Singh, A.; Buchan, D.; De Neve, S. Nitrogen mineralization dynamics of different valuable organic amendments commonly used in agriculture. Appl. Soil Ecol. 2016, 101, 185–193. [Google Scholar] [CrossRef]
Parameter | Value | Parameter | Value |
---|---|---|---|
Reaction pH | 7.50 | Sand g kg−1 | 267 |
TOC g kg−1 | 21.1 | Silt g kg−1 | 453 |
SOM g kg−1 | 36.4 | Clay g kg−1 | 280 |
Total N g kg−1 | 1.8 | Texture (USDA) | Clay-loam |
C/N ratio | 11.7 | CEC cmol(+) kg−1 | 25.48 |
P2O5 g kg−1 | 0.08 | Ca cmol(+) kg−1 | 19.66 |
K2O g kg−1 | 0.80 | Mg cmol(+) kg−1 | 3.08 |
EC1:2.5 dS m−1 | 0.213 | K cmol(+) kg−1 | 1.71 |
Na cmol(+) kg−1 | 1.03 |
Parameter | F | FE | FEC |
---|---|---|---|
Humidity % | 72.7 | 16.3 | 36.8 |
Reaction pH | 8.5 | 8.4 | 8.0 |
Non-volatile solids % | 82.4 | 47.9 | 67.3 |
Volatile solids % | 17.6 | 52.1 | 32.7 |
Total N g kg−1 | 43 | 39 | 22 |
Organic N g kg−1 | 30 | 31 | 21 |
Organic C g kg−1 | 338 | 233 | 486 |
C/N ratio | 7.86 | 5.89 | 22.1 |
P (P2O5) g kg−1 | 36 | 34 | 7 |
K (K2O) g kg−1 | 7 | 8 | 13 |
Cu mg kg−1 | 93 | 102 | 56 |
Zn mg kg−1 | 310 | 344 | 182 |
Pb mg kg−1 | 2 | 0.5 | 3 |
Cr mg kg−1 | 12 | 9 | 5 |
Cd mg kg−1 | 0.4 | 0.1 | 0.1 |
Ni mg kg−1 | 8 | 5 | 7 |
Hg mg kg−1 | <0.05 | <0.05 | <0.05 |
DAS | 20 | 30 | 40 | 48 | 50 | 59 | 60 | 68 | 70 | 82 |
---|---|---|---|---|---|---|---|---|---|---|
R | R1 | R2 | R3 | R4 | R5 | R6 | ||||
L | L1 | L2 | L3 | L4 | L5 | L6 | ||||
H | H1 | H2 | H3 | H4 | H5 |
H1 (**) | H2 | H3 (*) (**) | H4 (**) | H5 (**) | ∑ H1–H5 (*) (**) | |
---|---|---|---|---|---|---|
C | 3.97 | 2.75 b | 5.54 | 2.25 | 3.27 | 17.78 |
±0.33 | ± 0.30 | ±0.32 | ±0.32 | ±0.71 | ±1.04 | |
AS | 4.11 | 3.66 a | 5.48 | 3.38 | 4.52 | 21.14 |
±0.72 | ± 0.18 | ±0.76 | ±0.46 | ±0.41 | ±1.52 | |
F | 4.22 | 3.51 a | 5.19 | 3.26 | 3.39 | 19.57 |
±0.36 | ±0.36 | ±1.56 | ±1.59 | ±2.35. | ±5.71 | |
FE | 3.34 | 3.49 a | 5.65 | 2.13 | 2.67 | 17.28 |
±0.61 | ±0.16 | ±0.19 | ±0.62 | ±1.25 | ±1.47 | |
FEC | 3.86 | 3.12 ab | 5.61 | 1.95 | 4.16 | 18.70 |
±0.81 | ±0.35 | ±0.36 | ±0.41 | ±1.43 | ±2.56 |
H1 | H2 (*) (**) | H3 (*) (**) | H4 (*) (**) | H5 (*) (**) | Mean H1–H5 (*) (**) | |
---|---|---|---|---|---|---|
C | 6.18 b | 6.13 | 5.90 | 5.90 | 4.39 | 5.70 |
±0.06 | ±0.09 | ±0.19 | ±0.29 | ±1.10 | ±0.33 | |
AS | 6.76 c | 6.31 | 6.12 | 5.93 | 5.62 | 6.14 |
±0.09 | ±0.12 | ±0.20 | ±0.05 | ±0.35 | ±0.10 | |
F | 5.71 a | 5.88 | 5.06 | 4.76 | 4.74 | 5.23 |
±0.14 | ±0.58 | ±1.24 | ±1.17 | ±1.26 | ±0.85 | |
FE | 5.82 a | 5.95 | 5.48 | 5.59 | 5.09 | 5.58 |
±0.12 | ±0.10 | ±0.95 | ±0.96 | ±1.70 | ±0.34 | |
FEC | 6.28 b | 6.00 | 5.68 | 5.83 | 4.67 | 5.69 |
±0.08 | ±0.06 | ±0.48 | ±0.95 | ±1.10 | ±0.48 |
H1 (**) | H2 (*) | H3 (**) | H4 (*) (**) | H5 (**) | ∑ H1–H5 (*) (**) | |
---|---|---|---|---|---|---|
C | 0.24 | 0.17 a | 0.33 | 0.13 | 0.15 | 1.02 |
±0.02 | ±0.02 | ±0.01 | ±0.02 | ±0.06 | ±0.08 | |
AS | 0.28 | 0.23 b | 0.34 | 0.20 | 0.25 | 1.30 |
±0.05 | ±0.01 | ±0.04 | ±0.03 | ±0.03 | ±0.10 | |
F | 0.24 | 0.21 ab | 0.28 | 0.17 | 0.18 | 1.08 |
±0.02 | ±0.04 | ±0.13 | ±0.11 | ±0.15 | ±0.43 | |
FE | 0.19 | 0.21 ab | 0.31 | 0.12 | 0.13 | 0.97 |
±0.03 | ±0.01 | ±0.06 | ±0.05 | ±0.08 | ±0.15 | |
FEC | 0.24 | 0.19 ab | 0.32 | 0.12 | 0.21 | 1.08 |
±0.05 | ±0.02 | ±0.04 | ±0.04 | ±0.10 | ±0.20 |
L1 (*) | L2 (*) | L3 (**) | L4 (*) (**) | L5 (**) | L6(**) | ∑ L1–L6 (*) | |
---|---|---|---|---|---|---|---|
C | 32.10 a | 33.90 a | 14.36 | 64.03 | 67.15 | 38.71 | 250.24 a |
±9.52 | ±17.63 | ±8.15 | ±34.90 | ±59.98 | ±6.45 | ±117.78 | |
AS | 147.90 c | 151.12 b | 39.47 | 125.88 | 96.53 | 87.50 | 648.38 b |
±43.49 | ±101.28 | ±20.07 | ±53.09 | ±28.89 | ±22.27 | ±169.89 | |
F | 70.90 ab | 53.90 ab | 18.30 | 74.20 | 70.65 | 93.50 | 381.70 ab |
±27.90 | ±14.73 | ±12.77 | ±76.74 | ±60.24 | ±73.66 | ±197.27 | |
FE | 57.80 ab | 109.00 ab | 20.10 | 58.10 | 70.10 | 116.40 | 431.70 ab |
±13.08 | ±58.52 | ±14.51 | ±60.53 | ±53.83 | ±73.60 | ±229.40 | |
FEC | 108.10 bc | 38.20 ab | 15.70 | 72.00 | 75.53 | 51.30 | 361.01 ab |
±12.58 | ±13.68 | ±3.00 | ±31.42 | ±47.00 | ±41.35 | ±91.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rossi, G.; Beni, C.; Benedetti, A.; Felici, B.; Neri, U. Effect of Mineral or OFMSW Digestate Fertilization on Ryegrass and Nitrogen Leaching. Agronomy 2023, 13, 1316. https://doi.org/10.3390/agronomy13051316
Rossi G, Beni C, Benedetti A, Felici B, Neri U. Effect of Mineral or OFMSW Digestate Fertilization on Ryegrass and Nitrogen Leaching. Agronomy. 2023; 13(5):1316. https://doi.org/10.3390/agronomy13051316
Chicago/Turabian StyleRossi, Gabriella, Claudio Beni, Anna Benedetti, Barbara Felici, and Ulderico Neri. 2023. "Effect of Mineral or OFMSW Digestate Fertilization on Ryegrass and Nitrogen Leaching" Agronomy 13, no. 5: 1316. https://doi.org/10.3390/agronomy13051316
APA StyleRossi, G., Beni, C., Benedetti, A., Felici, B., & Neri, U. (2023). Effect of Mineral or OFMSW Digestate Fertilization on Ryegrass and Nitrogen Leaching. Agronomy, 13(5), 1316. https://doi.org/10.3390/agronomy13051316