Evaluation of the Development Process of Winter Wheat (Triticum aestivum L.) and Winter Pea (Pisum sativum L.) in Intercropping by Yield Components
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Background of the Experiment
2.2. Weather Conditions
2.3. Plant Sample Collection
2.4. Statistical Analysis
2.5. Observations on Phenology of the Companion Plants
3. Results
3.1. Cumulative Yield Production Analysis for Winter Wheat
3.2. Results of Correlation between Yield and Yield Components of Wheat
3.3. Cumulative Yield Production Analysis for Winter Pea
3.4. Results of Correlation between Yield and Yield Components of Pea
3.5. Results of the Observation of Phenology and the Critical Stages of Winter Wheat and Pea
4. Discussion
5. Conclusions
- It was the first time describing the developmental process of two winter-sown crops in intercropping, precisely defining the parallel development stages, as well as the time of the growing seasons and summarizing its critical stages.
- Each winter wheat variety tolerated the presence of winter pea in intercropping to a different extent. GK Szilárd 50% sowing density and Aviron 75% sowing density produced stable results in both years. In 2021, a mixture of Cellule 75% and Aviron 100% seemed more effective, while in 2022, the association of 100% Cellule and 50% Aviron achieved higher values. GK Csillag provided stable yield in both years with its 75% and Aviron 50% combination.
- Based on the Pearson correlation, the number and the weight of grains in wheat were decisive in terms of yield, which was influenced both by the weather of the given year and the presence of the companion plant. While extreme weather events mostly had a negative effect on crop formation, the presence of winter peas and their natural nitrogen supply alleviated these symptoms.
- From the point of view of winter pea, none of the plant associations could be said to be effective. According to the multivariate regression, the yield was determined by the pod numbers, the grain numbers and its weight. At the same time, despite the sensitivity of weather conditions, the presence of the companion plant had a stronger negative effect in the pod filling stage, which could have been the reason for the drop in yield.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jolánkai, M.; Birkás, M. Global climate change impacts on crop production in Hungary. Agric. Conspec. Sci. 2007, 72, 17–20. [Google Scholar]
- De Boeck, H.J.; Van De Velde, H.; De Groote, T.; Nijs, I. Ideas and perspectives: Heat stress: More than hot air. Biogeosciences 2016, 13, 5821–5825. [Google Scholar] [CrossRef]
- Vadez, V.; Berger, J.D.; Warkentin, T.; Asseng, S.; Ratnakumar, P.; Rao, K.P.C.; Gaur, P.M.; Munier-Jolain, N.; Larmure, A.; Voisin, A.-S.; et al. Adaptation of grain legumes to climate change: A review. Agron. Sustain. Dev. 2012, 32, 31–44. [Google Scholar] [CrossRef]
- Bányai, J.; Karsai, I.; Balla, K.; Kiss, T.; Bedő, Z.; Láng, L. Heat stress response of wheat cultivars with different ecological adaptation. Cereal Res. Commun. 2014, 43, 413–425. [Google Scholar] [CrossRef]
- Akter, N.; Islam, M.R. Heat stress effects and management in wheat. A review. Agron. Sustain. Dev. 2017, 37, 1–17. [Google Scholar] [CrossRef]
- Parihar, A.K.; Hazra, K.K.; Lamichaney, A.; Dixit, G.P.; Singh, D.; Singh, A.K.; Singh, N.P. Characterizing plant trait(s) for improved heat tolerance in filed pea (Pisum sativum L.) under subtropical climate. Int. J. Biometeorol. 2022, 66, 1267–1281. [Google Scholar] [CrossRef] [PubMed]
- Márton, J.; Tarnawa, Á.; Horvath, C.; Nyárai, F.H.; Kassai, K. Impact of climaticfactors on yield quantity and quality of grain crops. Q. J. Hung. Meteorol. Serv. 2016, 120, 73–84. [Google Scholar]
- Li, S.; Juhász-Horváth, L.; Harrison, P.A.; Pintér, L.; Rounsewell, M.D.A. Relating farmer’s perceptions of climate change risk to adaptation behaviour in Hungary. J. Environ. Manag. 2017, 185, 21–30. [Google Scholar] [CrossRef]
- Larmure, A.; Munier-Jolain, N.G. High temperatures during the seed-filling period decrease seed nitrogen amount in pea (Pisum sativum L.): Evidence for a sink limitation. Front. Plant Sci. 2019, 10, 1608. [Google Scholar] [CrossRef]
- Crews, T.E.; Peoples, M.B. Legume versus fertilizer sources of nitrogen: Ecological tradeoffs and human needs. Agric. Ecosyst. Environ. 2004, 102, 279–297. [Google Scholar] [CrossRef]
- Fustec, J.; Lesuffleur, F.; Mahieu, S.; Cliquet, J.-B. Nitrogen rhizodeposition of legumes. A review. Agron. Sustain. Dev. 2010, 30, 57–66. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, M.; Xu, X.; Gunina, A. species-specific interaction affects organic nitrogen uptake during intercropping of four important crop species: A useful index for selecting appropriate intercropping combination. Rhizospere 2022, 21, 100460. [Google Scholar] [CrossRef]
- Naudin, C.; van der Werf, H.M.G.; Jeuffroy, M.-H.; Corre-Hellou, G. Life cycle assessment applied to pea-wheat intercrops: A new method for handling the impacts of co-products. J. Clean. Prod. 2014, 73, 80–87. [Google Scholar] [CrossRef]
- Ksiezak, J.; Staniak, M.; Stalenga, J. Restoring the importance of cereal-grain legume mixtures in low-input farming systems. Agriculture 2023, 13, 341. [Google Scholar] [CrossRef]
- Hauggaard-Nielsen, H.; Jensen, E.S. Facilitative root interactions in intercrops. Plant Soil 2005, 274, 237–250. [Google Scholar] [CrossRef]
- Pelzer, E.; Bazot, M.; Guichard, L.; Jeuffroy, M.-H. Crop management affects the performance of a winter pea-wheat intercrop. Agron. J. 2016, 108, 1089–1100. [Google Scholar] [CrossRef]
- Corre-Hellou, G.; Fustec, J.; Crozat, Y. Interspecific competition for soil N and its interaction with N2 fixation, leaf expansion and crop growth in pea-barley intercrops. Plant Soil 2006, 282, 195–208. [Google Scholar] [CrossRef]
- Willey, R.W. Resource use of intercropping systems. Agric. Water Manag. 1990, 17, 215–231. [Google Scholar] [CrossRef]
- Lithourgidis, A.S.; Dordas, C.A.; Damalas, C.A.; Vlachostergios, D.N. Annual intercrops: An alternative pathway for sustainable agriculture. Aust. J. Crop Sci. 2011, 5, 396–410. [Google Scholar]
- Ghaley, B.B.; Hauggaard-Nielsen, H.; Hogh-Jensen, H.; Jensen, E.S. Intercropping of wheat and pea as influenced by nitrogen fertilization. Nutr. Cycl. Agroecosyst. 2005, 73, 201–212. [Google Scholar] [CrossRef]
- Neugscwandtner, R.W.; Kaul, H.-P.; Moitzi, G.; Klimek-Kopyra, A.; Losák, T.; Wagentristl, H. A low nitrogen fertilizer rate in oat-pea intercrops does not impair N2 fixation. Acta Agric. Scand. Sect. B-Soil Plant Sci. 2021, 71, 182–190. [Google Scholar] [CrossRef]
- Pelzer, E.; Bazot, M.; Makowski, D.; Corre-Hellou, G.; Naudin, C.; Al Rifai, M.; Baranger, E.; Bedoussac, L.; Biarnés, V.; Boucheny, P.; et al. Pea-wheat intercrops in low-input conditions combine high economic performances and low environmental impacts. Eur. J. Agron. 2012, 40, 39–53. [Google Scholar] [CrossRef]
- Ditzler, L.; van Apeldoorn, D.F.; Pellegrini, F.; Antichi, D.; Barberi, P.; Rossling, W.A.H. Current research on the ecosystem service potential of legume inclusive cropping systems in Europe. A review. Agron. Sustain. Dev. 2021, 41, 26. [Google Scholar] [CrossRef]
- Voisin, A.-S.; Guéguen, J.; Huyghe, C.; Jeuffroy, M.-H.; Magrini, M.-B.; Meynard, J.-M.; Mougel, C.; Pellerin, S.; Pelzer, E. Legumes for feed, food, biomaterials and bioenergy in Europe: A review. Agron. Sustain. Dev. 2014, 34, 361–380. [Google Scholar] [CrossRef]
- Divéky-Ertsey, A.; Gál, I.; Madaras, K.; Pusztai, P.; Csambalik, L. Contribution of pulses to agrobiodiversity in the view of EU protein strategy. Stresses 2022, 2, 90–112. [Google Scholar] [CrossRef]
- Monti, M.; Pellicano, A.; Santonoseto, C.; Preiti, G.; Pristeri, A. Yield components and nitrogen use in cereal-pea intercrops in Mediterranean environment. Field Crop. Res. 2016, 196, 379–388. [Google Scholar] [CrossRef]
- Hauggaard-Nielsen, H.; Jensen, E.S. Evaluating pea and barley cultivars for complementarity in intercropping at different levels of soil N availability. Field Crop. Res. 2001, 72, 185–196. [Google Scholar] [CrossRef]
- Nelson, W.C.D.; Siebrecht-Schöll, D.J.; Hoffmann, M.P.; Rötter, R.P.; Whitbread, A.M.; Link, W. What does a productive winter bean-wheat genotype combination for intercropping in central Germany? Eur. J. Agron. 2021, 128, 126294. [Google Scholar] [CrossRef]
- Tran, C.T.; Becker, H.C.; Horneburg, B. Agronomic performance of normal-leafed and semi-leafless pea (Pisum sativum L.) genotypes. Crop Sci. 2022, 62, 1430–1442. [Google Scholar] [CrossRef]
- Bueckert, R.A.; Wagenhoffer, S.; Hnatowich, G.; Warkentin, T.D. Effect of heat and precipitation on pea yield and reproductive performance in the field. Can. J. Plant Sci. 2015, 95, 629–639. [Google Scholar] [CrossRef]
- Sita, K.; Segal, A.; Hanumantha Rao, B.; Nair, R.M.; Vara Prasad, P.V.; Kumar, S.; Gaur, P.M.; Farooq, M.; Siddique, K.H.M.; Varshney, R.K.; et al. Food legumes and rising temperatures: Effects, adaptive functional mechanisms specific to reproductive growth stage and strategies to improve heat tolerance. Front. Plant Sci. 2017, 8, 1658. [Google Scholar] [CrossRef] [PubMed]
- Lamichaney, A.; Parihar, A.K.; Hazra, K.K.; Dixit, G.P.; Katiyar, P.K.; Singh, D.; Singh, A.K.; Kumar, N.; Singh, N.P. Untangling the influence of heat stress on crop phenology, seed set, seed weight, and germination in field pea (Pisum sativum L.). Front. Plant Sci. 2021, 12, 635868. [Google Scholar] [CrossRef] [PubMed]
- Osorio, E.E.; Davis, A.R.; Bueckert, R.A. High temperatures disturb ovule development in field pea (Pisum sativum L.). Botany 2022, 100, 47–61. [Google Scholar] [CrossRef]
- Sandana, P.; Calderini, D.F. Comparative assessment of the critical period for grain yield determination of narrow-leafed lupin and pea. Eur. J. Agron. 2012, 40, 94–101. [Google Scholar] [CrossRef]
- Mikic, A.; Mihailovic, V.; Cupina, B.; Dordevic, V.; Milic, D.; Duc, G.; Stoddard, F.L.; Lejeune-Hémaut, I.; Marget, P.; Hanocq, E. Achievements in breeding autumn-sown annual legumes for temperate regions with emphasis on the continental Balkans. Euphytica 2011, 180, 57–67. [Google Scholar] [CrossRef]
- Neugschwandtner, R.W.; Bernhuber, A.; Kammlander, S.; Wagentristl, H.; Klimek-Kopyra, A.; Losak, T.; Zholamanov, K.K.; Kaul, H.-P. Nitrogen yields and biological nitrogen fixation of winter grain legumes. Agronomy 2021, 11, 681. [Google Scholar] [CrossRef]
- Naudin, C.; Aveline, A.; Corre-Hellou, G.; Dibet, A.; Jeuffroy, M.-H.; Crozat, Y. Agronomic analysis of the performance of spring and winter cereal-legume intercrops in organic farming. J. Agric. Sci. Technol. 2009, 3, 17–28. [Google Scholar]
- Neugschwandtner, R.W.; Bernhuber, A.; Kammlander, S.; Wagentristl, H.; Klimek-Kopyra, A.; Kaul, H.-P. Agronomic potential of winter grain legumes for Central Europe: Development, soil coverage and yields. Field Crop. Res. 2019, 241, 107576. [Google Scholar] [CrossRef]
- Urbatzka, P.; Graß, R.; Thorsten, H.; Schüler, C.; Trautz, D.; Heß, J. Grain yield and quality characteristics of different genotypes of winter pea in comparison to spring pea for organic farming in pure and mixed stands. Org. Agric. 2011, 1, 187–202. [Google Scholar] [CrossRef]
- Baigorri, H.; Antolín, M.C.; Sánchez-Díaz, M. Reproductive response of two morphologically different pea cultivars to drought. Eur. J. Agron. 1999, 10, 119–128. [Google Scholar] [CrossRef]
- Tafesse, E.G.; Warkentin, T.D.; Bueckert, R.A. Canopy architecture and leaf type as traits of heat resistance in pea. Field Crop. Res. 2019, 241, 107561. [Google Scholar] [CrossRef]
- Pankou, C.; Lithourgidis, A.; Dordas, C. Effect of irrigation on intercropping systems of wheat (Triticum aestivum L.) with pea (Pisum sativum L.). Agronomy 2021, 11, 283. [Google Scholar] [CrossRef]
- Sváb, J. Trágyázási és egyéb agrotechnikai kísérletek érétkelése kumulatív terméselemzéssel. Agrokémia És Talajt. 1962, 11, 219–236. [Google Scholar]
- Kristó, I.; Vályi-Nagy, M.; Rácz, A.; Tar, M.; Irmes, K.; Szentpéteri, L.; Ujj, A. Effects of weed control treatments on weed composition and yield components of winter wheat (Triticum aestivum L.) and winter pea (Pisum sativum L.) intercrops. Agronomy 2022, 12, 2590. [Google Scholar] [CrossRef]
- Slafer, G.A.; Calderini, D.F.; Miralles, D.J. Yield components and compensation in wheat: Opportunities for further increasing yield potential. In Increasing Yield Potential in Weat: Breaking the Barriers; Reynolds, M.P., Rajaram, S., McNab, A., Eds.; CIMMYT: Veracruz, Mexico, 1996; pp. 101–133. [Google Scholar]
- Meier, U. Growth Stages of Mono-and Dicotyledonous Plants-BBCH Monograph, 2nd ed.; Federal Biological Research Centre for Agricultural and Forestry: Berlin, Germany; Branschweig, Germany, 2001; pp. 138–140. [Google Scholar]
- Vara Prasad, P.V.; Djanaguiraman, M. Response of floret fertility and individual grain weight of wheat to high temperature stress: Sensitive stages and thresholds for temperature and duration. Funct. Plant Biol. 2014, 41, 1261–1269. [Google Scholar] [CrossRef]
- Jolánkai, M.; Kassai, K.; Tarnawa, Á.; Pósa, B.; Birkás, M. Impact of precipitation and temperature on the grain and protein yield of wheat (Triticum aestivum L.) varieties. Q. J. Hung. Meteorol. Serv. 2018, 122, 31–40. [Google Scholar] [CrossRef]
- Jolánkai, M. Gabonafélék. In Növénytermesztéstan 1, 1st ed.; Antal, J., Ed.; Mezőgazda Kiadó: Budapest, Hungary, 2005; pp. 188–189. [Google Scholar]
- Balla, K.; Karsai, I.; Bónis, P.; Kiss, T.; Berki, Z.; Horváth, Á.; Mayer, M.; Bencze, S.; Veisz, O. Heat stress responses in a large set of winter wheat cultivars (Triticum aestivum L.) depend on the timing and duration of stress. PLoS ONE 2019, 14, e0222639. [Google Scholar] [CrossRef]
- Jeuffroy, M.H.; Duthion, C.; Meynard, J.M.; Pigeaire, A. Effect of a short period of high day temperatures during flowering on the seed number per pod of pea (Pisum sativum L.). Agronomie 1990, 10, 139–145. [Google Scholar] [CrossRef]
- Bedoussac, L.; Journet, E.-P.; Hauggaard-Nielsen, H.; Naudin, C.; Corre-Hellou, G.; Jensen, E.S.; Prieur, L.; Justes, E. Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming. A review. Agron. Sustain. Dev. 2015, 35, 911–935. [Google Scholar] [CrossRef]
- Maadi, B.; Fathi, G.; Siadat, S.A.; Alami Saeid, K.; Jafari, S. Effects of preceeding crops and nitrogen rates on grain yield and yield components of wheat (Triticum aestivum L.). World Appl. Sci. J. 2012, 17, 1331–1336. [Google Scholar]
- Vályi-Nagy, M.; Tar, M.; Irmes, K.; Rácz, A.; Kristó, I. Winter wheat and winter pea intercrop: An alternative of crop management preserves high yield quality and stability at low input. Res. J. Agric. Sci. 2021, 53, 120–127. [Google Scholar]
- Neugschwandtner, R.W.; Bernhuber, A.; Kammlander, S.; Wagentristl, H.; Klimek-Kopyra, A.; Kaul, H.-P. Yield structure components of autumn- and spring-sown pea (Pisum sativum L.). Acta Agric. Scand. Sect. B-Soil Plant Sci. 2020, 70, 109–116. [Google Scholar] [CrossRef]
- Poggio, S.L.; Satorre, E.H.; Dethiou, S.; Gonzalo, G.M. Pod and seed numbers as a function of photothermal quotient during the seed set period of field pea (Pisum sativum) crops. Eur. J. Agron. 2005, 22, 55–69. [Google Scholar] [CrossRef]
- Guilioni, L.; Wéry, J.; Lecoeur, J. High temperature and water deficit may reduce seed number in field pea purely by decreasing plant growth rate. Funct. Plant Biol. 2003, 30, 1151–1164. [Google Scholar] [CrossRef]
- Jiang, Y.; Davis, A.R.; Vujanovic, V.; Bueckert, R.A. Reproductive development response to high daytime temperature in field pea. J. Agron. Crop Sci. 2019, 205, 324–333. [Google Scholar] [CrossRef]
- Gaál, M.; Quiroga, S.; Fernandez-Haddad, Z. Potential impacts of climate change on agricultural land use suitability of the Hungarian counties. Reg. Environ. Chang. 2014, 14, 597–610. [Google Scholar] [CrossRef]
- Samarah, N.H. Effects of drought stress on growth and yield of barley. Agron. Sustain. Dev. 2005, 25, 145–149. [Google Scholar] [CrossRef]
- Rahman, M.A.; Chikushi, J.; Yoshida, S.; Karim, A.J.M. Growth and Yield components of wheat genotypes exposed to high temperature stress under control environment. Bangladesh J. Agric. Res. 2009, 34, 360–372. [Google Scholar] [CrossRef]
- Samarah, N.H.; Alqudah, A.M.; Amayreh, J.A.; McAndrews, G.M. The effect of late-terminal drought stress on yield components of four barley cultivars. J. Agron. Crop Sci. 2009, 195, 427–441. [Google Scholar] [CrossRef]
Number of Seeds of Winter Pea | |||||
---|---|---|---|---|---|
0 Seed m−2 | 50 Seed m−2 | 75 Seed m−2 | 100 Seed m−2 | ||
Number of seeds of winter wheat | 0 seed m−2 | - | 0:50 | 0:75 | 0: 100 |
250 seed m−2 | 50:0 | 50:50 | 50:75 | 50:100 | |
375 seed m−2 | 75:0 | 75:50 | 75:75 | 75:100 | |
500 seed m−2 | 100:0 | 100:50 | 100:75 | 100:100 |
Plant Numbers | Shoot Numbers | Spike Numbers | Spikelet Numbers | Grain Numbers | Weight of Grains | Yield | |
---|---|---|---|---|---|---|---|
Plant numbers | 1.00 | ||||||
Shoot numbers | 0.75 ** | 1.00 | |||||
Spike numbers | 0.53 ** | 0.58 ** | 1.00 | ||||
Spikelet numbers | 0.16 | 0.30 ** | 0.83 ** | 1.00 | |||
Grain numbers | −0.09 | 0.04 | 0.61 ** | 0.77 ** | 1.00 | ||
Weight of grains | −0.04 | 0.13 | 0.69 ** | 0.87 ** | 0.88 ** | 1.00 | |
Yield | −0.17 | −0.21 | 0.28 ** | 0.40 ** | 0.52 ** | 0.52 ** | 1.00 |
Plant Numbers | Shoot Numbers | Pod Numbers | Grain Numbers | Weight of Grains | Yield | |
---|---|---|---|---|---|---|
Plant numbers | 1.00 | |||||
Shoot numbers | 0.97 ** | 1.00 | ||||
Pod numbers | 0.47 ** | 0.40 ** | 1.00 | |||
Grain numbers | 0.41 ** | 0.35 ** | 0.96 ** | 1.00 | ||
Weight of grains | 0.37 ** | 0.30 ** | 0.96 ** | 0.97 ** | 1.00 | |
Yield | 0.28 ** | 0.24 * | 0.82 ** | 0.79 ** | 0.80 ** | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vályi-Nagy, M.; Rácz, A.; Irmes, K.; Szentpéteri, L.; Tar, M.; Kassai, K.M.; Kristó, I. Evaluation of the Development Process of Winter Wheat (Triticum aestivum L.) and Winter Pea (Pisum sativum L.) in Intercropping by Yield Components. Agronomy 2023, 13, 1323. https://doi.org/10.3390/agronomy13051323
Vályi-Nagy M, Rácz A, Irmes K, Szentpéteri L, Tar M, Kassai KM, Kristó I. Evaluation of the Development Process of Winter Wheat (Triticum aestivum L.) and Winter Pea (Pisum sativum L.) in Intercropping by Yield Components. Agronomy. 2023; 13(5):1323. https://doi.org/10.3390/agronomy13051323
Chicago/Turabian StyleVályi-Nagy, Marianna, Attila Rácz, Katalin Irmes, Lajos Szentpéteri, Melinda Tar, Katalin Mária Kassai, and István Kristó. 2023. "Evaluation of the Development Process of Winter Wheat (Triticum aestivum L.) and Winter Pea (Pisum sativum L.) in Intercropping by Yield Components" Agronomy 13, no. 5: 1323. https://doi.org/10.3390/agronomy13051323
APA StyleVályi-Nagy, M., Rácz, A., Irmes, K., Szentpéteri, L., Tar, M., Kassai, K. M., & Kristó, I. (2023). Evaluation of the Development Process of Winter Wheat (Triticum aestivum L.) and Winter Pea (Pisum sativum L.) in Intercropping by Yield Components. Agronomy, 13(5), 1323. https://doi.org/10.3390/agronomy13051323