Phenological Growth Stages of Abelmoschus manihot: Codification and Description According to the BBCH Scale
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Seed Germination and Seedling Establishment
2.3. Field Experiment and Phenological Observations
2.4. Statistical Analyses
3. Results
3.1. Principal Growth Stages
Phenophase | Two-Digit Code | Three-Digit Code | Description | Period |
---|---|---|---|---|
0 | 00 | 000 | Dry/inactive seed or seed dressing (Figure 2a) | Late February |
01 | 001 | Beginning of seed imbibition (Figure 2b) | ||
03 | 003 | Seed imbibition complete (Figure 2c) | ||
05 | 005 | Radicle emerged from the seed (Figure 2d) | ||
06a | 006a | Elongation of the radicle, no root hair (Figure 2e) | ||
06b | 006b | Formation of root hairs (Figure 2f) | ||
07 | 007 | Hypocotyl with cotyledons breaking through seed coat (Figure 2g) | ||
08 | 008 | Hypocotyl with cotyledons outside seed coat (Figure 2h) | ||
09a | 009a | Emergence: Cotyledons break through the soil surface, folded cotyledons (Figure 2i) | ||
09b | 009b | Emergence: elongation of hypocotyl, folded cotyledons (Figure 2j) | ||
09c | 009c | Emergence: cotyledons unfold slightly (Figure 2k) | ||
1 | 10 | 100 | Cotyledons completely unfolded (Figure 3a) | Early March |
11a | 101a | First leaf on main stem emergence (Figure 3b) | ||
11b | 101b | The first leaf starts to grow or elongate (Figure 3c) | ||
11c | 101c | The first leaf on the main stem unfolded (Figure 3d) | ||
12 | 102 | The second leaf on the main stem unfolded (Figure 3e) | ||
13 | 103 | The third leaf on the main stem unfolded (Figure 3f) | ||
14 | 104 | The fourth leaf on the main stem unfolded (Figure 3g) | ||
15 | 105 | The fifth leaf on the main stem unfolded (Figure 3h) | Late-March | |
19 | 109 | Ninth or more leaves on the main stem unfolded | ||
119 | 19th or more leaves on the main stem unfolded (Figure 3j) | Mid-April | ||
121 | The first leaf on the side shoots unfolded | |||
122 | The second leaf on the side shoots unfolded | |||
123 | The third leaf on the side shoots unfolded | |||
129 | Ninth or more leaves on side shoots unfolded (Figure 3j) | Late-April | ||
2 | 21 | 201 | The first side shoot is visible (Figure 3h) | Late-March |
22 | 202 | The second side shoots visible | ||
23 | 203 | The third side shoots visible (Figure 3i) | ||
25 | 205 | The fifth side shoots visible | ||
27 | 207 | The seventh side shoots visible (Figure 3j) | ||
29 | 209 | Ninth or more side shoots are visible (Figure 3m). | Late April | |
3 | 31 | 301 | Main stem up to 20 cm long (Figure 3i). | Late April |
32 | 302 | Main stem up to 50 cm long (Figure 3j). | ||
33 | 303 | Main stem up to 70 cm long (Figure 3k) | Mid-June | |
34 | 304 | Main stem up to 90 cm long (Figure 3m) | ||
35 | 305 | Main stem up to 120 cm long (Figure 3n). | Late June | |
37 | 307 | Main stem up to 200 cm long (Figure 3o). | Late August | |
39 | 309 | Maximum main stem length reached up to 240 cm long. | Late October | |
5 | 50 | 500 | The first floral buds on the main stem are visible (Figure 4a). | Mid-May |
51 | 501 | Flower bud swelling (Figure 4b). | ||
53 | 503 | The flower bud continues to swell, stigma visible inside the petals (Figure 4c). | ||
54 | 504 | Flower bud and flower pedicel elongate (Figure 4d). | ||
55 | 505 | First individual flowers visible until close (Figure 4e). | Late May | |
56 | 506 | The petals begin to turn yellow (Figure 4f). | ||
57 | 507 | The petals break through the sepals (Figure 4g). | ||
59 | 509 | The first flower petals visible, the petals elongated quickly, flower bud began to open. The first flower will blossom the next day (Figure 4h). | Early June | |
520 | First floral buds on side shoots visible | Late June | ||
529 | The first flower on side shoots will blossom in the next day. | |||
6 | 61 | 601 | First flower opening and fruit set on the main stem (Figure 5a). | Early June |
62 | 602 | Second flower opening and fruit set on the main stem. | ||
63 | 605 | Fifth flower opening and fruit set on the main stem. | ||
69 | 609 | Ninth or more flowers opening and fruit set on the main stem (Figure 5b). | ||
619 | 19th flower opening and fruit set on the main stem (Figure 5d). | |||
621 | First flower opening and fruit set on the side shoots. | |||
629 | Ninth or more flowers opening and fruit set on the side shoots (Figure 5e). | |||
7 | 70 | 700 | First flower on the main stem drops and fruit expose. | Early June |
71 | 701 | First fruit on the main stem reach the final size (Figure 5b). | Early July | |
72 | 702 | Second fruit on the main stem reach the final size. | ||
73 | 703 | Third fruit on the main stem reaches the final size. | ||
79 | 709 | Ninth or more fruits on the main stem reach the final size. | ||
719 | 19th fruit on the main stem reach the final size. | Mid-July | ||
721 | The first fruit on the side shoots reach the final size. | |||
722 | The second fruit on the side shoots reach the final size. | |||
723 | The third fruit on the side shoots reach the final size. | |||
729 | Ninth or more fruits on the side shoots reach the final size (Figure 5e) | |||
8 | 81 | 801 | 10% of fruits have a yellow pod. The seed coat becomes brown and hard. | Early August |
83 | 803 | 30% of fruits have a yellow pod. The seed coat becomes brown and hard. | ||
85 | 805 | 50% of fruits have a yellow pod. Seed coat becomes brown and hard (Figure 5g) | ||
87 | 807 | 90% of fruits have yellow pods. The seed coat becomes brown and hard. | ||
89 | 809 | All of the fruit pod seed coat becomes brown and hard. | ||
9 | 91 | 901 | All fruits open, the fruit pod becomes brown and hard, and the leaf turns yellow (Figure 5g). | Midder December |
95 | 905 | 50% of leaves fall. | Late December | |
96 | 906 | All leaves are brown. | ||
97 | 907 | All leaves fall, and aboveground parts dead (Figure 5h) | Late January |
3.2. Specific Growth Stages
3.2.1. Principal Growth Stage 0: Germination
3.2.2. Principal Growth Stage 1: Leaf Development
3.2.3. Principal Growth Stage 2: Formation of Side Shoots
3.2.4. Principal Growth Stage 3: Shoot Development (Main Shoot)
3.2.5. Principal Growth Stage 5: Inflorescence Emergence
3.2.6. Principal Growth Stage 6: Flowering
3.2.7. Principal Growth Stage 7: Fruit and Seed Development
3.2.8. Principal Growth Stage 8: Maturity of Fruit and Seed
3.2.9. Principal Growth Stage 9: Senescence
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McDonough MacKenzie, C.; Gallinat, A.S.; Zipf, L. Low-cost Observations and Experiments Return a High Value in Plant Phenology Research. Appl. Plant Sci. 2020, 8, e11338. [Google Scholar] [CrossRef] [PubMed]
- Chmielewski, F.-M. Phenology in Agriculture and Horticulture. In Phenology: An Integrative Environmental Science; Schwartz, M.D., Ed.; Springer: Dordrecht, The Netherlands, 2013; pp. 539–561. ISBN 978-94-007-6925-0. [Google Scholar]
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A Decimal Code for the Growth Stages of Cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- Meier, U.; Bleiholder, H.; Buhr, L.; Feller, C.; Hack, H.; Heß, M.; Lancashire, P.D.; Schnock, U.; Stauß, R.; van den Boom, T.; et al. The BBCH System to Coding the Phenological Growth Stages of Plants, History and Publications. J. Für Kult. 2009, 61, 41–52. [Google Scholar]
- Meier, U. Growth Stages of Mono- and Dicotyledonous Plants; Blackwell Wissenschafts-Verlag: Berlin, Germany, 1997; ISBN 978-38-263-3152-7. [Google Scholar]
- Lancashire, P.D.; Bleiholder, H.; Boom, T.V.D.; Langelüddeke, P.; Stauss, R.; Weber, E.; Witzenberger, A. A Uniform Decimal Code for Growth Stages of Crops and Weeds. Ann. Appl. Biol. 1991, 119, 561–601. [Google Scholar] [CrossRef]
- Fadón, E.; Herrero, M.; Rodrigo, J. Flower Development in Sweet Cherry Framed in the BBCH Scale. Sci. Hortic. 2015, 192, 141–147. [Google Scholar] [CrossRef]
- Feldmann, F.; Rutikanga, A. Phenological Growth Stages and BBCH-Identification Keys of Chilli (Capsicum annuum L., Capsicum chinense JACQ., Capsicum baccatum L.). J. Plant Dis. Prot. 2021, 128, 549–555. [Google Scholar] [CrossRef]
- Kim, Y.S.; Park, C.S.; Lee, D.Y.; Lee, J.S.; Lee, S.H.; In, J.G.; Hong, T.K. Phenological Growth Stages of Korean Ginseng (Panax ginseng) According to the Extended BBCH Scale. J. Ginseng Res. 2021, 45, 527–534. [Google Scholar] [CrossRef]
- Vârban, R.; Ona, A.; Stoie, A.; Vârban, D.; Crișan, I. Phenological Assessment for Agronomic Suitability of Some Agastache Species Based on Standardized BBCH Scale. Agronomy 2021, 11, 2280. [Google Scholar] [CrossRef]
- Paradinas, A.; Ramade, L.; Mulot-Greffeuille, C.; Hamidi, R.; Thomas, M.; Toillon, J. Phenological Growth Stages of ‘Barcelona’ Hazelnut (Corylus avellana L.) Described Using an Extended BBCH Scale. Sci. Hortic. 2022, 296, 110902. [Google Scholar] [CrossRef]
- Niedbała, G.; Kurek, J.; Świderski, B.; Wojciechowski, T.; Antoniuk, I.; Bobran, K. Prediction of Blueberry (Vaccinium corymbosum L.) Yield Based on Artificial Intelligence Methods. Agriculture 2022, 12, 2089. [Google Scholar] [CrossRef]
- Luan, F.; Wu, Q.; Yang, Y.; Lv, H.; Liu, D.; Gan, Z.; Zeng, N. Traditional Uses, Chemical Constituents, Biological Properties, Clinical Settings, and Toxicities of Abelmoschus manihot L.: A Comprehensive Review. Front. Pharmacol. 2020, 11, 1068. [Google Scholar] [CrossRef] [PubMed]
- Prabawardani, S. Morphological Diversity and the Cultivation Practice of Abelmoschus manihot in West Papua, Indonesia. Biodiversitas J. Biol. Divers. 2016, 17, 894–899. [Google Scholar] [CrossRef]
- Preston, S.R.; Heller, J.; Engels, J. Aibika/Bele, Abelmoschus manihot (L.) Medik; IPK and IPGRI: Rome, Italy, 1998; ISBN 978-92-904-3381-1. [Google Scholar]
- Sutar, S.; Patil, P.; Aitawade, M.; John, J.; Malik, S.; Rao, S.; Yadav, S.; Bhat, K.V. A New Species of Abelmoschus Medik. (Malvaceae) from Chhattisgarh, India. Genet. Resour. Crop Evol. 2013, 60, 1953–1958. [Google Scholar] [CrossRef]
- Rubiang-Yalambing, L.; Arcot, J.; Greenfield, H.; Holford, P. Aibika (Abelmoschus manihot L.): Genetic Variation, Morphology and Relationships to Micronutrient Composition. Food Chem. 2016, 193, 62–68. [Google Scholar] [CrossRef]
- Hamon, S.; Koechlin, J. The Reproductive Biology of Okra. 1. Study of the Breeding System in Four Abelmoschus Species. Euphytica 1991, 53, 41–48. [Google Scholar] [CrossRef]
- Hamon, S.; Koechlin, J. The Reproductive Biology of Okra. 2. Self-Fertilization Kinetics in the Cultivated Okra (Abelmoschus esculentus), and Consequences for Breeding. Euphytica 1991, 53, 49–55. [Google Scholar] [CrossRef]
- Zheng, X.; Liu, Z.; Li, S.; Wang, L.; Lv, J.; Li, J.; Ma, X.; Fan, L.; Qian, F. Identification and Characterization of a Cytotoxic Polysaccharide from the Flower of Abelmoschus manihot. Int. J. Biol. Macromol. 2016, 82, 284–290. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Lu, Y.; Shang, E.; Li, T.; Liu, Y.; Duan, J.; Qian, D.; Tang, Y. Metabolite Identification Strategy of Non-Targeted Metabolomics and Its Application for the Identification of Components in Chinese Multicomponent Medicine Abelmoschus manihot L. Phytomedicine 2015, 22, 579–587. [Google Scholar] [CrossRef]
- Tu, Y.; Sun, W.; Wan, Y.G.; Che, X.Y.; Pu, H.P.; Yin, X.; Chen, H.L.; Meng, X.J.; Huang, Y.R.; Shi, X.M. Huangkui Capsule, an Extract from Abelmoschus manihot (L.) Medic, Ameliorates Adriamycin-Induced Renal Inflammation and Glomerular Injury via Inhibiting P38MAPK Signaling Pathway Activity in Rats. J. Ethnopharmacol. 2013, 147, 311–320. [Google Scholar] [CrossRef]
- Zhang, W.; Cheng, C.; Han, Q.; Chen, Y.; Guo, J.; Wu, Q.; Zhu, B.; Shan, J.; Shi, L. Flos Abelmoschus Manihot Extract Attenuates DSS-Induced Colitis by Regulating Gut Microbiota and Th17/Treg Balance. Biomed. Pharmacother. 2019, 117, 109162. [Google Scholar] [CrossRef]
- National Meteorological Information Center. Available online: http://data.cma.cn/site/index.html (accessed on 15 January 2023).
- Boyes, D.C.; Zayed, A.M.; Ascenzi, R.; McCaskill, A.J.; Hoffman, N.E.; Davis, K.R.; Görlach, J. Growth Stage–Based Phenotypic Analysis of Arabidopsis: A Model for High Throughput Functional Genomics in Plants. Plant Cell 2001, 13, 1499–1510. [Google Scholar] [CrossRef] [PubMed]
- Brandán, J.P. Phenological Growth Stages in Chia (Salvia hispanica L.) according to the BBCH Scale. Sci. Hortic. 2019, 255, 292–297. [Google Scholar] [CrossRef]
- Marchese, J.A.; Ferreira, J.F.S.; Moraes, R.M.; Dayan, F.E.; Rodrigues, M.F.F.; Jamhour, J.; Dallacorte, L.V. Crop Phenology and Floral Induction in Different Artemisia Annua L. Genotypes. Ind. Crops Prod. 2023, 192, 116118. [Google Scholar] [CrossRef]
- Ramírez, F.; Fischer, G.; Davenport, T.L.; Pinzón, J.C.A.; Ulrichs, C. Cape Gooseberry (Physalis peruviana L.) Phenology According to the BBCH Phenological Scale. Sci. Hortic. 2013, 162, 39–42. [Google Scholar] [CrossRef]
- Meier, U.; Bleiholder, H.; Brumme, H.; Bruns, E.; Mehring, B.; Proll, T.; Wiegand, J. Phenological Growth Stages of Roses (Rosa sp.): Codification and Description According to the BBCH Scale. Ann. Appl. Biol. 2008, 154, 231–238. [Google Scholar] [CrossRef]
- Mendez-Lopez, A.Y.; del CarmenLagunes-Espinoza, C.; González-Esquinca, A.R.; Hernández-Nataren, E.; Ortiz-García, C.F. Phenological Characterization of Chipilín (Crotalaria longirostrata Hook. & Arn.) and Relationship between the Phenological Stage and Chemical Composition of Leaves. S. Afr. J. Bot. 2023, 154, 140–148. [Google Scholar]
- Kishore, K. Phenological Growth Stages of Dragon Fruit (Hylocereus undatus) According to the Extended BBCH-Scale. Sci. Hortic. 2016, 213, 294–302. [Google Scholar] [CrossRef]
- Stoian, V.A.; Gâdea, Ș.; Vidican, R.; Vârban, D.; Balint, C.; Vâtcă, A.; Rotaru, A.; Stoian, V.; Vâtcă, S. Dynamics of the Ocimum Basilicum L. Germination under Seed Priming Assessed by an Updated BBCH Scale. Agronomy 2022, 12, 2694. [Google Scholar] [CrossRef]
- Gentallan, R.P.; Bartolome, M.C.B.; Cejalvo, R.D.; Timog, E.B.S.; Altoveros, N.C.; Borromeo, T.H.; Endonela, L.E. Seed Morphological Characteristics, Storage Behavior, and Germination Pattern of Combretum indicum (L.) DeFilipps. Genet. Resour. Crop Evol. 2021, 68, 2767–2773. [Google Scholar] [CrossRef]
- Archontoulis, S.V.; Struik, P.C.; Vos, J.; Danalatos, N.G. Phenological Growth Stages of Cynara cardunculus: Codification and Description According to the BBCH Scale. Ann. Appl. Biol. 2010, 156, 253–270. [Google Scholar] [CrossRef]
- Kishore, K. Phenological Growth Stages and Heat Unit Requirement of Indian Blackberry (Syzygium cumini L., Skeels). Sci. Hortic. 2019, 249, 455–460. [Google Scholar] [CrossRef]
- Piao, S.; Liu, Q.; Chen, A.; Janssens, I.A.; Fu, Y.; Dai, J.; Liu, L.; Lian, X.; Shen, M.; Zhu, X. Plant Phenology and Global Climate Change: Current Progresses and Challenges. Glob. Change Biol. 2019, 25, 1922–1940. [Google Scholar] [CrossRef] [PubMed]
- Cameron, W.; Petrie, P.R.; Barlow, E.W.R. The Effect of Temperature on Grapevine Phenological Intervals: Sensitivity of Budburst to Flowering. Agric. For. Meteorol. 2022, 315, 108841. [Google Scholar] [CrossRef]
- Xiao, D.; Zhao, J.J.; Hou, X.L.; Basnet, R.K.; Carpio, D.P.D.; Zhang, N.W.; Bucher, J.; Lin, K.; Cheng, F.; Wang, X.W.; et al. The Brassica Rapa FLC Homologue FLC2 Is a Key Regulator of Flowering Time, Identified through Transcriptional Co-Expression Networks. J. Exp. Bot. 2013, 64, 4503–4516. [Google Scholar] [CrossRef] [PubMed]
- Eeraerts, M. Increasing Wild Bee Richness and Abundance on Sequentially Flowering Cultivars of a Pollinator-Dependent Crop. Agric. Ecosyst. Environ. 2022, 325, 107745. [Google Scholar] [CrossRef]
- Krüger, E.; Woznicki, T.L.; Heide, O.M.; Kusnierek, K.; Rivero, R.; Masny, A.; Sowik, I.; Brauksiepe, B.; Eimert, K.; Mott, D.; et al. Flowering Phenology of Six Seasonal-Flowering Strawberry Cultivars in a Coordinated European Study. Horticulturae 2022, 8, 933. [Google Scholar] [CrossRef]
- Munger, P.; Bleiholder, H.; Hack, H.; Hess, M.; Stauß, R.; Boom, T.; Weber, E. Phenological Growth Stages of the Cotton Plant (Gossypium hirsutum L.): Codification and Description according to the BBCH Scale. J. Agron. Crop Sci. 1998, 180, 143–149. [Google Scholar] [CrossRef]
- Muengkaew, R.; Chaiprasart, P.; Warrington, I. Changing of Physiochemical Properties and Color Development of Mango Fruit Sprayed Methyl Jasmonate. Sci. Hortic. 2016, 198, 70–77. [Google Scholar] [CrossRef]
- Singh, A.K.; Bajpai, A.; Rajan, S.; Das, S.S.; Mishra, K.K. Modified BBCH Codification and Correlation of Phenological Characteristics with Climatic Variables in Jamun (Syzigium cuminii Skeels). Sci. Hortic. 2021, 283, 110081. [Google Scholar] [CrossRef]
Stage | DAE | Bud Length (BUL, mm) | Bud Width (BUW, mm) | BUL/BUW | Pistil Length (PL, mm) | Stamen Length (SL, mm) | PIL/STL | Bracts Length (BRL, mm) | Pedicel Length (PEL, mm) |
---|---|---|---|---|---|---|---|---|---|
500 | 1–2 | 4.45 ± 0.17 h | 3.38 ± 0.11 g | 1.32 ± 0.03 e | 1.56 ± 0.04 h | 2.65 ± 0.03 h | 0.59 ± 0.02 e | 6.63 ± 0.31 d | Not formed |
501 | 3–4 | 6.67 ± 0.28 g | 4.61 ± 0.18 f | 1.45 ± 0.10 d | 2.82 ± 0.19 g | 3.72 ± 0.39 g | 0.76 ± 0.05 d | 7.25 ± 0.42 c | 2.04 ± 0.19 f |
503 | 5–6 | 7.67 ± 0.13 f | 5.04 ± 0.10 e | 1.52 ± 0.01 d | 5.16 ± 0.15 f | 4.91 ± 0.04 f | 1.05 ± 0.02 c | 8.14 ± 0.66 c | 2.79 ± 0.19 e |
504 | 7–9 | 18.94 ± 0.13 e | 10.08 ± 0.65 d | 1.88 ± 0.08 c | 8.87 ± 0.11 e | 6.91 ± 0.05 e | 1.17 ± 0.02 b | 13.31 ± 0.88 b | 13.71 ± 1.26 d |
505 | 10–11 | 21.91 ± 0.92 d | 11.70 ± 0.57 c | 1.88 ± 0.11 c | 9.21 ± 0.39 d | 7.77 ± 0.41 d | 1.19 ± 0.02 a | 13.63 ± 1.01 b | 13.79 ± 0.46 d |
506 | 12–13 | 24.65 ± 0.48 c | 12.53 ± 0.25 b | 1.97 ± 0.04 c | 10.64 ± 0.60 c | 8.73 ± 0.41 c | 1.22 ± 0.03 a | 14.51 ± 0.89 b | 17.68 ± 0.61 c |
507 | 14–15 | 35.09 ± 1.95 b | 14.08 ± 0.88 a | 2.49 ± 0.07 b | 12.22 ± 0.14 b | 9.65 ± 0.43 b | 1.27 ± 0.04 a | 17.25 ± 0.52 a | 26.28 ± 1.50 b |
509 | 16 | 51.29 ± 3.84 a | 15.03 ± 0.89 a | 3.41 ± 0.08 a | 20.35 ± 0.31 a | 15.09 ± 1.07 a | 1.35 ± 0.09 a | 18.47 ± 1.20 a | 34.01 ± 2.89 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, W.; Hu, Y.; Lin, X.; Yu, D.; Jia, S.; Ye, Y.; Mao, Y.; Yi, L.; Gao, S. Phenological Growth Stages of Abelmoschus manihot: Codification and Description According to the BBCH Scale. Agronomy 2023, 13, 1328. https://doi.org/10.3390/agronomy13051328
Qian W, Hu Y, Lin X, Yu D, Jia S, Ye Y, Mao Y, Yi L, Gao S. Phenological Growth Stages of Abelmoschus manihot: Codification and Description According to the BBCH Scale. Agronomy. 2023; 13(5):1328. https://doi.org/10.3390/agronomy13051328
Chicago/Turabian StyleQian, Wenzhang, Yunyi Hu, Xi Lin, Deshui Yu, Shibing Jia, Yulin Ye, Yidong Mao, Lu Yi, and Shun Gao. 2023. "Phenological Growth Stages of Abelmoschus manihot: Codification and Description According to the BBCH Scale" Agronomy 13, no. 5: 1328. https://doi.org/10.3390/agronomy13051328
APA StyleQian, W., Hu, Y., Lin, X., Yu, D., Jia, S., Ye, Y., Mao, Y., Yi, L., & Gao, S. (2023). Phenological Growth Stages of Abelmoschus manihot: Codification and Description According to the BBCH Scale. Agronomy, 13(5), 1328. https://doi.org/10.3390/agronomy13051328