Composition of Soil Bacterial and Nematode Communities within Soil Aggregates in a Kiwifruit Orchard under Cover Crop Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Experimental Design
2.2. Soil Sampling and Aggregate Separation
2.3. Soil Physicochemical Parameters
2.4. Soil DNA Extraction and Illumina Sequencing
2.5. Soil Nematode Composition
2.6. Statistical Analyses
3. Results
3.1. Soil Aggregate Distribution and Chemical Properties
3.2. Bacterial Community Composition
3.3. Soil Nematode Composition
3.4. Correlations between Soil Chemical Factors and Bacterial and Nematode Communities
4. Discussion
4.1. Influence of Cover Crop Treatments on Bacterial Community in Soil Aggregates
4.2. Influence of Cover Crop Treatments on Nematode Community in Soil Aggregates
4.3. Relationships between Soil Chemical Factors and Community of Bacterial and Nematode
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yin, Y.; Liang, C.H.; Pei, Z.J. Effect of greenhouse soil management on soil aggregation and organic matter in northeast China. Catena 2015, 133, 412–419. [Google Scholar] [CrossRef]
- Zhang, B.; Xu, Y.Z.; LI, N.; Qiao, Y.F.; Jiang, H.; Han, X.Z. Recent Development in Controlling Factors for Aggregated Soil Structure. Soil Crop. 2014, 3, 41–49. [Google Scholar]
- Briar, S.S.; Fonte, S.J.; Park, I.; Six, J.; Scow, K.; Ferris, H. The distribution of nematodes and soil microbial communities across soil aggregate fractions and farm management systems. Soil Biol. Biochem. 2011, 43, 905–914. [Google Scholar] [CrossRef]
- Wan, W.; Li, X.; Han, S.; Wang, L.; Luo, X.; Chen, W.; Huang, Q. Soil aggregate fractionation and phosphorus fraction driven by long-term fertilization regimes affect the abundance and composition of P-cycling-related bacteria. Soil Tillage Res. 2020, 196, 104475. [Google Scholar] [CrossRef]
- Martin, T.; Sprunger, C.D. A meta-analysis of nematode community composition across soil aggregates: Implications for soil carbon dynamics. Appl. Soil Ecol. 2021, 168, 104143. [Google Scholar] [CrossRef]
- Li, F.Q.; Qiu, P.F.; Shen, B.; Shen, Q.R. Soil aggregate size modifies the impacts of fertilization on microbial communities. Geoderma 2019, 343, 205–214. [Google Scholar] [CrossRef]
- Trivedi, P.; Delgado-Baquerizo, M.; Jeffries, T.C.; Trivedi, C.; Anderson, I.C.; Lai, K.; Mcnee, M.; Flower, K.; Singh, B.P.; Minkey, D.; et al. Soil aggregation and associated microbial communities modify the impact of agricultural management on carbon content. Environ. Microbiol. 2017, 19, 3070–3086. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Liu, C.; Wang, J.; Meng, Q.; Yuan, Y.; Ma, X.; Liu, X.; Zhu, Y.; Ding, G.; Zhang, J. Soil aggregates stability and storage of soil organic carbon respond to cropping systems on black soils of Northeast China. Sci. Rep. 2020, 10, 265. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Sun, B.; Li, H.; Liu, M.; Chen, L.; Zhou, S. Aggregate-related changes in network patterns of nematodes and ammonia oxidizers in an acidic soil. Soil Biol. Biochem. 2015, 88, 101–109. [Google Scholar] [CrossRef]
- Trivedi, P.; Rochester, I.J.; Trivedi, C.; Van Nostrand, J.D.; Zhou, J.; Karunaratne, S.; Anderson, I.C.; Singh, B.K. Soil aggregate size mediates the impacts of cropping regimes on soil carbon and microbial communities. Soil Biol. Biochem. 2015, 91, 169–181. [Google Scholar] [CrossRef]
- Zhang, G.; Kou, X.; Zhang, X.; Bai, W.; Liang, W. Effect of row spacings on soil nematode communities and ecosystem multifunctionality at an aggregate scale. Sci. Rep. 2020, 10, 4779. [Google Scholar] [CrossRef] [PubMed]
- Gelaw, A.M.; Singh, B.; Lal, R. Organic carbon and nitrogen associated with soil aggregates and particle sizes under different land uses in Tigray, Northern Ethiopia. Land Degrad. Dev. 2015, 26, 690–700. [Google Scholar] [CrossRef]
- Li, J.; Wu, H.-J.; Wu, X.-P.; Cai, D.-X.; Yao, Y.-Q.; Lü, J.-J.; Tian, Y.-L. Effects of long-term tillage measurements on soil aggregate characteristic and microbial diversity. Yingyong Shengtai Xuebao 2014, 25, 2341–2348. [Google Scholar] [PubMed]
- Wang, S.; Li, T.; Zheng, Z. Response of soil aggregate-associated microbial and nematode communities to tea plantation age. Catena 2018, 171, 475–484. [Google Scholar] [CrossRef]
- Jiang, Y.; Sun, B.; Jin, C.; Wang, F. Soil aggregate stratification of nematodes and microbial communities affects the metabolic quotient in an acid soil. Soil Biol. Biochem. 2013, 60, 1–9. [Google Scholar] [CrossRef]
- Murugan, R.; Djukic, I.; Keiblinger, K.; Zehetner, F.; Bierbaumer, M.; Zechmeister-Bolternstern, S.; Joergernsen, R.G. Spatial distribution of microbial biomass and residues across soil aggregate fractions at different elevations in the Central Austrian Alps. Geoderma 2019, 339, 1–8. [Google Scholar] [CrossRef]
- Zhang, X.; Xin, X.; Zhu, A.; Yang, W.; Zhang, J.; Ding, S.; Mu, L.; Shao, L. Linking macroaggregation to soil microbial community and organic carbon accumulation under different tillage and residue managements. Soil Tillage Res. 2018, 178, 99–107. [Google Scholar] [CrossRef]
- Guan, P.; Zhang, X.; Yu, J.; Cheng, Y.; Li, Q.; Andriuzzi, W.S.; Liang, W. Soil microbial food web channels associated with biological soil crusts in desertification restoration: The carbon flow from microbes to nematodes. Soil Biol. Biochem. 2018, 116, 82–90. [Google Scholar] [CrossRef]
- Ferris, H.; Bongers, T.; de Goede, R.G.M. A framework for soil food web diagnostics: Extension of the nematode faunal analysis concept. Appl. Soil Ecol. 2001, 18, 13–29. [Google Scholar] [CrossRef]
- Wall, D.H.; Moore, J.C. Interactions underground—Soil biodiversity, mutualism, and ecosystem processes. Bioscience 1999, 49, 109–117. [Google Scholar] [CrossRef]
- Pen-Mouratov, S.; Rakhimbaev, M.; Steinberger, Y. Seasonal and spatial variation in nematode communities in a Negev Desert ecosystem. J. Nematol. 2003, 35, 157–166. [Google Scholar] [PubMed]
- Yeates, G.W. Nematodes as soil indicators: Functional and biodiversity aspects. Biol. Fertil. Soils 2003, 37, 199–210. [Google Scholar] [CrossRef]
- Quénéhervé, P.; Chotte, J.-L. Distribution of nematodes in vertisol aggregates under a permanent pasture in Martinique. Appl. Soil Ecol. 1996, 4, 193–200. [Google Scholar] [CrossRef]
- Ferris, H. Form and function: Metabolic footprints of nematodes in the soil food web. Eur. J. Soil Biol. 2010, 46, 97–104. [Google Scholar] [CrossRef]
- Papatheodorou, E.; Kordatos, H.; Kouseras, T.; Monokrousos, N.; Menkissoglu-Spiroudi, U.; Diamantopoulos, J.; Stamou, G.; Argyropoulou, M. Differential responses of structural and functional aspects of soil microbes and nematodes to abiotic and biotic modifications of the soil environment. Appl. Soil Ecol. 2012, 61, 26–33. [Google Scholar] [CrossRef]
- Yeates, G.W.; Bongers, T.; de Goede, R.G.M.; Freckman, D.W.; Georgieva, S.S. Feeding habits in soil nematode families and generaean outline for soil ecologists. J. Nematol. 1993, 25, 315–331. [Google Scholar]
- Zhang, S.X.; Li, Q.; Lu, Y.; Zhang, X.P.; Liang, W.J. Contributions of soil biota to C sequestration varied with aggregate fractions under different tillage systems. Soil Biol. Biochem. 2013, 62, 147–156. [Google Scholar] [CrossRef]
- Peixoto, R.; Coutinho, H.; Madari, B.; Machado, P.d.A.; Rumjanek, N.; Van Elsas, J.; Seldin, L.; Rosado, A. Soil aggregation and bacterial community structure as affected by tillage and cover cropping in the Brazilian Cerrados. Soil Tillage Res. 2006, 90, 16–28. [Google Scholar] [CrossRef]
- Liao, H.; Zhang, Y.C.; Zuo, Q.Y.; Du, B.B.; Chen, W.L.; Wei, D.; Huang, Q.Y. Contrasting responses of bacterial and fungal communities to aggregate-size fractions and long-term fertilizations in soils of northeastern China. Sci. Total Environ. 2018, 635, 784–792. [Google Scholar] [CrossRef]
- Tiemann, L.K.; Grandy, A.S.; Atkinson, E.E.; Marin-Spiotta, E.; McDaniel, M.D. Crop rotational diversity enhances belowground communities and functions in an agroecosystem. Ecol. Lett. 2015, 18, 761–771. [Google Scholar] [CrossRef]
- Djigal, D.; Chabrier, C.; Duyck, P.-F.; Achard, R.; Quénéhervé, P.; Tixier, P. Cover crops alter the soil nematode food web in banana agroecosystems. Soil Biol. Biochem. 2012, 48, 142–150. [Google Scholar] [CrossRef]
- Ito, T.; Araki, M.; Higashi, T.; Komatsuzaki, M.; Kaneko, N.; Ohta, H. Responses of soil nematode community structure to soil carbon changes due to different tillage and cover crop management practices over a nine-year period in Kanto, Japan. Appl. Soil Ecol. 2015, 89, 50–58. [Google Scholar] [CrossRef]
- Zheng, W.; Zhao, Z.; Gong, Q.; Zhai, B.; Li, Z. Responses of fungal–bacterial community and network to organic inputs vary among different spatial habitats in soil. Soil Biol. Biochem. 2018, 125, 54–63. [Google Scholar] [CrossRef]
- Eisenhauer, N.; Lanoue, A.; Strecker, T.; Scheu, S.; Steinauer, K.; Thakur, M.P.; Mommer, L. Root biomass and exudates link plant diversity with soil bacterial and fungal biomass. Sci. Rep. 2017, 7, 44641. [Google Scholar] [CrossRef] [PubMed]
- Isbell, F.; Adler, P.R.; Eisenhauer, N.; Fornara, D.; Kimmel, K.; Kremen, C.; Letourneau, D.K.; Liebman, M.; Polley, H.W.; Quijas, S.; et al. Benefits of increasing plant diversity in sustainable agroecosystems. J. Ecol. 2017, 105, 871–879. [Google Scholar] [CrossRef]
- Ferris, H.V.R.C.; van der Meulen, H.R.; Lau, S.S. Nitrogen mineralization by bacterial-feeding nematodes: Verification and measurement. Plant Soil 1998, 203, 159–171. [Google Scholar] [CrossRef]
- Sainju, U.M.; Caesar-TonThat, T.; Jabro, J.D. Carbon and nitrogen fractions in dryland soil aggregates affected by long-term tillage and cropping sequence. Soil Sci. Soc. Am. J. 2009, 73, 1488–1495. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Lauber, C.L.; Walters, W.A.; Berg-Lyons, D.; Lozupone, C.A.; Turnbaugh, P.J.; Fierer, N.; Knight, R. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. USA 2011, 108, 4516–4522. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Pena, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microb. 2007, 73, 5261–5267. [Google Scholar] [CrossRef]
- Mao, X.; Li, H.; Chen, X. Extraction efficiency of soil nematodes by differnt methods. Chin. J. Ecol. 2004, 23, 149–151. [Google Scholar]
- Jiang, Y.; Qian, H.; Wang, X.; Chen, L.; Liu, M.; Li, H.; Sun, B. Nematodes and microbial community affect the sizes and turnover rates of organic carbon pools in soil aggregates. Soil Biol. Biochem. 2018, 119, 22–31. [Google Scholar] [CrossRef]
- Six, J.; Bossuyt, H.; Degryze, S.; Denef, K. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Till. Res. 2004, 79, 7–31. [Google Scholar] [CrossRef]
- Kong, A.Y.Y.; Scow, K.M.; Cordova-Kreylos, A.L.; Holmes, W.E.; Six, J. Microbial community composition and carbon cycling within soil microenvironments of conventional, low-input, and organic cropping systems. Soil Biol. Biochem. 2011, 43, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Fierer, N.; Bradford, M.A.; Jackson, R.B. Toward an ecological classification of soil bacteria. Ecology 2007, 88, 1354–1364. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Guo, Q.; Feng, Z.Y.; Liu, Z.D.; Li, H.Y.; Sun, Y.F.; Liu, C.S.; Lai, H.X. Long-term organic fertilization improves the productivity of kiwifruit (Actinidia chinensis Planch.) through increasing rhizosphere microbial diversity and network complexity. Appl. Soil Ecol. 2020, 147, 103426. [Google Scholar] [CrossRef]
- Johnson, M.J.; Lee, K.Y.; Scow, K.M. DNA fingerprinting reveals links among agricultural crops, soil properties, and the composition of soil microbial communities. Geoderma 2003, 114, 279–303. [Google Scholar] [CrossRef]
- Six, J.; Frey, S.D.; Thiet, R.K.; Batten, K.M. Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci. Soc. Am. J. 2006, 70, 555–569. [Google Scholar] [CrossRef]
- Chavarría, D.N.; Verdenelli, R.A.; Serri, D.L.; Restovich, S.B.; Andriulo, A.E.; Meriles, J.M.; Vargas-Gil, S. Effect of cover crops on microbial community structure and related enzyme activities and macronutrient availability. Eur. J. Soil Biol. 2016, 76, 74–82. [Google Scholar] [CrossRef]
- Thapa, V.R.; Ghimire, R.; Acosta-Martínez, V.; Marsalis, M.A.; Schipanski, M.E. Cover crop biomass and species composition affect soil microbial community structure and enzyme activities in semiarid cropping systems. Appl. Soil Ecol. 2021, 157, 103735. [Google Scholar] [CrossRef]
- Yin, X.; Tian, W.; Ding, Y.; Sun, F.; Yuan, J.; Li, Y.; Chen, Z. Composition and predictive functional analysis of bacterial communities in surface sediments of the Danjiangkou Reservoir. J. Lake Sci. 2018, 30, 1052–1063. [Google Scholar]
- Zhang, Z.; Zhang, X.; Mahamood, M.; Zhang, S.; Huang, S.; Liang, W. Effect of long-term combined application of organic and inorganic fertilizers on soil nematode communities within aggregates. Sci. Rep. 2016, 6, 31118. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Ni, H.; Li, X.; Sun, B.; Liang, Y. Molecular ecological network of bacteria and fungi in paddy soil profile of typical red soil. Acta Pedol. Sin. 2021, 58, 1018–1027. [Google Scholar]
- Zheng, W.; Zhao, Z.; Gong, Q.; Zhai, B.; Li, Z. Effects of cover crop in an apple orchard on microbial community composition, networks, and potential genes involved with degradation of crop residues in soil. Biol. Fertil. Soils 2018, 54, 743–759. [Google Scholar] [CrossRef]
- DuPont, S.T.; Ferris, H.; Van Horn, M. Effects of cover crop quality and quantity on nematode-based soil food webs and nutrient cycling. Appl. Soil Ecol. 2009, 41, 157–167. [Google Scholar] [CrossRef]
Soil Variables | Treatment | Aggregate Sizes | ||
---|---|---|---|---|
Mega-Aggregate | Macro-Aggregate | Micro-Aggregate | ||
Aggregate proportions (%) | CK | 47.63 ± 0.90 a | 49.59 ± 0.53 a | 2.90 ± 0.23 a |
CC | 47.12 ± 1.02 a | 50.58 ± 1.13 a | 2.55 ± 0.20 a | |
B | A | C | ||
SOC (g kg−1) | CK | 4.28 ± 0.06 b | 5.44 ± 0.08 b | 18.47 ± 0.59 a |
CC | 4.63 ± 0.09 a | 5.79 ± 0.04 a | 21.30 ± 1.52 a | |
B | B | A | ||
TN (g kg−1) | CK | 0.61 ± 0.00 b | 0.78 ± 0.01 b | 2.29 ± 0.02 b |
CC | 0.67 ± 0.01 a | 0.84 ± 0.01 a | 3.00 ± 0.13 a | |
B | B | A | ||
C/N ratio | CK | 6.97 ± 0.07 a | 6.94 ± 0.02 a | 8.06 ± 0.24 a |
CC | 6.95 ± 0.06 a | 6.87 ± 0.05 a | 7.08 ± 0.24 b | |
B | B | A |
Nematode Abundance and Ecological Indices | Treatment | Aggregates | ||
---|---|---|---|---|
Mega-Aggregate | Macro-Aggregate | Micro-Aggregate | ||
Total nematode abundance | CK | 1207.02 ± 84.06 b | 1408.02 ± 242.54 a | 1066.42 ± 145.51 b |
CC | 1982.72 ± 140.55 a | 2102.60 ± 291.01 a | 1774.17 ± 164.50 a | |
A | A | A | ||
Bacterivore abundance | CK | 423.41 ± 36.17 b | 554.03 ± 99.82 a | 256.12 ± 14.77 b |
CC | 860.78 ± 72.02 a | 836.74 ± 51.16 a | 708.25 ± 98.11 a | |
A | A | A | ||
Fungivore abundance | CK | 273.90 ± 37.79 b | 593.88 ± 148.34 a | 676.74 ± 102.87 a |
CC | 591.41 ± 64.56 a | 856.52 ± 181.07 a | 886.18 ± 82.24 a | |
B | A | A | ||
Plant parasite abundance | CK | 136.89 ± 10.73 b | 119.31 ± 3.82 a | 126.00 ± 26.02 a |
CC | 233.97 ± 29.68 a | 229.23 ± 62.61 a | 149.08 ± 46.93 a | |
A | A | A | ||
Omnivore predator abundance | CK | 372.82 ± 31.43 a | 140.80 ± 24.25 a | 7.56 ± 3.99 a |
CC | 296.56 ± 17.63 a | 180.12 ± 51.92 a | 30.66 ± 8.10 a | |
A | A | B | ||
Richness | CK | 4.49 ± 0.19 a | 3.55 ± 0.19 a | 2.05 ± 0.05 b |
CC | 3.84 ± 0.19 a | 3.91 ± 0.25 a | 2.41 ± 0.01 a | |
A | A | B | ||
NCR | CK | 0.61 ± 0.03 a | 0.49 ± 0.05 a | 0.28 ± 0.02 b |
CC | 0.59 ± 0.01 a | 0.50 ± 0.04 a | 0.44 ± 0.03 a | |
A | B | C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Qi, X.; Zhang, L.; Zhang, Y.; Zhang, H.; Liu, H.; Yang, D.; Wang, H. Composition of Soil Bacterial and Nematode Communities within Soil Aggregates in a Kiwifruit Orchard under Cover Crop Treatment. Agronomy 2023, 13, 1377. https://doi.org/10.3390/agronomy13051377
Li Q, Qi X, Zhang L, Zhang Y, Zhang H, Liu H, Yang D, Wang H. Composition of Soil Bacterial and Nematode Communities within Soil Aggregates in a Kiwifruit Orchard under Cover Crop Treatment. Agronomy. 2023; 13(5):1377. https://doi.org/10.3390/agronomy13051377
Chicago/Turabian StyleLi, Qingmei, Xiaoxu Qi, Lingling Zhang, Yanjun Zhang, Haifang Zhang, Hongmei Liu, Dianlin Yang, and Hui Wang. 2023. "Composition of Soil Bacterial and Nematode Communities within Soil Aggregates in a Kiwifruit Orchard under Cover Crop Treatment" Agronomy 13, no. 5: 1377. https://doi.org/10.3390/agronomy13051377
APA StyleLi, Q., Qi, X., Zhang, L., Zhang, Y., Zhang, H., Liu, H., Yang, D., & Wang, H. (2023). Composition of Soil Bacterial and Nematode Communities within Soil Aggregates in a Kiwifruit Orchard under Cover Crop Treatment. Agronomy, 13(5), 1377. https://doi.org/10.3390/agronomy13051377