Artificial Intelligence: Implications for the Agri-Food Sector
Abstract
:1. Introduction
2. Role of AI in the Agriculture
2.1. Grain Quality
2.2. Pest Detection and Weed Management
2.3. Crop Selection and Yield Improvement
2.4. Big Data and IoT in Smart Farming
3. Role of AI in the Food Processing
3.1. Intelligent Food Packaging
3.2. Product Sorting
3.3. Foreign Object Detection
3.4. New Food Product Development
3.5. Equipment Cleaning and Maintenance
3.6. Demand-Supply Chain Management
3.7. 3D/4D Food Printing-Extrusion Technology
4. Role of AI in Food Quality and Food Safety
4.1. Food Quality Management
4.2. Food Safety Management
4.3. Food Waste Management
4.4. Predicting Shelf Life
5. Role of AI in the Personalized Nutrition
6. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed]
- Pournader, M.; Ghaderi, H.; Hassanzadegan, A.; Fahimnia, B. Artificial intelligence applications in supply chain management. Int. J. Prod. Econ. 2021, 241, 108250. [Google Scholar] [CrossRef]
- Pantazi, X.-E.; Moshou, D.; Bravo, C. Active learning system for weed species recognition based on hyperspectral sensing. Biosyst. Eng. 2016, 146, 193–202. [Google Scholar] [CrossRef]
- Kumar, K.; Thakur, G.S.M. Advanced applications of neural networks and artificial intelligence: A review. Int. J. Inf. Technol. Comput. Sci. 2012, 4, 57–68. [Google Scholar] [CrossRef]
- Saeed, W.; Omlin, C. Explainable AI (XAI): A systematic meta-survey of current challenges and future opportunities. Knowl. Based Syst. 2023, 263, 110273. [Google Scholar] [CrossRef]
- Miglani, A.; Kumar, N. Deep learning models for traffic flow prediction in autonomous vehicles: A review, solutions, and challenges. Veh. Commun. 2019, 20, 100184. [Google Scholar] [CrossRef]
- Goodell, J.W.; Kumar, S.; Lim, W.M.; Pattnaik, D. Artificial intelligence and machine learning in finance: Identifying foundations, themes, and research clusters from bibliometric analysis. J. Behav. Exp. Financ. 2021, 32, 100577. [Google Scholar] [CrossRef]
- Dhanaraju, M.; Chenniappan, P.; Ramalingam, K.; Pazhanivelan, S.; Kaliaperumal, R. Smart farming: Internet of Things (IoT)-based sustainable agriculture. Agriculture 2022, 12, 1745. [Google Scholar] [CrossRef]
- Chukkapalli, S.; Mittal, S.; Gupta, M.; Abdelsalam, M.; Joshi, A.; Sandhu, R.; Joshi, K. Ontologies and artificial intelligence systems for the cooperative smart farming ecosystem. IEEE Access 2020, 8, 164045–164064. [Google Scholar] [CrossRef]
- Sharma, P.; Vimal, A.; Vishvakarma, R.; Kumar, P.; de Souza Vandenberghe, L.; Kumar Gaur, V.; Varjani, S. Deciphering the blackbox of omics approaches and artificial intelligence in food waste transformation and mitigation. Int. J. Food Microbiol. 2022, 372, 109691. [Google Scholar] [CrossRef]
- Jagadeesan, B.; Gerner-Smidt, P.; Allard, M.W.; Leuillet, S.; Winkler, A.; Xiao, Y.; Chaffron, S.; Van Der Vossen, J.; Tang, S.; Katase, M.; et al. The use of next generation sequencing for improving food safety: Translation into practice. Food Microbiol. 2019, 79, 96–115. [Google Scholar] [CrossRef]
- Xiong, Y.; Ge, Y.; Grimstad, L.; From, P.J. An autonomous strawberry-harvesting robot: Design, development, integration, and field evaluation. J. Field Robot. 2020, 37, 202–224. [Google Scholar] [CrossRef]
- Wang, Y.; Jin, L.; Mao, H. Farmer cooperatives’ intention to adopt agricultural information technology—Mediating effects of attitude. Inf. Syst. Front. 2019, 21, 565–580. [Google Scholar] [CrossRef]
- Kumar, I.; Rawat, J.; Mohd, N.; Husain, S. Opportunities of artificial intelligence and machine learning in the food industry. J. Food Qual. 2021, 2021, 4535567. [Google Scholar] [CrossRef]
- Dewi, T.; Risma, P.; Oktarina, Y. Fruit sorting robot based on color and size for an agricultural product packaging system. Bull. Electr. Eng. Inform. 2020, 9, 1438–1445. [Google Scholar] [CrossRef]
- Pérez-Gomariz, M.; López-Gómez, A.; Cerdán-Cartagena, F. Artificial neural networks as artificial intelligence technique for energy saving in refrigeration systems—A review. Clean Technol. 2023, 5, 116–136. [Google Scholar] [CrossRef]
- Melesse, T.; Bollo, M.; Pasquale, V.; Centro, F.; Riemma, S. Machine learning-based digital twin for monitoring fruit quality evolution. Procedia Comput. Sci. 2022, 200, 13–20. [Google Scholar] [CrossRef]
- Phimolsiripol, Y.; Siripatrawan, U.; Cleland, D.J. Weight loss of frozen bread dough under isothermal and fluctuating temperature storage conditions. J. Food Eng. 2011, 106, 134–143. [Google Scholar] [CrossRef]
- Haff, R.; Toyofuku, N. X-ray detection of defects and contaminants in the food industry. Sens. Instrum. Food Qual. Saf. 2008, 2, 262–273. [Google Scholar] [CrossRef]
- Medus, L.; Saban, M.; Francés-Víllora, J.; Bataller-Mompeán, M.; Rosado-Muñoz, A. Hyperspectral image classification using CNN: Application to industrial food packaging. Food Control 2021, 125, 107962. [Google Scholar] [CrossRef]
- Benouis, M.; Medus, L.; Saban, M.; Łabiak, G.; Rosado-Muñoz, A. Food tray sealing fault detection using hyperspectral imaging and PCANet. IFAC Pap. 2020, 53, 7845–7850. [Google Scholar] [CrossRef]
- Sharma, S.; Patil, S. Key indicators of rice production and consumption, correlation between them and supply-demand prediction. Int. J. Product. Perform. Manag. 2015, 64, 1113–1137. [Google Scholar] [CrossRef]
- Sahni, V.; Srivastava, S.; Khan, R. Modelling techniques to improve the quality of food using artificial intelligence. J. Food Qual. 2021, 2021, 2140010. [Google Scholar] [CrossRef]
- Cheraghalipour, A.; Paydar, M.; Hajiaghaei-Keshteli, M. A bi-objective optimization for citrus closed-loop supply chain using Pareto-based algorithms. Appl. Soft Comput. 2018, 69, 33–59. [Google Scholar] [CrossRef]
- Ketsripongsa, U.; Pitakaso, R.; Sethanan, K.; Srivarapongse, T. An improved differential evolution algorithm for crop planning in the Northeastern region of Thailand. Math. Comput. Appl. 2018, 23, 40. [Google Scholar] [CrossRef]
- Sharma, A.; Zanotti, P.; Musunur, L. Drive through robotics: Robotic automation for last mile distribution of food and essentials during pandemics. IEEE Access 2020, 8, 127190–127219. [Google Scholar] [CrossRef]
- Wardah, S.; Djatna, T.; Marimin, M.; Yani, M. New product development in coconut-based agro-industry: Current research progress and challenges. IOP Conf. Ser. Earth Environ. Sci. 2020, 472, 012053. [Google Scholar] [CrossRef]
- Bo, W.; Qin, D.; Zheng, X.; Wang, Y.; Ding, B.; Li, Y.; Liang, G. Prediction of bitterant and sweetener using structure-taste relationship models based on an artificial neural network. Food Res. Int. 2022, 153, 110974. [Google Scholar] [CrossRef]
- Zhang, P.; Guo, Z.; Ullah, S.; Melagraki, G.; Afantitis, A.; Lynch, I. Nanotechnology and artificial intelligence to enable sustainable and precision agriculture. Nat. Plants 2021, 7, 864–876. [Google Scholar] [CrossRef]
- Ben Ayed, R.; Hanana, M. Artificial intelligence to improve the food and agriculture sector. J. Food Qual. 2021, 2021, 5584754. [Google Scholar] [CrossRef]
- Subeesh, A.; Mehta, C.R. Automation and digitization of agriculture using artificial intelligence and internet of things. Artif. Intell. Agric. 2021, 5, 278–291. [Google Scholar] [CrossRef]
- Talaviya, T.; Shah, D.; Patel, N.; Yagnik, H.; Shah, M. Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides. Artif. Intell. Agric. 2020, 4, 58–73. [Google Scholar] [CrossRef]
- Eli-Chukwu, N.C. Applications of artificial intelligence in agriculture: A review. Eng. Technol. Appl. Sci. Res. 2019, 9, 4377–4383. [Google Scholar] [CrossRef]
- Toorajipour, R.; Sohrabpour, V.; Nazarpour, A.; Oghazi, P.; Fischl, M. Artificial intelligence in supply chain management: A systematic literature review. J. Bus. Res. 2021, 122, 502–517. [Google Scholar] [CrossRef]
- Antonucci, F.; Figorilli, S.; Costa, C.; Pallottino, F.; Raso, L.; Menesatti, P. A review on Blockchain applications in the agri-food sector. J. Sci. Food Agric. 2019, 99, 6129–6138. [Google Scholar] [CrossRef]
- Kakani, V.; Nguyen, V.H.; Kumar, B.P.; Kim, H.; Pasupuleti, V.R. A critical review on computer vision and artificial intelligence in food industry. J. Agric. Food Res. 2022, 2, 100033. [Google Scholar] [CrossRef]
- Abbas, H.M.T.; Shakoor, U.; Khan, M.J.; Ahmed, M.; Khurshid, K. Automated Sorting and Grading of Agricultural Products based on Image Processing. In Proceedings of the 2019 8th International Conference on Information and Communication Technologies (ICICT), Karachi, Pakistan, 16–17 November 2019; pp. 78–81. [Google Scholar] [CrossRef]
- Friedlander, A.; Zoellner, C. Artificial intelligence opportunities to improve food safety at retail. Food Prot. Trends 2020, 40, 272–278. [Google Scholar]
- Qian, C.; Murphy, S.I.; Orsi, R.H.; Wiedmann, M. How Can AI Help Improve Food Safety? Annu. Rev. Food Sci. Technol. 2022, 14, 517–538. [Google Scholar] [CrossRef]
- Sak, J.; Suchodolska, M. Artificial intelligence in nutrients science research: A review. Nutrients 2021, 13, 322. [Google Scholar] [CrossRef]
- Duncan, E.; Ashton, L.; Abdulai, A.; Sawadogo-Lewis, T.; King, S.; Fraser, E. Connecting the food and agriculture sector to nutrition interventions for improved health outcomes. Food Secur. 2022, 14, 657–675. [Google Scholar] [CrossRef]
- Kolahchi, Z.; De Domenico, M.; Uddin, L.Q.; Cauda, V.; Grossmann, I.; Lacasa, L.; Grancini, G.; Mahmoudi, M.; Rezaei, N. COVID-19 and its global economic impact. Adv. Exp. Med. Biol. 2021, 1318, 825–837. [Google Scholar] [CrossRef] [PubMed]
- US FDA. Computerized Systems in Food Processing Industry. U.S. Food and Drug Administration. 2022. Available online: https://www.fda.gov/inspections-compliance-enforcement-and-criminal-investigations/inspection-guides/computerized-systems-food-processing-industry (accessed on 10 March 2023).
- Sridhar, A.; Balakrishnan, A.; Jacob, M.M.; Sillanpää, M.; Dayanandan, N. Global impact of COVID-19 on agriculture: Role of sustainable agriculture and digital farming. Environ. Sci. Pollut. Res. 2023, 30, 42509–42525. [Google Scholar] [CrossRef]
- Kakaei, H.; Nourmoradi, H.; Bakhtiyari, S.; Jalilian, M.; Mirzaei, A. Effect of COVID-19 on food security, hunger, and food crisis. In COVID-19 and the Sustainable Development Goals; Dehghani, M.H., Karri, R.R., Roy, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; Chapter 1; pp. 3–29. [Google Scholar] [CrossRef]
- Mir, S.A.; Mir, M.B.; Shah, M.A.; Hamdani, A.M.; Sunooj, K.V.; Phimolsiripol, Y.; Khaneghah, A.M. New prospective approaches in controlling the insect infestation in stored grains. J. Asia-Pac. Entomol. 2023, 26, 102058. [Google Scholar] [CrossRef]
- Sabanci, K.; Kayabasi, A.; Toktas, A. Computer vision-based method for classification of wheat grains using artificial neural network. J. Sci. Food Agric. 2016, 97, 2588–2593. [Google Scholar] [CrossRef] [PubMed]
- Patrício, D.; Rieder, R. Computer vision and artificial intelligence in precision agriculture for grain crops: A systematic review. Comput. Electron. Agric. 2022, 153, 69–81. [Google Scholar] [CrossRef]
- Singh, K.; Chaudhury, S. Efficient technique for rice grain classification using back-propagation neural network and wavelet decomposition. IET Comput. Vis. 2016, 10, 780–787. [Google Scholar] [CrossRef]
- Zareiforoush, H.; Minaei, S.; Alizadeh, M.; Banakar, A. A hybrid intelligent approach based on computer vision and fuzzy logic for quality measurement of milled rice. Measurement 2015, 66, 26–34. [Google Scholar] [CrossRef]
- Peruzzi, A.; Martelloni, L.; Frasconi, C.; Fontanelli, M.; Pirchio, M.; Raffaelli, M. Machines for non-chemical intra-row weed control in narrow and wide-row crops: A review. J. Agric. Eng. 2017, 48, 57. [Google Scholar] [CrossRef]
- Bellocchio, F.; Ferrari, S.; Piuri, V.; Borghese, N. Hierarchical approach for multiscale support vector regression. IEEE Trans. Neural Netw. Learn. Syst. 2012, 23, 1448–1460. [Google Scholar] [CrossRef]
- Naik, H.; Zhang, J.; Lofquist, A.; Assefa, T.; Sarkar, S.; Ackerman, D.; Singh, A.; Singh, A.K.; Ganapathysubramanian, B. A real-time phenotyping framework using machine learning for plant stress severity rating in soybean. Plant Methods 2017, 13, 23. [Google Scholar] [CrossRef]
- Guo, W.; Fukatsu, T.; Ninomiya, S. Automated characterization of flowering dynamics in rice using field-acquired time-series RGB images. Plant Methods 2015, 11, 7. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi-Tehran, P.; Sabermanesh, K.; Virlet, N.; Hawkesford, M. Automated method to determine two critical growth stages of wheat: Heading and flowering. Front. Plant Sci. 2017, 8, 252. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Cao, Z.; Xiao, Y.; Fang, Z.; Zhu, Y.; Xian, K. Fine-grained maize tassel trait characterization with multi-view representations. Comput. Electron. Agric. 2015, 118, 143–158. [Google Scholar] [CrossRef]
- Lu, H.; Cao, Z.; Xiao, Y.; Li, Y.; Zhu, Y. Region-based colour modelling for joint crop and maize tassel segmentation. Biosyst. Eng. 2016, 147, 139–150. [Google Scholar] [CrossRef]
- De Cesaro Júnior, T.; Rieder, R.; Di Domênico, J.R.; Lau, D. InsectCV: A system for insect detection in the lab from trap images. Ecol. Inform. 2022, 67, 101516. [Google Scholar] [CrossRef]
- Li, W.; Zhu, T.; Li, X.; Dong, J.; Liu, J. Recommending advanced deep learning models for efficient insect pest detection. Agriculture 2022, 12, 1065. [Google Scholar] [CrossRef]
- Gaba, S.; Gabriel, E.; Chadœuf, J.; Bonneu, F.; Bretagnolle, V. Herbicides do not ensure for higher wheat yield, but eliminate rare plant species. Sci. Rep. 2016, 6, 30112. [Google Scholar] [CrossRef]
- Liakos, K.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine learning in agriculture: A review. Sensors 2018, 18, 2674. [Google Scholar] [CrossRef]
- Rejeb, A.; Rejeb, K.; Zailani, S.; Keogh, J.G.; Appolloni, A. Examining the interplay between artificial intelligence and the Agri-Food Industry. Artif. Intell. Agric. 2022, 6, 111–128. [Google Scholar] [CrossRef]
- Pantazi, X.; Tamouridou, A.; Alexandridis, T.; Lagopodi, A.; Kashefi, J.; Moshou, D. Evaluation of hierarchical self-organising maps for weed mapping using UAS multispectral imagery. Comput. Electron. Agric. 2017, 139, 224–230. [Google Scholar] [CrossRef]
- Binch, A.; Fox, C. Controlled comparison of machine vision algorithms for Rumex and Urtica detection in grassland. Comput. Electron. Agric. 2017, 140, 123–138. [Google Scholar] [CrossRef]
- Wu, X.; Spaeth, M.; Saile, M.; Peteinatos, G.G.; Gerhards, R. Precision chemical weed management strategies: A review and a design of a new CNN-based modular spot sprayer. Agronomy 2022, 12, 1620. [Google Scholar] [CrossRef]
- Wu, X.; Aravecchia, S.; Lottes, P.; Stachniss, C.; Pradalier, C. Robotic weed control using automated weed and crop classification. J. Field Robot. 2020, 37, 322–340. [Google Scholar] [CrossRef]
- Christensen, S.; Sogaard, H.; Kudsk, P.; Norremark, M.; Lund, I.; Nadimi, E.; Jorgensen, R. Site-specific weed control technologies. Weed Res. 2009, 49, 233–241. [Google Scholar] [CrossRef]
- Rasmussen, J.; Griepentrog, H.; Nielsen, J.; Henriksen, C. Automated intelligent rotor tine cultivation and punch planting to improve the selectivity of mechanical intra-row weed control. Weed Res. 2012, 52, 327–337. [Google Scholar] [CrossRef]
- Rueda-Ayala, V.; Weis, M.; Keller, M.; Andújar, D.; Gerhards, R. Development and testing of a decision making based method to adjust automatically the Harrowing intensity. Sensors 2013, 13, 6254–6271. [Google Scholar] [CrossRef]
- Bucher, S.; Ikeda, K.; Broszus, B.; Gutierrez, A.; Low, A. Adaptive Robotic Chassis (ARC): RoboCrop a smart agricultural robot toolset. In Interdisciplinary Design Senior Theses; Santa Clara University: Santa Clara, CA, USA, 2021; p. 69. [Google Scholar]
- Cooper, P.; Jones, T.; Tuffy, F.; Windsor, S. Knowledge transfer and the National Physical Laboratory, UK. In Innovation through Knowledge Transfer: Smart Innovation, Systems and Technologies; Howlett, R.J., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; Volume 5, pp. 257–267. [Google Scholar] [CrossRef]
- Khaddour, G.; Riedel, I.; Andò, E.; Charrier, P.; Bésuelle, P.; Desrues, J.; Viggiani, G.; Salager, S. Grain-scale characterization of water retention behaviour of sand using X-ray CT. Acta Geotech. 2018, 13, 497–512. [Google Scholar] [CrossRef]
- Agboka, K.M.; Tonnang, H.E.Z.; Abdel-Rahman, E.M.; Odindi, J.; Mutanga, O.; Niassy, S. Data-driven artificial intelligence (AI) algorithms for modelling potential maize yield under maize–legume farming systems in East Africa. Agronomy 2022, 12, 3085. [Google Scholar] [CrossRef]
- Kovalenko, O. Machine learning and AI in food industry solutions and potential—SPD group blog. In Full-Cycle Software Development Solutions; SPD-Group: Seattle, WA, USA, 2022; Available online: https://spd.group/machine-learning/machine-learning-and-ai-in-food-industry/ (accessed on 10 March 2023).
- Kamilaris, A.; Gao, F.; Prenafeta-Boldu, F.; Ali, M. Agri-IoT: A semantic framework for internet of things-enabled smart farming applications. In Proceedings of the 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT), Reston, VA, USA, 12–14 December 2016; pp. 442–447. [Google Scholar] [CrossRef]
- Meshram, V.; Patil, K.; Meshram, V.; Hanchate, D.; Ramkteke, S.D. Machine learning in agriculture domain: A state-of-art survey. Artif. Intell. Life Sci. 2021, 1, 100010. [Google Scholar] [CrossRef]
- Misra, N.; Dixit, Y.; Al-Mallahi, A.; Bhullar, M.; Upadhyay, R.; Martynenko, A. IoT, Big Data, and Artificial Intelligence in Agriculture and Food Industry. IEEE Internet Things J. 2022, 9, 6305–6324. [Google Scholar] [CrossRef]
- Akhtman, Y.; Golubeva, E.; Tutubalina, O.; Zimin, M. Application of hyperspectural images and ground data for precision farming. Geogr. Environ. Sustain. 2017, 10, 117–128. [Google Scholar] [CrossRef]
- Snyder, C. Enhanced nitrogen fertiliser technologies support the ‘4R’ concept to optimise crop production and minimise environmental losses. Soil Res. 2017, 55, 463. [Google Scholar] [CrossRef]
- Soltani Firouz, M.; Mohi-Alden, K.; Omid, M.A. Critical review on intelligent and active packaging in the food industry: Research and development. Food Res. Int. 2021, 141, 110113. [Google Scholar] [CrossRef] [PubMed]
- Anetta, B.; Joanna, W. Innovations in the food packaging market—Intelligent packaging—A review. Czech J. Food Sci. 2017, 35, 1–6. [Google Scholar] [CrossRef]
- Liu, J. Packaging design based on deep learning and image enhancement. Comput. Intell. Neurosci. 2022, 2022, 9125234. [Google Scholar] [CrossRef]
- Mushiri, T.; Tende, L. Automated grading of tomatoes using artificial intelligence: The case of Zimbabwe. In AI and Big Data’s Potential for Disruptive Innovation; Strydom, M., Buckley, S., Eds.; IGI Global: Hershey, PA, USA, 2020; pp. 216–239. [Google Scholar] [CrossRef]
- Ahmad, U.; Alvino, A.; Marino, S. Solar fertigation: A sustainable and smart IoT-based irrigation and fertilization system for efficient water and nutrient management. Agronomy 2022, 12, 1012. [Google Scholar] [CrossRef]
- Tavill, G. Industry challenges and approaches to food waste. Physiol. Behav. 2020, 223, 112993. [Google Scholar] [CrossRef]
- Cai, W.; Wang, J.; Jiang, P.; Cao, L.; Mi, G.; Zhou, Q. Application of sensing techniques and artificial intelligence-based methods to laser welding real-time monitoring: A critical review of recent literature. J. Manuf. Syst. 2020, 57, 1–18. [Google Scholar] [CrossRef]
- Xiao, B.; Nguyen, M.; Yan, W.Q.; Ho, H. Apple ripeness identification using deep learning. In Geometry and Vision: First International Symposium, ISGV 2021, Auckland, New Zealand, 28–29 January 2021, Revised Selected Papers 1; Springer: Berlin/Heidelberg, Germany, 2021; Volume 1386, pp. 53–67. [Google Scholar] [CrossRef]
- Pizzaia, J.P.L.; Salcides, I.R.; de Almeida, G.M.; Contarato, R.; de Almeida, R. Arabica coffee samples classification using a Multilayer Perceptron neural network. In Proceedings of the 13th IEEE International Conference on Industry Applications (INDUSCON), Sao Paulo, Brazil, 12–14 November 2018; pp. 80–84. [Google Scholar] [CrossRef]
- Papadopoulos, E.; Gonzalez, F. UAV and AI application for runway Foreign Object Debris (FOD) detection. In Proceedings of the IEEE Aerospace Conference (50100), Big Sky, MT, USA, 6–13 March 2021. [Google Scholar] [CrossRef]
- Shimonomura, K.; Chang, T.; Murata, T. Detection of foreign bodies in soft foods employing tactile image sensor. Front. Robot. AI 2021, 8, 774080. [Google Scholar] [CrossRef]
- Rahman, W. Why Coca Cola Uses AI to Create Intelligent Vending Machines. Available online: https://towardsdatascience.com/why-coca-cola-uses-ai-to-create-intelligent-vending-machines-ae97ce952082 (accessed on 10 March 2023).
- Ferrer, B. Nuritas Links Up with Healthgevity to Tackle Aging with AI-Based Peptide Solution. Available online: https://www.personalcareinsights.com/news/nurital-links-up-with-healthgevity-to-tackle-aging-with-ai-based-peptide-solution.html (accessed on 10 March 2023).
- Takahashi, D. Hello Egg Is An AI-Based Meal-Planning and Cooking Gadget. Available online: https://venturebeat.com/business/hello-egg-is-ai-based-meal-planning-and-cooking-gadget/ (accessed on 10 March 2023).
- Trencher, G. Towards the smart city 2.0: Empirical evidence of using smartness as a tool for tackling social challenges. Technol. Forecast. Soc. Chang. 2019, 142, 117–128. [Google Scholar] [CrossRef]
- Shankar, V. How Artificial Intelligence (AI) is reshaping retailing. J. Retail. 2018, 94, vi–xi. [Google Scholar] [CrossRef]
- Yoo, H.; Park, D. AI-based 3D food printing using standard composite materials. Stud. Comput. Intell. 2021, 929, 123–135. [Google Scholar] [CrossRef]
- Monteiro, J.; Barata, J. Artificial Intelligence in extended agri-food supply chain: A short review based on bibliometric analysis. Procedia Comput. Sci. 2021, 192, 3020–3029. [Google Scholar] [CrossRef]
- Bedoya, M.; Montoya, D.; Tabilo-Munizaga, G.; Pérez-Won, M.; Lemus-Mondaca, R. Promising perspectives on novel protein food sources combining artificial intelligence and 3D food printing for food industry. Trends Food Sci. Technol. 2022, 128, 38–52. [Google Scholar] [CrossRef]
- Wilms, P.; Daffner, K.; Kern, C.; Gras, S.L.; Schutyser, M.A.I.; Kohlus, R. Formulation engineering of food systems for 3D-printing applications—A review. Food Res. Int. 2021, 148, 110585. [Google Scholar] [CrossRef]
- Li, G.; Hu, L.; Liu, J.; Huang, J.; Yuan, C.; Takaki, K.; Hu, Y. A review on 3D printable food materials: Types and development trends. Int. J. Food Sci. Technol. 2022, 57, 164–172. [Google Scholar] [CrossRef]
- Nachal, N.; Moses, J.; Karthik, P.; Anandharamakrishnan, C. Applications of 3D printing in food processing. Food Eng. Rev. 2019, 11, 123–141. [Google Scholar] [CrossRef]
- Taneja, A.; Sharma, R.; Ayush, K.; Sharma, A.; Khaneghah, A.M.; Regenstein, J.M.; Barba, F.J.; Phimolsiripol, Y.; Sharma, S. Innovations and applications of 3-D printing in food sector. Int. J. Food Sci. Technol. 2022, 57, 3326–3332. [Google Scholar] [CrossRef]
- Mavani, N.R.; Ali, J.M.; Othman, S.; Hussain, M.A.; Hashim, H.; Rahman, N.A. Application of artificial intelligence in food industry—A guideline. Food Eng. Rev. 2022, 14, 134–175. [Google Scholar] [CrossRef]
- Hussein, Z.; Fawole, O.; Opara, U. Harvest and postharvest factors affecting bruise damage of fresh fruits. Hortic. Plant J. 2020, 6, 1–13. [Google Scholar] [CrossRef]
- Gowen, A.; Tiwari, B.; Cullen, P.; McDonnell, K.; O’Donnell, C. Applications of thermal imaging in food quality and safety assessment. Trends Food Sci. Technol. 2010, 21, 190–200. [Google Scholar] [CrossRef]
- Addanki, M.; Patra, P.; Kandra, P. Recent advances and applications of artificial intelligence and related technologies in the food industry. Appl. Food Res. 2022, 2, 100126. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, M.; Bhandari, B.; Adhikari, B. Application of electronic tongue for fresh foods quality evaluation: A review. Food Rev. Int. 2018, 34, 746–769. [Google Scholar] [CrossRef]
- Calvini, R.; Pigani, L. Toward the development of combined artificial sensing systems for food quality evaluation: A review on the application of data fusion of electronic noses, electronic tongues and electronic eyes. Sensors 2022, 22, 577. [Google Scholar] [CrossRef] [PubMed]
- Thazin, Y.; Pobkrut, T.; Kerdcharoen, T. Prediction of acidity levels of fresh roasted coffees using e-nose and artificial neural network. In Proceedings of the 10th International Conference on Knowledge and Smart Technology (KST), Chiang Mai, Thailand, 31 January–3 February 2018; Volume 1, pp. 210–215. [Google Scholar] [CrossRef]
- Jambrak, A.; Šimunek, M.; Petrović, M.; Bedić, H.; Herceg, Z.; Juretić, H. Aromatic profile and sensory characterisation of ultrasound treated cranberry juice and nectar. Ultrason. Sonochem. 2017, 38, 783–793. [Google Scholar] [CrossRef] [PubMed]
- Ullah, A.; Liu, Y.; Wang, Y.; Gao, H.; Wang, H.; Zhang, J.; Li, G. E-Taste: Taste sensations and flavors based on tongue’s electrical and thermal stimulation. Sensors 2022, 22, 4976. [Google Scholar] [CrossRef]
- Deisingh, A.K.; Stone, D.C.; Thompson, M. Applications of electronic noses and tongues in food analysis. Int. J. Food Sci. Technol. 2004, 39, 587–604. [Google Scholar] [CrossRef]
- Rudnitskaya, A.L.A.; Seleznev, B.; Vlasov, Y. Recognition of liquid and flesh food using an electronic tongue’. Int. J. Food Sci. Technol. 2002, 37, 375–385. [Google Scholar] [CrossRef]
- Tan, J.; Xu, J. Applications of electronic nose (e-nose) and electronic tongue (e-tongue) in food quality-related properties determination: A review. Artif. Intell. Agric. 2020, 4, 104–115. [Google Scholar] [CrossRef]
- Zhu, X.; Yuan, X.; Zhang, Y.; Liu, H.; Wang, J.; Sun, B. The global concern of food security during the COVID-19 pandemic: Impacts and perspectives on food security. Food Chem. 2022, 370, 130830. [Google Scholar] [CrossRef]
- Kondakci, T.; Zhou, W. Recent applications of advanced control techniques in food industry. Food Bioproc. Technol. 2016, 10, 522–542. [Google Scholar] [CrossRef]
- Van Wynsberghe, A. Sustainable AI: AI for sustainability and the sustainability of AI. AI Ethics 2021, 1, 213–218. [Google Scholar] [CrossRef]
- Hassoun, A.; Prieto, M.A.; Carpena, M.; Bouzembrak, Y.; Marvin, H.J.P.; Pallarés, N.; Barba, F.J.; Bangar, S.P.; Chaudhary, V.; Ibrahim, S.; et al. Exploring the role of green and industry 4.0 technologies in achieving sustainable development goals in food sectors. Food Res. Int. 2022, 162, 112068. [Google Scholar] [CrossRef]
- Ferreira, C.; Gonçalves, G. Remaining useful life prediction and challenges: A literature review on the use of machine learning methods. J. Manuf. Syst. 2022, 63, 550–562. [Google Scholar] [CrossRef]
- Goyal, S.; Goyal, G.K. Time—Delay simulated artificial neural network models for predicting shelf life of processed cheese. Int. J. Intell. Syst. Appl. 2012, 4, 30–37. [Google Scholar] [CrossRef]
- Dutta, J.; Deshpande, P.; Rai, B. AI-based soft-sensor for shelf life prediction of ‘Kesar’ mango. SN Appl. Sci. 2021, 3, 657. [Google Scholar] [CrossRef]
- Verma, M.; Hontecillas, R.; Tubau-Juni, N.; Abedi, V.; Bassaganya-Riera, J. Challenges in personalized nutrition and health. Front Nutr. 2018, 29, 117. [Google Scholar] [CrossRef]
- King, J. Viome Launches World’s First at-Home Service to Measure and Improve Immunity, Inflammation, Gut Health and Aging. 2022. Available online: https://apnews.com/article/science-technology-health-business-aging-4901af98bfd5ae5769d5a78428768d84 (accessed on 10 March 2023).
- Ma, T.; Wang, H.; Wei, M.; Lan, T.; Wang, J.; Bao, S.; Ge, Q.; Fang, Y.; Sun, X. Application of smart-phone use in rapid food detection, food traceability systems, and personalized diet guidance, making our diet more health. Food Res. Int. 2022, 152, 110918. [Google Scholar] [CrossRef]
Domain/Sector | Technology | Equipment/Products Developed | References |
---|---|---|---|
Smart farming | - Soil monitoring: IoT - Robocrop: SVM - Predictive analysis: ML algorithms | NPK soil sensors, temperature sensors, moisture sensors, etc.; Adaptive Robotic Chassis (ARC), dual arm harvesting robot; Learning models are constructed to follow and forecast several environmental effects such as climate variation during crop production | [8,9] |
Supply chain quality data integration method | - Blockchain technology | Logistics of agriculture products raising water availability | [12,13] |
Product sorting/packaging | - Sensor-based sorting system - Tensor flow ML-based system | TOMRA | [14,15] |
Fruit safety and quality | - Gaussian Mixture Mode and IR vision sensor - Fourier Based separation model - Multi-resolution Wavelet transform and AI (classifier)of SVM and BPNN - FNN and SVM | Smart refrigerator; Intelligent refrigerator | [15,16,17] |
Food Quality | ANN | Forecast the quality loss as weight loss of frozen dough using ANN | [18] |
Quality control | - X-ray detection - MRI | X-ray imaging detects defects and contaminants in agricultural commodities | [19] |
Image processing | - CNN - Hyperspectral imaging - PCANet | Food tray packaging system; Food tray sealing fault detection | [20,21] |
Forecasting of food production | - Fuzzy logic - ML | Predict the production and consumption of rice using ANN, SVM, GP, and GPR to predict future milk yield | [22,23] |
Supply chain optimization | - Evolutionary ML | Scheduled transportation; reduced held inventory; cost in supply chain | [24,25] |
Preparing and dispensing food | - Robotics | Food applications, drone and robotic deliveries, and autonomous cars | [26] |
New food product development | - ML - Deep learning algorithms | Self-service soft drink corner | [27] |
Identification of taste characteristics | - Convolutional Neural Networks (CNN) - Multi-layer perceptron (MLP)-Descriptor - MLP Fingerprint | MLP-Fingerprint model showed the best prediction results for bitterant/non-bitterant, sweetener/non-sweetener, and bitterant/sweetener | [28] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taneja, A.; Nair, G.; Joshi, M.; Sharma, S.; Sharma, S.; Jambrak, A.R.; Roselló-Soto, E.; Barba, F.J.; Castagnini, J.M.; Leksawasdi, N.; et al. Artificial Intelligence: Implications for the Agri-Food Sector. Agronomy 2023, 13, 1397. https://doi.org/10.3390/agronomy13051397
Taneja A, Nair G, Joshi M, Sharma S, Sharma S, Jambrak AR, Roselló-Soto E, Barba FJ, Castagnini JM, Leksawasdi N, et al. Artificial Intelligence: Implications for the Agri-Food Sector. Agronomy. 2023; 13(5):1397. https://doi.org/10.3390/agronomy13051397
Chicago/Turabian StyleTaneja, Akriti, Gayathri Nair, Manisha Joshi, Somesh Sharma, Surabhi Sharma, Anet Rezek Jambrak, Elena Roselló-Soto, Francisco J. Barba, Juan M. Castagnini, Noppol Leksawasdi, and et al. 2023. "Artificial Intelligence: Implications for the Agri-Food Sector" Agronomy 13, no. 5: 1397. https://doi.org/10.3390/agronomy13051397
APA StyleTaneja, A., Nair, G., Joshi, M., Sharma, S., Sharma, S., Jambrak, A. R., Roselló-Soto, E., Barba, F. J., Castagnini, J. M., Leksawasdi, N., & Phimolsiripol, Y. (2023). Artificial Intelligence: Implications for the Agri-Food Sector. Agronomy, 13(5), 1397. https://doi.org/10.3390/agronomy13051397