Sustainable Use of Biochar, Poultry and Cattle Manure for the Production of Organic Granular Fertilizers
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Determination of Raw Material Physical–Mechanical Properties
3.1.1. Fractional Composition
3.1.2. Material Bulk Density, Moisture Content
3.2. Determination of Granule Physical–Mechanical Properties
3.2.1. The Granules Parameters
3.2.2. Granules Strength Determination
3.2.3. The Elementary Composition of Granules
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bergeron, F.C. Energy and climate impact assessment of waste wood recovery in Switzerland. Biomass Bioenergy 2016, 94, 245–257. [Google Scholar] [CrossRef]
- Berger, F.; Gauvin, F.; Brouwers, H.J.H. The recycling potential of wood waste into wood-wool/cement composite. Constr. Build. Mater. 2020, 260, 119786. [Google Scholar] [CrossRef]
- Ihnat, V.; Lubke, H.; Balbercak, J.; Kuna, V. Size reduction downcycling of waste wood. Review. Wood Res. 2020, 65, 205–220. [Google Scholar] [CrossRef]
- Zeng, N.; King, A.W.; Zaitchik, B.; Wullschleger, S.D.; Gregg, J.; Wang, S.; Kirk-Davidoff, D. Carbon sequestration via wood harvest and storage: An assessment of its harvest potential. Clim. Chang. 2013, 118, 245–257. [Google Scholar] [CrossRef]
- Pandey, S. Wood waste utilization and associated product development from under-utilized low-quality wood and its prospects in Nepal. SN Appl. Sci. 2022, 4, 168. [Google Scholar] [CrossRef]
- Garcia, C.A.; Hora, G. State-of-the-art of waste wood supply chain in Germany and selected European countries. Waste Manag. 2017, 70, 189–197. [Google Scholar] [CrossRef]
- Haryanto, A.; Hidayat, W.; Hasanudin, U.; Iryani, D.A.; Kim, S.; Lee, S.; Yoo, J. Valorization of Indonesian Wood Wastes through Pyrolysis: A Review. Energies 2021, 14, 1407. [Google Scholar] [CrossRef]
- Kim, M.H.; Song, H.B. Analysis of the global warming potential for wood waste recycling systems. J. Clean. Prod. 2014, 69, 199–207. [Google Scholar] [CrossRef]
- Meng, J.; Wang, L.L.; Liu, X.M.; Wu, J.J.; Brookes, P.C.; Xu, J.M. Physicochemical properties of biochar produced from aerobically composted swine manure and its potential use as an environmental amendment. Bioresour. Technol. 2013, 142, 641–646. [Google Scholar] [CrossRef]
- Ahmad, M.; Rajapaksha, A.U.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S.S.; Ok, Y.S. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 2014, 99, 19–33. [Google Scholar] [CrossRef]
- Liu, L.; Li, J.; Wu, G.; Shen, H.; Fu, G.; Wang, Y. Combined effects of biochar and chicken manure on maize (Zea mays L.) growth, lead uptake and soil enzyme activities under lead stress. PeerJ 2021, 9, e11754. [Google Scholar] [CrossRef]
- Thies, J.E.; Rillig, M.C. Characteristics of biochar: Biological properties. In Biochar for Environmental Management; Lehmann, J., Joseph, S., Eds.; Earthscan: London, UK, 2009; pp. 85–106. [Google Scholar]
- Adekiya, A.O.; Agbede, T.M.; Aboyeji, C.M.; Dunsin, O.; Simeon, V.T. Effects of biochar and poultry manure on soil characteristics and the yield of radish. Sci. Hortic. 2019, 243, 457–463. [Google Scholar] [CrossRef]
- Malińska, K. Biochar–a response to current environmental issues. Inżynieria I Ochr. Środowiska 2012, 4, 387–403. (In Polish) [Google Scholar]
- Czekała, W.; Jeżowska, A.; Chełkowski, D. The use of biochar for the production of organic fertilizers. J. Ecol. Eng. 2019, 20, 1–8. [Google Scholar] [CrossRef]
- Gajalakshmi, S.; Abbasi, S.A. Solid waste management by composting: State of the art. Crit. Rev. Environ. Sci. Technol. 2008, 38, 311–400. [Google Scholar] [CrossRef]
- Luo, D.; Wang, L.; Nan, H.; Cao, Y.; Wang, H.; Kumar, T.V.; Wang, C. Phosphorus adsorption by functionalized biochar: A review. Environ. Chem. Lett. 2023, 21, 497–524. [Google Scholar] [CrossRef]
- Wang, C.; Luo, D.; Zhang, X.; Huang, R.; Cao, Y.; Liu, G.; Zhang, Y.; Wang, H. Biochar-based slow-release of fertilizers for sustainable agriculture: A mini review. Environ. Sci. Ecotechnol. 2022, 10, 100167. [Google Scholar] [CrossRef]
- Kalus, K.; Koziel, J.; Opaliński, S. A review of biochar properties and their utilization in crop agriculture and livestock production. Appl. Sci. 2019, 9, 3494. [Google Scholar] [CrossRef]
- Banik, C.; Koziel, J.A.; De, M.; Bonds, D.; Chen, B.; Singh, A.; Licht, M.A. Biochar-Swine Manure Impact on Soil Nutrients and Carbon under Controlled Leaching Experiment Using a Midwestern Mollisols. Front. Environ. Sci. 2021, 9, 609621. [Google Scholar] [CrossRef]
- Malińska, K.; Dach, J. Biochar as a supplementary material for biogas production. Ecol. Eng. 2015, 41, 117–124. [Google Scholar] [CrossRef]
- Dou, L.; Komatsuzaki, M.; Nakagawa, M. Effects of Biochar, Mokusakueki and Bokashi application on soil nutrients, yields and qualities of sweet potato. Int. Res. J. Agric. Sci. Soil. Sci. 2012, 2, 318–327. [Google Scholar]
- Chan, K.Y.; Van Zwieten, L.; Meszaros, I.; Downie, A.; Joseph, S. Agronomic values of green waste biochar as a soil amendment. Aust. J. Soil. Res. 2007, 45, 629–634. [Google Scholar] [CrossRef]
- Mieldažys, R.; Jotautienė, E.; Zinkevičienė, R.; Jasinskas, A. Manure processing into granular fertilizers using additional additives. In Proceedings of the International Conference “Engineering for Rural Development”, Jelgava, Latvia, 22–24 May 2019; Latvia University of Life Sciences and Technologies: Jelgava, Latvia, 2019; Volume 18, pp. 635–640. [Google Scholar]
- Mieldažys, R.; Jotautienė, E.; Jasinskas, A. The opportunities of sustainable biomass ashes and poultry manure recycling for granulated fertilizers. Sustainability 2019, 11, 4466. [Google Scholar] [CrossRef]
- ISO 18847:2016; Solid Biofuels—Determination of Particle Density of Pellets and Briquettes. Available online: https://www.iso.org/standard/63560.html (accessed on 12 October 2022).
- Olsson, U.; Engstrand, U.; Rupšys, P. Statistical Methods Using SAS and MINITAB; Lithuanian University of Agriculture: Akademija, Lithuania, 2000. [Google Scholar]
- Kažimírová, V.; Kubík, Ľ.; Mihina, Š. Evaluation of properties of pellets made of swine manure. Acta Technol. Agric. 2020, 23, 137–143. [Google Scholar] [CrossRef]
- Pampuro, N.; Bagagiolo, G.; Priarone, P.C.; Cavallo, E. Effects of pelletizing pressure and the addition of woody bulking agents on the physical and mechanicalproperties of pellets made from composted pig solid fraction. Powder Technol. 2017, 311, 112–119. [Google Scholar] [CrossRef]
- Zdanowicz, A.; Chojnacki, J. Mechanical properties of pellet from chicken manure mixed with chopped rye straw. J. Res. Appl. Agric. Eng. 2017, 62, 216–218. [Google Scholar]
- EBC. European Biochar Certificate–Guidelines for a Sustainable Production of Biochar’; Version 9.5E of 1 August 2021; European Biochar Foundation (EBC): Arbaz, Switzerland, 2012; Available online: https://www.european-biochar.org/media/doc/2/version_en_9_5.pdf (accessed on 8 April 2023).
- European Commission. Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019 Laying down Rules on the Making Available on the Market of EU Fertilising Products and Amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and Repealing Regulation (EC) No 2003/2003; European Commission: Brussels, Belgium, 5 June 2019; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32019R1009 (accessed on 9 April 2023).
- Mieldažys, R.; Jotautienė, E.; Jasinskas, A.; Pekarskas, J.; Zinkevičienė, R. Investigation of physical-mechanical properties and impact on soil of granulated manure compost fertilizers. J. Environ. Eng. Landsc. Manag. 2019, 27, 153–162. [Google Scholar] [CrossRef]
- Mažeika, R.; Staugaitis, G.; Baltrušaitis, J. Engineering pelletized–Organo–mineral fertilizers (OMF) from poultry manure, diammonium phosphate and potassium chloride. ACS Sustain. Chem. Eng. 2016, 4, 2279–2285. [Google Scholar] [CrossRef]
- Al-Bataina, B.B.; Young, T.M.; Ranieri, E. Effects of compost age on the release of nutrients. Int. Soil Water Conserv. Res. 2016, 4, 230–236. [Google Scholar] [CrossRef]
Type of Raw Material | Diameter Range of Sieve Holes, mm | ||||||
---|---|---|---|---|---|---|---|
0.0–0.1 | 0–0.25 | 0.25–0.5 | 0.5–0.63 | 0.63–1.0 | 1.0–2.0 | >2.0 | |
Poultry manure | 26.26 ± 2.85 | 14.22 ± 0.59 | 21.71 ± 2.57 | 8.90 ± 0.50 | 12.22 ± 1.00 | 13.54 ± 2.76 | 3.15 ± 3.20 |
Cattle manure compost | 5.07 ± 3.80 | 15.67 ± 5.41 | 10.37 ± 3.28 | 23.33 ± 4.28 | 36.30 ± 7.28 | 6.65 ± 4.81 | 2.61 ± 1.78 |
Biochar | 4.76 ± 3.87 | 10.31 ± 3.77 | 13.37 ± 1.76 | 8.21 ± 2.60 | 12.43 ± 6.73 | 42.10 ± 3.91 | 8.83 ± 1.96 |
Sample Code | Diameter d, mm | Length, l, mm | Weight, g | Granules Density, kg m−3 |
---|---|---|---|---|
1PM | 6.10 ± 0.02 | 12.11 ± 0.99 | 0.45 ± 0.05 | 1279.96 ± 62.23 |
4CM | 5.77 ± 0.07 | 12.10 ± 1.50 | 0.38 ± 0.05 | 1186.76 ± 35.52 |
5PM + B | 6.06 ± 0.04 | 11.07 ± 1.67 | 0.38 ± 0.07 | 1192.49 ± 61.33 |
8CM + B | 6.04 ± 0.03 | 11.30 ± 1.09 | 0.38 ± 0.05 | 1174.89 ± 62.25 |
Heavy Metals, mg kg−1 | Requirements of the Fertilizer Regulation (EU) 2019/1009 | EBC-Agro |
---|---|---|
Cadmium (Cd) | 1.0–1.5 | 1.5 |
Zinc (Zn) | 500–1500 | 400 |
Nickel (Ni) | 50–60 | 50 |
Lead (Pb) | 100–120 | 150 |
Copper (Cu) | 100–600 | 100 |
Chrome (Cr) | 80–100 | 90 |
Test Parameters | Sample Code and Test Results | |||
---|---|---|---|---|
1PM | 4CM | 5PM + B | 8CM + B | |
pH | 8.2 | 9.9 | 8.3 | 9.9 |
Dry material, % | 92.62 | 78.40 | 92.29 | 87.92 |
In dry matter: | ||||
Nitrogen (N) % | 3.11 | 3.05 | 2.20 | 1.57 |
Phosphorus (P) % | 1.76 | 0.83 | 1.18 | 0.55 |
Potassium (K) % | 4.72 | 6.13 | 4.23 | 4.62 |
Cadmium (Cd) mg kg−1 | 0.18 | 0.23 | 0.29 | 0.43 |
Zinc (Zn) mg kg−1 | 295 | 115 | 190 | 119 |
Nickel (Ni) mg kg−1 | 5.97 | 80.0 | 5.77 | 20.0 |
Lead (Pb) mg kg−1 | 62.4 | 3.57 | 2.57 | 3.03 |
Copper (Cu) mg kg−1 | 50 | 20.6 | 80.0 | 18.0 |
Chrome (Cr) mg kg−1 | 7.33 | 67.0 | 7.67 | 22.6 |
Organic carbon (C), % | 22.6 | 28.7 | 34.0 | 31.6 |
Organic matter, % | 65.0 | 60.8 | 65.5 | 47.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaudutis, A.; Jotautienė, E.; Mieldažys, R.; Bivainis, V.; Jasinskas, A. Sustainable Use of Biochar, Poultry and Cattle Manure for the Production of Organic Granular Fertilizers. Agronomy 2023, 13, 1426. https://doi.org/10.3390/agronomy13051426
Gaudutis A, Jotautienė E, Mieldažys R, Bivainis V, Jasinskas A. Sustainable Use of Biochar, Poultry and Cattle Manure for the Production of Organic Granular Fertilizers. Agronomy. 2023; 13(5):1426. https://doi.org/10.3390/agronomy13051426
Chicago/Turabian StyleGaudutis, Aloyzas, Eglė Jotautienė, Ramūnas Mieldažys, Vaidas Bivainis, and Algirdas Jasinskas. 2023. "Sustainable Use of Biochar, Poultry and Cattle Manure for the Production of Organic Granular Fertilizers" Agronomy 13, no. 5: 1426. https://doi.org/10.3390/agronomy13051426
APA StyleGaudutis, A., Jotautienė, E., Mieldažys, R., Bivainis, V., & Jasinskas, A. (2023). Sustainable Use of Biochar, Poultry and Cattle Manure for the Production of Organic Granular Fertilizers. Agronomy, 13(5), 1426. https://doi.org/10.3390/agronomy13051426