Agronomic Practices in Lemon Balm Production under Temperate Climate Conditions: Raw Material Yield and Active Substances Content
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material, Location of Cultivation, and Growth Conditions
2.2. Research Hypotheses—Experimental Field Design and Management Practices
2.3. Chemical Analyses of Plant Material
2.3.1. Essential Oil
- a—the oil volume (cm3);
- b—the sample weight (g).
2.3.2. Tannins
- A1—the absorbance of polyphenols in the test solution;
- A2—the uptake of polyphenols not related to the powdery skin in the test solution;
- A3—the absorbance of a pyrogallol comparison solution;
- m1—the initial mass of the raw material;
- m2—the sample with pyrogallol in g.
2.3.3. Flavonoids
- A—the absorbance of the test solution;
- k—the conversion factor for quercetin, where k = 0.875;
- m—the mass of the raw material.
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chrysargyris, A.; Skaltsa, H.; Konstantopoulou, M. Medicinal and Aromatic Plants (MAPs): The Connection between Cultivation Practices and Biological Properties. Agronomy 2022, 12, 3108. [Google Scholar] [CrossRef]
- Licata, M.; Maggio, A.M.; La Bella, S.; Tuttolomondo, T. Medicinal and Aromatic Plants in Agricultural Research, When Considering Criteria of Multifunctionality and Sustainability. Agriculture 2022, 12, 529. [Google Scholar] [CrossRef]
- Abdellatif, F.; Akram, M.; Begaa, S.; Messaoudi, M.; Benarfa, A.; Egbuna, C.; Ouakouak, H.; Hassani, A.; Sawicka, B.; Elbossaty, W.F.M.; et al. Minerals, Essential Oils, and Biological Properties of Melissa officinalis L. Plants 2021, 10, 1066. [Google Scholar] [CrossRef] [PubMed]
- Petrisor, G.; Motelica, L.; Craciun, L.N.; Oprea, O.C.; Ficai, D.; Ficai, A. Review Melissa officinalis: Composition, Pharmacological Effects and Derived Release Systems—A Review. Int. J. Mol. Sci. 2022, 23, 3591. [Google Scholar] [CrossRef]
- Jalal, Z.; El Atki, Y.; Lyoussi, B.; Abdellaoui, A. Phytochemistry of the essential oil of Melissa officinalis L. growing wild in Morocco: Preventive approach against nosocomial infections. Asian Pac. J. Trop. Biomed. 2015, 5, 458–461. [Google Scholar] [CrossRef]
- Heidarian, S.; Kachoie, M.A.; Mousavi-Fard, S.; Moatta, F. Antimicrobial Effects Of Lemon balm (Melissa officinalis L.) Essential Oil Against Pathogenic Bacteria. J. Posit. Sch. Psychol. 2022, 6, 2033–2038. [Google Scholar]
- Virchea, L.-I.; Gligor, F.G.; Frum, A.; Mironescu, M.; Myachikova, N.I.; Georgescu, C. Phytochemical analysis and antioxidant assay of Melissa officinalis L. (lemon balm). BIO Web Conf. 2021, 40, 02004. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Quispe, C.; Herrera-Bravo, J.; Akram, M.; Abbaass, W.; Semwal, P.; Painuli, S.; Konovalov, D.A.; Alfred, M.A.; Kumar, N.V.A.; et al. Review Article Phytochemical Constituents, Biological Activities, and Health-Promoting Effects of the Melissa officinalis. Oxid. Med. Cell. Longev. 2021, 2021, 6584693. [Google Scholar] [CrossRef]
- Abewoy, D.; Belew, D.; Zigene, Z.D. Influence of Harvesting Age and Genotype on Growth Parameters and Herbage Yield of Sweet Basil (Ocimum basilicum L.) at Wondo Genet, Southern Ethiopia. Adv. Crop Sci. Technol. 2018, 6, 6. [Google Scholar] [CrossRef]
- Kittler, J.; Krüger, H.; Ulrich, D.; Zeiger, B.; Schütze, W.; Böttcher, C.; Krähmer, A.; Gudi, G.; Kästner, U.; Heuberger, H.; et al. Content and composition of essential oil and content of rosmarinic acid in lemon balm and balm genotypes (Melissa officinalis). Genet. Resour. Crop Evol. 2018, 65, 1517–1527. [Google Scholar] [CrossRef]
- Nurzyńska-Wierdaka, R.; Bogucka-Kocka, A.; Szymczak, G. Volatile Constituents of Melissa officinalis Leaves Determined by Plant Age. Nat. Prod. Comm. 2014, 9, 703–706. [Google Scholar] [CrossRef]
- Chizzola, R.; Lohwasse, U.; Franz, C. Biodiversity within Melissa officinalis: Variability of Bioactive Compounds in a Cultivated Collection. Molecules 2018, 23, 294. [Google Scholar] [CrossRef] [PubMed]
- Radácsi, P.; Szabó, K.; Szabó, D.; Trócsányi, E.; Németh-Zámbori, É. Effect of water deficit on yield and quality of lemon balm (Melissa officinalis L.). Zemdirb. Agric. 2016, 103, 385–390. [Google Scholar] [CrossRef]
- Bonacin, C.; Borsari Trevizan, C.; Stracieri, J.; Benedito dos Santos, T.; Gonçalves, J.E.; Gazim, Z.C.; de Souza, S.G.H.; Limpas, U.M.e.T.; Ciência, T.E.I.-I.I.C.D. Changes in growth, oxidative metabolism and essential oil composition of lemon balm (Melissa officinalis L.) subjected to salt stress. AJCS 2017, 11, 1665–1674. [Google Scholar] [CrossRef]
- Gordanić, S.; Radanović, D.; Lukić, M.; Mrðan, S.; Mikic, S.; Prijić, Ž.; Marković, T. Influence of water stress prior to harvest on yield and essential oil content of pot grown lemon balm. Nat. Med. Mater. 2021, 41, 54–57. [Google Scholar] [CrossRef]
- Avci, A.B.; Akcali Giachino, R.R. Harvest stage effects on some yield and quality characteristics of lemon balm (Melissa officinalis L.). Ind. Crops Prod. 2016, 88, 23–27. [Google Scholar] [CrossRef]
- León-Fernández, M.; Sánchez-Govín, E.; Quijano-Celis, C.E.; Pino, J.A. Effect of planting practice and harvest time in oil content and its composition in Melissa officinalis L. cultivated in Cuba. J. Essent. Oil Bear. Plants 2008, 11, 62–68. [Google Scholar] [CrossRef]
- Khalid, K.A.; Ahmed, A.M.A. Effect of Harvest Time on the Lemon Balm Essential Oils. Acta Hortic. 2011, 925, 237–242. [Google Scholar] [CrossRef]
- Németh-Zámboriné, É.; Seidler-Łożykowska, K.; Szabó, K. Effect of harvest date on yield and secondary compounds of lemon balm (Melissa officinalis L.). J. Appl. Bot. Food Qual. 2019, 92, 81–87. [Google Scholar] [CrossRef]
- Damavandi, Z.; Sayfzadeh, S. Planting arrangement, nitrogen resources and plant density on some vegetative characteristics of Melissa officinalis. Ciência E Nat. 2015, 37, 445–461. [Google Scholar] [CrossRef]
- Nahed, R.M. Cultivation of Melissa officinalis L. in the North Middle Nile Delta Region: A. Effect of Planting and Harvesting Dates. J. Plant Prod. 2012, 3, 2747–2759. [Google Scholar]
- Singh, S.; Haider, S.Z.; Chauhan, N.K.; Lohani, H.; Sah, S.; Yadav, R.K. Effect of Time of Harvesting on Yield and Quality of Melissa officinalis L. in Doon Valley, India. Ind. J. Pharm. Sci. 2014, 76, 449–452. [Google Scholar]
- Żyłowska, K.; Kozyra, J. Zmiany warunków agroklimatycznych w Polsce. Stud. I Rap. IUNG-PIB 2022, 67, 9–23. [Google Scholar] [CrossRef]
- Farmakopea Polska IX. (Polish Pharmacopoeia IX); Urząd Rejestracji Produktów Leczniczych, Medycznych i Produktów Biobójczych: Warszawa, Poland, 2011.
- Farmakopea Polska, V. (Polish Pharmacopoeia V); Urząd Rejestracji Produktów Leczniczych, Medycznych i Produktów Biobójczych: Warszawa, Poland, 1990.
- Yeşil, M.; Özcan, M.M. Effects of harvest stage and diurnal variability on yield and essential oil content in Mentha × piperita L. Plant Soil Environ. 2021, 67, 417–423. [Google Scholar] [CrossRef]
- Yenikalayci, A.; Gunes, M.; Gul, K. Cultivation Possibilities of Lemon Balm (Melissa officinalis L.) in the Central Anatolia Region of Turkey. ISPEC Tarım Bilim. Derg. 2021, 5, 313–319. [Google Scholar] [CrossRef]
- Mansoori, I. The Effect of Plant Density and Harvesting Time on Growth and Essential Oil of Peppermint (Mentha piperita L.). J. Med. Bioengin. 2014, 3, 313–316. [Google Scholar] [CrossRef]
- Said-Al Ahl, H.A.H.; Hussien, M.S. Effect of drying period and harvesting times on herb, essential oil content and its constituent’s from different parts of Melissa officinalis. J. Chem. Pharm. Res. 2016, 8, 919–933. [Google Scholar]
- Nematian, A.; Dalvandi, G.R.; Shariati, M.A. Effect of planting density and sowing date on the essential oil content and composition of lemon verbena (Lippia citriodora). Int. J. Biosci. 2014, 5, 56–63. [Google Scholar] [CrossRef]
- Saki, A.; Mozafari, H.; Asl, K.K.; Sani, B.; Mirza, M. Plant yield, antioxidant capacity and essential oil quality of Satureja mutica supplied with cattle manure and wheat straw in different plant densities. Commun. Soil Sci. Plant Anal. 2019, 50, 2683–2693. [Google Scholar] [CrossRef]
- Singh, U.; Gaur, P.M.; Chaturvedi, S.K.; Hazra, K.K.; Singh, G. Changing plant architecture and density can increase chickpea productivity and facilitate for mechanical harvesting. Int. J. Plant Prod. 2019, 13, 193–202. [Google Scholar] [CrossRef]
- El-Leithy, A.S.; El-Hanafy, S.H.; Khattab, M.E.; Ahmed, S.S.; El-Ghafour, A. Effect of nitrogen fertilization rates, plant spacing and their interaction on essential oil percentage and total flavonoid content of summer savory (Satureja hortensis L.) plant. Egypt. J. Chem. 2017, 60, 805–816. [Google Scholar] [CrossRef]
- Nurzyńska-Wierdak, R.; Zawiślak, G. Herb yield and bioactive compounds of tarragon (Artemisia dracunculus L.) as influenced by plant density. Acta Sci. Pol. Hortorum Cultus 2014, 13, 207–221. [Google Scholar]
- Askari, F.; Mirza, M.; Tafti, M.M. Effect of density and year of cultivation on essential oil content and chemical compounds of Achillea millefolium subsp. elbursensis. Indian J. Nat. Prod. Resour. 2021, 12, 122–127. [Google Scholar]
- Zawiślak, G.; Nurzyńska-Wierdak, R. Variation in winter savory (Satureja montana L.) yield and essential oil production as affected by different plant density and number of harvests. Acta Sci. Pol. Hortorum Cultus 2017, 16, 159–168. [Google Scholar] [CrossRef]
- Abbaszadeh, B.; Sefidkon, F.; Layegh Haghighi, M.; Karegar Hajiabadi, E. The Effect of Planting Time and Planting Density on Yield and Essential Oil of Satureja sahendica Bornm. J. Med. Plant. By-Prod. 2014, 3, 141–146. [Google Scholar]
- Kołton, A.; Długosz-Grochowska, O.; Wojciechowska, R.; Czaja, M. Biosynthesis regulation of folates and phenols in plants. Sci. Hort. 2022, 291, 110561. [Google Scholar] [CrossRef]
- Lalević, D.; Ilić, Z.S.; Stanojević, L.; Milenković, L.; Šunić, L.; Kovač, R.; Kovačević, D.; Danilović, B.; Milenković, A.; Stanojević, J.; et al. Shade-Induced Effects on Essential Oil Yield, Chemical Profiling, and Biological Activity in Some Lamiaceae Plants Cultivated in Serbia. Horticulturae 2023, 9, 84. [Google Scholar] [CrossRef]
- Malek Maleki, F.; Abbasi, N.; Sharifi Ashourabadi, E.; Zare, M.J.; Barary, M. Investigating the Effect of Plant Density on Biochemical Characteristics and Essential Oil in Wild Thyme (Thymbra spicata L.). Plant Prod. 2021, 44, 573–586. [Google Scholar] [CrossRef]
Density | Fresh Herb | Air-Dried Herb | Air-Dried Leaves | ||||||
---|---|---|---|---|---|---|---|---|---|
OTH | TH | Mean | OTH | TH | Mean | OTH | TH | Mean | |
2019 | |||||||||
30 × 30 | 108.7 | 184.3 | 146.5 a | 29.3 | 40.5 | 34.9 ab | 14.5 | 30.0 | 22.2 ab |
40 × 40 | 122.6 | 196.1 | 159.4 a | 34.5 | 40.8 | 37.7 a | 21.2 | 30.2 | 25.7 a |
Mean | 115.6 C | 190.2 A | 31.9 BC | 40.7 A | 17.8 B | 30.1 A | |||
2020 | |||||||||
30 × 30 | 92.7 | 132.2 | 112.4 b | 22.8 | 34.6 | 28.7 b | 12.4 | 26.0 | 19.2 b |
40 × 40 | 117.3 | 158.2 | 137.8 a | 32.0 | 36.2 | 34.1 ab | 21.4 | 26.7 | 24.0 ab |
Mean | 105.0 C | 145.2 B | 27.4 C | 35.4 AB | 16.9 B | 26.3 A |
Density | Air-Dried Herb/Fresh Herb | Air-Dried Leaves/Air Dry Herb | Air-Dried Leaves/Fresh Herb | ||||||
---|---|---|---|---|---|---|---|---|---|
OTH | TH | Mean | OTH | TH | Mean | OTH | TH | Mean | |
2019 | |||||||||
30 × 30 | 0.27 | 0.22 | 0.25 a | 0.49 | 0.74 | 0.62 b | 0.13 | 0.17 | 0.15 a |
40 × 40 | 0.28 | 0.21 | 0.25 a | 0.62 | 0.74 | 0.68 a | 0.17 | 0.15 | 0.16 a |
Mean | 0.28 A | 0.22 B | 0.55 B | 0.74 A | 0.15 A | 0.16 A | |||
2020 | |||||||||
30 × 30 | 0.25 | 0.26 | 0.26 a | 0.55 | 0.75 | 0.65 a | 0.14 | 0.20 | 0.17 a |
40 × 40 | 0.27 | 0.23 | 0.25 a | 0.67 | 0.74 | 0.70 a | 0.18 | 0.17 | 0.18 a |
Mean | 0.26 AB | 0.24 AB | 0.61 B | 0.74 A | 0.16 A | 0.18 A |
Density | Essential Oil Content (%) | Essential Oil Yield (g·100 m−2) | Tannins (%) | Flavonoids (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
OTH | TH | Mean | OTH | TH | Mean | OTH | TH | Mean | OTH | TH | Mean | |
2019 | ||||||||||||
30 × 30 | 0.20 | 0.30 | 0.25 ab | 30.2 | 89.5 | 59.8 ab | 4.23 | 4.50 | 4.29 b | 0.50 | 0.45 | 0.48 b |
40 × 40 | 0.13 | 0.20 | 0.16 b | 26.3 | 61.6 | 43.9 b | 5.20 | 5.33 | 5.26 a | 0.58 | 0.43 | 0.50 b |
Mean | 0.16 B | 0.25 AB | 28.3 C | 75.5 AB | 4.71 A | 4.84 A | 0.54 AB | 0.44 B | ||||
2020 | ||||||||||||
30 × 30 | 0.20 | 0.30 | 0.25 ab | 25.3 | 81.5 | 53.4 ab | 4.18 | 4.45 | 4.31 b | 0.65 | 0.53 | 0.59 ab |
40 × 40 | 0.35 | 0.40 | 0.38 a | 75.0 | 104.8 | 89.9 a | 5.20 | 5.30 | 5.25 a | 0.58 | 0.70 | 0.64 a |
Mean | 0.28 AB | 0.35 A | 50.1 BC | 93.2 A | 4.69 A | 4.88 A | 0.61 A | 0.61 A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nurzyńska-Wierdak, R.; Zawiślak, G.; Papliński, R. Agronomic Practices in Lemon Balm Production under Temperate Climate Conditions: Raw Material Yield and Active Substances Content. Agronomy 2023, 13, 1433. https://doi.org/10.3390/agronomy13051433
Nurzyńska-Wierdak R, Zawiślak G, Papliński R. Agronomic Practices in Lemon Balm Production under Temperate Climate Conditions: Raw Material Yield and Active Substances Content. Agronomy. 2023; 13(5):1433. https://doi.org/10.3390/agronomy13051433
Chicago/Turabian StyleNurzyńska-Wierdak, Renata, Grażyna Zawiślak, and Rafał Papliński. 2023. "Agronomic Practices in Lemon Balm Production under Temperate Climate Conditions: Raw Material Yield and Active Substances Content" Agronomy 13, no. 5: 1433. https://doi.org/10.3390/agronomy13051433
APA StyleNurzyńska-Wierdak, R., Zawiślak, G., & Papliński, R. (2023). Agronomic Practices in Lemon Balm Production under Temperate Climate Conditions: Raw Material Yield and Active Substances Content. Agronomy, 13(5), 1433. https://doi.org/10.3390/agronomy13051433