Prediction of Grain Yield in Wheat by CHAID and MARS Algorithms Analyses
Abstract
:1. Introduction
2. Material and Method
2.1. Material
2.2. Climate Properties of the Research Area
2.3. Soil Properties of Research Area
2.4. Measured Characteristics of Dependent and Independent Variables
2.5. CHAID and MARS Analysis
- Pearson correlation coefficient (r) between the observed and predicted values;
- Akaike information criterion (AIC),
- Root mean square error (RMSE),
- Mean error (ME),
- Mean absolute deviation (MAD),
- Standard deviation ratio (SDratio),
- Global relative approximation error (RAE),
- Mean absolute percentage error (MAPE),
3. Results
3.1. Determination of Correlations between Variables
3.2. Determination of the Relationship between Genotypes
3.3. Comparison of the MARS and CHAID Algorithms
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Demİrel, F.; Yildirim, B. Investigation of Some Gernik Wheat (Triticum dicoccum L.) Genotypes by Agromorphological Characteristics and Biplot Analysis Method. J. Agric. 2020, 3, 49–56. [Google Scholar]
- Özkan, H.; Willcox, G.; Graner, A.; Salamini, F.; Kilian, B. Geographic distribution and domestication of wild emmer wheat (Triticum dicoccoides). Genet. Resour. Crop Evol. 2011, 58, 11–53. [Google Scholar] [CrossRef]
- Demİrel, F.; Barış, E. Production Projection of Einkorn and Emmer Wheat Cultivated in Turkey. J. Agric. 2020, 3, 1–5. [Google Scholar] [CrossRef]
- Lev-Yadun, S.; Gopher, A.; Abbo, S. The cradle of agriculture. Science 2000, 288, 1602–1603. [Google Scholar] [CrossRef] [PubMed]
- Rauf, S.; da Silva, J.T.; Khan, A.A.; Naveed, A. Consequences of plant breeding on genetic diversity. Int. J. Plant Breed. 2010, 4, 1–21. [Google Scholar]
- Coşkun, İ.; Tekin, M.; Akar, T. Characterization of Turkish diploid and tetraploid hulled wheat lines for some agromorphological traits. Int. J. Agri. Wildlife Sci. 2019, 5, 322–334. [Google Scholar]
- Gollin, D.; Smale, M.; Skovmand, B. Searching an ex situ collection of wheat genetic resources. Am. J. Agric. Econ. 2000, 82, 812–827. [Google Scholar] [CrossRef]
- Polat, P.; Çİfcİ, E.; Yağdı, K. Determination of relationships between grain yield and some yield components in bread wheat (Triticum aestivum L.). Tarim Bilim. Derg. 2015, 21, 355–362. [Google Scholar]
- Srivastava, A.K.; Safaei, N.; Khaki, S.; Lopez, G.; Zeng, W.; Ewert, F.; Gaiser, T.; Rahimi, J. Winter wheat yield prediction using convolutional neural networks from environmental and phenological data. Sci. Rep. 2022, 12, 3215. [Google Scholar] [CrossRef] [PubMed]
- Celik, S.; Eyduran, E.; Tatliyer, A.; Karadas, K.; Kara, M.K.; Waheed, A. Comparing predictive performances of some nonlinear functions and Multivariate Adaptive Regression Splines (MARS) for describing the growth of Daera Din Panah (DDP) goat in Pakistan. Pak. J. Zool. 2018, 50, 1–4. [Google Scholar] [CrossRef]
- Aytekin, İ.; Eyduran, E.; Karadas, K.; Akşahan, R.; Keskin, İ. Prediction of Fattening Final Live Weight from some Body Measurements and Fattening Period in Young Bulls of Crossbred and Exotic Breeds using MARS Data Mining Algorithm. Pak. J. Zool. 2018, 50, 189–195. [Google Scholar] [CrossRef]
- Celik, S.; Boydak, E. Description of the relationships between different plant characteristics in soybean using multivariate adaptive regression splines (MARS) algorithm. J. Anim. Plant Sci. 2020, 30, 431–441. [Google Scholar]
- Akçura, M. The relationships of some traits in Turkish winter bread wheat landraces. Turk. J. Agric. For. 2011, 35, 115–125. [Google Scholar] [CrossRef]
- Janmohammadi, M.; Sabaghnia, N.; Nouraein, M. Path analysis of grain yield and yield components and some agronomic traits in bread wheat. Acta Univ. Agric. Silvic. Mendel. Brun. 2014, 62, 945–952. [Google Scholar] [CrossRef]
- Kayri, M.; Boysan, M. Assesment of relation between cognitive vulnerability and depression’s level by using classification and regression tree analysis. Hacettepe Uni. J. Educ. 2008, 34, 168–177. [Google Scholar]
- Mirhashemi, S.H.; Panahi, M. Investigation and prediction of maize water requirements in four growth stages under the influence of natural factors (Case study: Qazvin plain, Iran). Environ. Technol. Innov. 2021, 24, 102062. [Google Scholar] [CrossRef]
- Olfaz, M.; Tirink, C.; Önder, H. Use of CART and CHAID algorithms in Karayaka sheep breeding. J. Facul. Vet. Med. Kafkas Uni. 2019, 25, 105–110. [Google Scholar]
- Demirel, F.; Gurcan, K.; Akar, T. Clustering analysis of morphological and phenological data in einkorn and emmer wheats collected from Kastamonu region. Int. J. Sci. Technol. Res. 2019, 5, 25–36. [Google Scholar]
- Ahmad, T.; Kumar, A.; Pandey, D.; Prasad, B. Correlation and path coefficient analysis for yield and its attributing traits in bread wheat (Triticum aestivum L. em Thell). J. Appl. Nat. Sci. 2018, 10, 1078–1084. [Google Scholar] [CrossRef]
- Horwitz, W. Official Methods of Analysis of AOAC International. Volume I, Agricultural Chemicals, Contaminants, Drugs/Edited by William Horwitz; AOAC International: Gaithersburg, MD, USA, 2010. [Google Scholar]
- Allaire, J. RStudio: Integrated development environment for R. Boston MA 2012, 770, 165–171. [Google Scholar]
- Wei, T.; Simko, V.; Levy, M.; Xie, Y.; Jin, Y.; Zemla, J. Package ‘corrplot’. Statistician 2017, 56, e24. [Google Scholar]
- Addinsoft, X. Data Analysis and Statistics Software for Microsoft Excel; Addinsoft: Paris, France, 2015. [Google Scholar]
- Eyduran, E.; Akin, M.; Eyduran, S. Application of Multivariate Adaptive Regression Splines through R Software; Nobel Academic Publishing: Ankara, Turkey, 2019. [Google Scholar]
- Eyduran, E. ehaGoF: Calculates Goodness of Fit Statistics, R Package Version 0.1.1; 2020. Available online: https://CRAN.R-project.org/package=ehaGoF (accessed on 10 February 2023).
- Zaborski, D.; Ali, M.; Eyduran, E.; Grzesiak, W.; Tariq, M.M.; Abbas, F.; Waheed, A.; Tirink, C. Prediction of selected reproductive traits of indigenous Harnai sheep under the farm management system via various data mining algorithms. Pak. J. Zool. 2019, 51, 421. [Google Scholar] [CrossRef]
- Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer: Berlin/Heidelberg, Germany, 2013; Volume 26. [Google Scholar]
- Grzesiak, W.; Zaborski, D. Examples of the use of data mining methods in animal breeding. In Data Mining Applications in Engineering and Medicine; IntechOpen: London, UK, 2012; pp. 303–324. [Google Scholar]
- Tyasi, T.L.; Eyduran, E.; Celik, S. Comparison of tree-based regression tree methods for predicting live body weight from morphological traits in Hy-line silver brown commercial layer and indigenous Potchefstroom Koekoek breeds raised in South Africa. Trop. Anim. Health Prod. 2021, 53, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, M.; Wing, J.; Weston, S.; Williams, A.; Keefer, C.; Engelhardt, A.; Cooper, T.; Mayer, Z.; Kenkel, B.; Benesty, M. Caret: Classification and Regression Training: R Package, R package version 6.0-77; 2019. Available online: https://CRAN.R-project.org/package=caret (accessed on 10 February 2023).
- Milborrow, S. Derived from mda: Mars by Trevor Hastie and Rob Tibshirani. Uses Alan Mill. Fortran. 2019. Available online: https://CRAN.R-project.org/package=earth (accessed on 10 February 2023).
- Maccaferri, M.; Harris, N.S.; Twardziok, S.O.; Pasam, R.K.; Gundlach, H.; Spannagl, M.; Ormanbekova, D.; Lux, T.; Prade, V.M.; Milner, S.G. Durum wheat genome highlights past domestication signatures and future improvement targets. Nat. Genet. 2019, 51, 885–895. [Google Scholar] [CrossRef]
- Soriano, J.M.; Villegas, D.; Sorrells, M.E.; Royo, C. Durum wheat landraces from east and west regions of the mediterranean basin are genetically distinct for yield components and phenology. Front. Plant Sci. 2018, 9, 80. [Google Scholar] [CrossRef]
- Aoun, M.; Kolmer, J.A.; Rouse, M.N.; Elias, E.M.; Breiland, M.; Bulbula, W.D.; Chao, S.; Acevedo, M. Mapping of novel leaf rust and stem rust resistance genes in the Portuguese durum wheat landrace PI 192051. G3 Genes Genomes Genet. 2019, 9, 2535–2547. [Google Scholar] [CrossRef]
- Chacón, E.A.; Vázquez, F.J.; Giraldo, P.; Carrillo, J.M.; Benavente, E.; Rodríguez-Quijano, M. Allelic variation for prolamins in Spanish durum wheat landraces and its relationship with quality traits. Agronomy 2020, 10, 136. [Google Scholar] [CrossRef]
- Karaköy, T.; Baloch, F.S.; Toklu, F.; Özkan, H. Variation for selected morphological and quality-related traits among 178 faba bean landraces collected from Turkey. Plant Genet. Resour. 2014, 12, 5–13. [Google Scholar] [CrossRef]
- Kumar, R.; Bhushan, B.; Pal, R.; Gaurav, S. Correlation and path coefficient analysis for quantitative traits in wheat (Triticum aestivum L.) under normal condition. Ann. Agri-Bio Res. 2014, 19, 447–450. [Google Scholar]
- Aydoğan, S.; Soylu, S. Determination of yield, yield components and some quality properties of bread wheat varieties. J. Cent. Res. Inst. Field Crops 2017, 26, 24–30. [Google Scholar]
- Çığ, F.; Karaman, M. Evaluation of Durum Wheat (Triticum durum Desf.) Genotypes originated from southeast Anatolia region for some agricultural character. Turk. J. Agric. Res. 2019, 6, 10–19. [Google Scholar]
- İpeksever, F.; Özberk, İ. Investigation of yield and quality characteristics and economic returns of some plain and mixed bread wheat (Triticum aestivum L.) cultivars. J. Cent. Res. Inst. Field Crops 2019, 28, 80–91. [Google Scholar]
- Yağmur, M.K.D. Relationship between grain yield, yield components and phenological periods in winter wheat. Harran J. Agric. Food Sci. 2008, 12, 9–18. [Google Scholar]
- Kara, B.; Akman, Z. Trait relationships and path analysis in local wheat ecotypes. SDU J. Nat. Appl. Sci. 2007, 11, 219–224. [Google Scholar]
- Güngör, H.; Dumlupinar, Z. Correlation and path analysis in terms of some agricultural characteristics in bread wheat (Triticum aestivum L.) cultivars. J. Agric. Nat. 2019, 22, 851–858. [Google Scholar] [CrossRef]
- Nayana, B.; Kumar, K.R.; Chesneau, C. Wheat Yield Prediction in India Using Principal Component Analysis-Multivariate Adaptive Regression Splines (PCA-MARS). AgriEngineering 2022, 4, 461–474. [Google Scholar] [CrossRef]
- Celik, S.; Boydak, E.; Firat, R. An analysis of factors affecting yield, oil production rate and plant height in sunflowers using selected data mining algorithms. JAPS J. Anim. Plant Sci. 2018, 28, 1085–1093. [Google Scholar]
- Cyplik, A.; Czyczyło-Mysza, I.M.; Jankowicz-Cieslak, J.; Bocianowski, J. QTL×QTL×QTL Interaction Effects for Total Phenolic Content of Wheat Mapping Population of CSDH Lines under Drought Stress by Weighted Multiple Linear Regression. Agriculture 2023, 13, 850. [Google Scholar] [CrossRef]
- Tsegaye, D.; Dessalegn, T.; Dessalegn, Y.; Share, G. Genetic variability, correlation and path analysis in durum wheat germplasm (Triticum durum Desf). Agric. Res. Rev. 2012, 1, 107–112. [Google Scholar]
- Sabit, Z.; Yadav, B.; Rai, P. Genetic variability, correlation and path analysis for yield and its components in f5 generation of bread wheat (Triticum aestivum L.). J. Pharmacogn. Phytochem. 2017, 6, 680–687. [Google Scholar]
- Jędzura, S.; Bocianowski, J.; Matysik, P. The AMMI model application to analyze the genotype–environmental interaction of spring wheat grain yield for the breeding program purposes. Cereal Res. Commun. 2023, 51, 197–205. [Google Scholar] [CrossRef]
No | Wheat Genotypes | Province | Location |
---|---|---|---|
G1 | T. dicoccum L. | Kayseri | 38°17′04.1″ N–35°34′59.3″ E |
G2 | T. dicoccum L. | Kayseri | 38°17′13.4″ N–35°35′43.3″ E |
G3 | T. dicoccum L. | Kayseri | 38°15′47.9″ N–35°37′19.3″ E |
G4 | T. dicoccum L. | Kayseri | 38°15′15.5″ N–35°37′40.1″ E |
G5 | T. dicoccum L. | Kayseri | 38°13′17.6″ N–35°37′32.4″ E |
G6 | T. dicoccum L. | Kayseri | 38°13′05.1″ N–35°37′32.7″ E |
G7 | T. dicoccum L. | Kayseri | 38°11′23.1″ N–35°40′18.0″ E |
G8 | T. dicoccum L. | Kayseri | 38°11′14.1″ N–35°40′25.0″ E |
G9 | T. dicoccum L. | Kayseri | 38°11′09.9″ N–35°40′19.3″ E |
G10 | T. monococcum L. | Kastamonu | 41°12′06.2″ N–33°33′25.5″ E |
G11 | T. monococcum L. | Kastamonu | 41°11′56.9″ N–33°33′52.1″ E |
G12 | T. monococcum L. | Kastamonu | 41°13′28.7″ N–33°31′58.6″ E |
G13 | T. monococcum L. | Kastamonu | 41°13′08.4″ N–33°30′50.6″ E |
G14 | T. monococcum L. | Kastamonu | 41°12′44.5″ N–33°30′27.1″ E |
G15 | T. monococcum L. | Kastamonu | 41°13′11.9″ N–33°28′58.0″ E |
G16 | T. monococcum L. | Igdir | Igdir University—Breeding line-1 |
G17 | T. monococcum L. | Igdir | Igdir University—Breeding line-2 |
G18 | T. monococcum L. | Igdir | Igdir University—Breeding line-3 |
G19 | T. monococcum L. | Igdir | Igdir University—Breeding line-4 |
G20 | T. monococcum L. | Igdir | Igdir University—Breeding line-5 |
G21 | T. monococcum L. | Igdir | Igdir University—Breeding line-6 |
G22 | T. aestivum L. (Dogankent) | Igdir | Registered variety |
G23 | T. durum L. (Kiziltan-91) | Igdir | Registered variety |
G24 | T. durum L. (C. 1252) | Igdir | Registered variety |
G25 | T. durum L. (Sarıcanak98) | Igdir | Registered variety |
G26 | T. durum L. (Demir-2000) | Igdir | Registered variety |
Climate Factors | Years | Months | ||||||
---|---|---|---|---|---|---|---|---|
March | April | May | June | July | August | Total/Mean | ||
Precipitation (mm) | 2017–2018 | 16.5 | 18.2 | 69.3 | 31.8 | 5.9 | 5.8 | 147.5 |
2018–2019 | 23.5 | 25.1 | 25.9 | 13.6 | 0.6 | 0.6 | 89.3 | |
LYA | 21.9 | 37.4 | 49.4 | 33.1 | 14.5 | 9.6 | 165.9 | |
Average Temperature (°C) | 2017–2018 | 12.3 | 14.2 | 18.4 | 23.4 | 29.2 | 26.4 | 20.65 |
2018–2019 | 6.8 | 12.1 | 19.9 | 25.6 | 27.3 | 27.0 | 19.8 | |
LYA | 6.99 | 13.4 | 17.5 | 22.3 | 26.2 | 25.6 | 18.66 | |
Relative Humidity (%) | 2017–2018 | 45.7 | 47.7 | 45.7 | 46.1 | 45.1 | 52.6 | 47.15 |
2018–2019 | 59.7 | 56.9 | 51.2 | 45.8 | 40.1 | 41.2 | 49.2 | |
LYA | 52.2 | 49.9 | 51.5 | 47.3 | 45.3 | 47.1 | 48.88 |
Soil Features | Values |
---|---|
pH | 8.6 |
EC (dS m−1) | 1.37 |
CaCO3 (%) | 22.25 |
Total N (%) | 0.06 |
Organic matter (%) | 1.2 |
P2O5 (ppm) | 51.5 |
K2O (ppm) | 851.5 |
Variable | Minimum | Maximum | Mean | Standard Error | F-Statistic |
---|---|---|---|---|---|
GNS 1 | 12.8 | 34.3 | 22.49 | 0.596 | 75.387 * |
GY (g plant−1) | 0.29 | 0.95 | 0.57 | 0.022 | 53.992 * |
BY (g plant−1) | 1.28 | 3.54 | 2.16 | 0.083 | 4177.015 * |
1000-GW (g) | 22.6 | 57.3 | 38.7 | 0.75 | 12.838 * |
NRD | 62 | 86 | 73.39 | 0.614 | 7.975 * |
NMD | 84 | 117 | 105.04 | 0.809 | 15.373 * |
PR (%) | 8.96 | 21.27 | 16.27 | 0.345 | 113.973 * |
PH (cm plant−1) | 65 | 81 | 71.15 | 0.338 | 4.747 * |
SL (cm plant−1) | 5.95 | 7.5 | 6.57 | 0.035 | 5.314 * |
Criteria | MARS | CHAID | ||
---|---|---|---|---|
Training SP | Test SP | Training SP | Test SP | |
r 1 | 0.992 *** | 0.979 *** | 0.968 *** | 0.954 *** |
R2 | 0.985 | 0.957 | 0.939 | 0.89 |
Adj. R2 | 0.985 | 0.957 | 0.937 | 0.88 |
AIC | −404.773 | −155.449 | −325.273 | −131.099 |
RMSE (%) | 0.024 | 0.039 | 0.047 | 0.06 |
ME (%) | 0.00 | 0.009 | 0.001 | −0.025 |
MAD (%) | 0.018 | 0.031 | 0.038 | 0.048 |
SDratio | 0.124 | 0.203 | 0.248 | 0.301 |
RAE | 0.002 | 0.004 | 0.006 | 0.011 |
MAPE (%) | 3.539 | 6.521 | 7.258 | 10.532 |
Terms | Model | Coefficients |
---|---|---|
1 | Intercept | +0.841 |
2 | max (0, 2.86-BY 1) | −0.361 |
3 | max (0, NRD-77) | +0.009 |
4 | max (0, 1000-GW-41.8) | −0.006 |
5 | max (0, 70.5-PH) | −0.032 |
6 | max (0, PH-70.5) | +0.032 |
7 | max (0, 6.65-SL) | +0.137 |
8 | max (0, SL-6.65) | −0.291 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demirel, F.; Eren, B.; Yilmaz, A.; Türkoğlu, A.; Haliloğlu, K.; Niedbała, G.; Bujak, H.; Jamshidi, B.; Pour-Aboughadareh, A.; Bocianowski, J.; et al. Prediction of Grain Yield in Wheat by CHAID and MARS Algorithms Analyses. Agronomy 2023, 13, 1438. https://doi.org/10.3390/agronomy13061438
Demirel F, Eren B, Yilmaz A, Türkoğlu A, Haliloğlu K, Niedbała G, Bujak H, Jamshidi B, Pour-Aboughadareh A, Bocianowski J, et al. Prediction of Grain Yield in Wheat by CHAID and MARS Algorithms Analyses. Agronomy. 2023; 13(6):1438. https://doi.org/10.3390/agronomy13061438
Chicago/Turabian StyleDemirel, Fatih, Baris Eren, Abdurrahim Yilmaz, Aras Türkoğlu, Kamil Haliloğlu, Gniewko Niedbała, Henryk Bujak, Bita Jamshidi, Alireza Pour-Aboughadareh, Jan Bocianowski, and et al. 2023. "Prediction of Grain Yield in Wheat by CHAID and MARS Algorithms Analyses" Agronomy 13, no. 6: 1438. https://doi.org/10.3390/agronomy13061438
APA StyleDemirel, F., Eren, B., Yilmaz, A., Türkoğlu, A., Haliloğlu, K., Niedbała, G., Bujak, H., Jamshidi, B., Pour-Aboughadareh, A., Bocianowski, J., & Nowosad, K. (2023). Prediction of Grain Yield in Wheat by CHAID and MARS Algorithms Analyses. Agronomy, 13(6), 1438. https://doi.org/10.3390/agronomy13061438