Evaluation of Yield Potential and Combining Ability in Thai Elite Cassava Varieties for Breeding Selection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Parental Lines and Hybridization
2.2. Experimental Design and Cultivation Conditions
2.3. Data Collection
2.4. Data Analysis
3. Results
3.1. Distributions of Productivity Traits among 15 F1 Diallel Families
3.2. Analysis of Variance
3.3. GCA Effects
3.4. SCA Effects
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, S.; Cui, Y.; Zhou, Y.; Luo, Z.; Liu, J.; Zhao, M. The industrial applications of cassava: Current status, opportunities and prospects. J. Sci. Food Agric. 2017, 97, 2282–2290. [Google Scholar] [CrossRef] [PubMed]
- Parmar, A.; Sturm, B.; Hensel, O. Crops that feed the world: Production and improvement of cassava for food, feed, and industrial uses. Food Secur. 2017, 9, 907–927. [Google Scholar] [CrossRef]
- Ceballos, H.; Rojanaridpiched, C.; Phumichai, C.; Kittipadakul, P.; Iglesias, C.; Gracen, V.E. Excellence in cassava breeding: Perspectives for the future. Crop Breed Genet. Genom. 2020, 2, e200008. [Google Scholar] [CrossRef] [Green Version]
- Malik, A.I.; Kongsil, P.; Nguyễn, V.A.; Ou, W.; Srean, P.; López-Lavalle, L.A.B.; Utsumi, Y.; Lu, C.; Kittipadakul, P.; Nguyễn, H.H.; et al. Cassava breeding and agronomy in Asia: 50 years of history and future directions. Breed. Sci. 2020, 70, 145–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ceballos, H.; Kawuki, R.S.; Gracen, V.E.; Yencho, G.C.; Hershey, C.H. Conventional breeding, marker assisted selection, genomic selection and inbreeding in clonally propagated crops: A case study for cassava. Theor. Appl. Genet. 2015, 128, 1647–1667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griffing, B. Concept of general and specific combining ability in relation to diallel crossing system. Aust. J. Exp. Biol. Med. Sci. 1956, 9, 463–493. [Google Scholar] [CrossRef] [Green Version]
- Cach, N.T.; Lenis, J.I.; Perez, J.C.; Morante, N.; Calle, F.; Ceballos, H. Inheritance of useful traits in cassava grown in subhumid conditions. Plant Breed. 2006, 125, 177–182. [Google Scholar] [CrossRef]
- Chalwe, A.; Melis, R.; Shanahan, P.; Chiona, M. Inheritance of resistance to cassava green mite and other useful agronomic traits in cassava grown in Zambia. Euphytica 2015, 205, 103–119. [Google Scholar] [CrossRef]
- Jaramillo, G.; Morante, N.; Perez, J.C.; Calle, F.; Ceballos, H.; Arias, B.; Bellotti, A.C. Diallel analysis in cassava adapted to the midaltitude valleys environment. Crop Sci. 2005, 45, 1325–1335. [Google Scholar] [CrossRef]
- Kulembeka, H.P.; Ferguson, M.; Herselman, L.; Kanju, E.; Mkamilo, G.; Masumba, E.; Fregene, M.; Labuschagne, M.T. Diallel analysis of field resistance to brown streak disease in cassava (Manihot esculenta Crantz) landraces from Tanzania. Euphytica 2012, 187, 277–288. [Google Scholar] [CrossRef]
- Parkes, E.Y.; Fregene, M.; Dixon, A.; Peprah, B.B.; Labuschagne, M.T. Combining ability of cassava genotypes for cassava mosaic disease and cassava bacterial blight, yield and its related components in two ecological zones in Ghana. Euphytica 2013, 194, 13–24. [Google Scholar] [CrossRef]
- Pérez, J.C.; Ceballos, H.; Calle, F.; Morante, N.; Gaitan, W.; Liano, G.; Alvarez, E. Within-family genetic variation and epistasis in cassava (Manihot esculenta Crantz) adapted to the acid-soils environment. Euphytica 2005, 145, 77–85. [Google Scholar] [CrossRef] [Green Version]
- Pérez, J.C.; Ceballos, H.; Jaramillo, G.; Morante, N.; Calle, F.; Arias, B.; Bellotti, A.C. Epistasis in cassava adapted to mid-altitude valley environments. Crop Sci. 2005, 45, 1491–1496. [Google Scholar] [CrossRef]
- Zacarias, A.M.; Labuschagne, M.T. Diallel analysis of cassava brown streak disease, yield and yield-related characteristics in Mozambique. Euphytica 2010, 176, 309–320. [Google Scholar] [CrossRef]
- Kittipadakul, P.; Kongsil, P.; Phumichai, C.; Jansky, S.H. Chapter 7: Breeding cassava for higher yield. In Achieving Sustainable Cultivation of Cassava Volume 2: Genetics, Breeding, Pests, and Diseases; Hershey, C., Ed.; Burleigh Dodds Science Publishing: Cambridge, UK, 2017; pp. 139–170. [Google Scholar]
- Kawano, K.; Sarakarn, S.; Limsila, A.; Tongglum, A.; Suparhan, D. Cassava cultivar evolution viewed through harvest index and biomass production. In Proceedings of the 8th Symposium of the International Society for Tropical Root Crops, Bangkok, Thailand, 30 October–5 November 1988; Howeler, R.H., Ed.; International Society for Tropical Root Crops: Nairobi, Kenya, 1990; pp. 202–221. [Google Scholar]
- Kittipadakul, P.; Vichukit, V.; Rodjanaridpiched, C.; Phumichai, C.; Kongsila, P.; Chanthaworn, J.; Boonma, S.; Jansky, S.H. “Huay Bong 80” a New Variety with High Yield and High Stability for Starch Content. In Proceedings of the Ninth Regional Workshop, Nanning, China, 27 November–3 December 2009; pp. 89–95. [Google Scholar]
- Kawano, K. Cassava. In Hybridization of Crop Plants; Walter, F., Henry, H., Eds.; American Society of Agronomy and Crop Science Society of America: Madison, WI, USA, 1980; pp. 225–233. [Google Scholar]
- Federer, W.T. Augmented (or hoonuiaku) design. Hawaii. Plant. Rec. 1956, 55, 191–208. [Google Scholar]
- Wholey, D.W.; Booth, R.H. A comparison of simple methods for estimating starch content of cassava roots. J. Sci. Food Agric. 1979, 30, 158–164. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016; Available online: http://www.R-project.org/ (accessed on 5 April 2023).
- Gardner, C.O.; Eberhart, S.A. Analysis and interpretation of the variety cross diallel and related populations. Biometrics 1966, 22, 439–452. [Google Scholar] [CrossRef]
- Singh, R.K.; Chaudhary, B.D. Biometrical Methods in Quantitative Genetic Analysis; Kalyani: Ludhiana, India, 1977. [Google Scholar]
- Beil, G.; Atkins, R.E. Estimates of general and specific combining ability in F1 hybrids for grain yield and its components in grain sorghum, Sorghum vulgare pers. 1. Crop Sci. 1967, 7, 225–228. [Google Scholar] [CrossRef]
- Haussmann, B.I.G.; Obilana, A.B.; Ayiecho, P.O.; Blum, A.; Schipprack, W.; Geiger, H.H. Quantitative-genetic parameters of sorghum [Sorghum bicolor (L.) Moench] grown in semi-arid areas of Kenya. Euphytica 1999, 105, 109–118. [Google Scholar] [CrossRef]
- Baker, R.J. Issues in diallel analysis. Crop Sci. 1978, 18, 533–536. [Google Scholar] [CrossRef]
- Cach, N.T.; Pérez, J.C.; Lenis, J.I.; Calle, F.; Morante, N.; Ceballos, H. Epistasis in the expression of relevant traits in cassava (Manihot esculenta Crantz) for subhumid conditions. J. Hered. 2005, 96, 586–592. [Google Scholar] [CrossRef] [Green Version]
- Calle, F.; Perez, J.C.; Gaitan, W.; Morante, N.; Ceballos, H.; Lhano, G.; Alvarez, E. Diallel inheritance of relevant traits in cassava (Manihot esculenta Crantz) adapted to acid-soil savannas. Euphytica 2005, 144, 177–186. [Google Scholar] [CrossRef]
- Bueno, A. Estimation of genetic parameters in cassava. In Mejoramiento Genético de la Yuca en América Latina; Centro Internacional de Agricultura Tropical (CIAT): Cali, CO, USA, 1991; pp. 197–220. [Google Scholar]
- Chipeta, M.M.; Bokosi, J.M.; Saka, V.W.; Benesi, I.R. Combining ability and mode of gene action in cassava for resistance to cassava green mite and cassava mealy bug in Malawi. J. Plant Breed. Crop Sci. 2013, 5, 195–202. [Google Scholar]
- Lokko, Y.; Dixon, A.G.; Offei, S.K.; Danquah, B.Y. Combining ability analysis of resistance to mosaic virus disease in cassava. Afr. Crop Sci. J. 2006, 14, 221–230. [Google Scholar]
- Owolade, O.F.; Dixon, A.G.O.; Adeoti, A.Y.A. Diallel Analysis of Cassava Genotypes to Anthracnose Disease. World J. Agric. Sci. 2006, 2, 98–104. [Google Scholar]
- Kamau, J.; Melis, R.; Laing, M.; Derera, J.; Shanahan, P.; Ngugi, E. Combining the yield ability and secondary traits of selected cassava genotypes in the semi-arid areas of Eastern Kenya. J. Plant Breed. Crop Sci. 2010, 2, 181–191. [Google Scholar]
- Were, W.V.; Shanahan, P.; Melis, R.; Omari, O.O. Gene action controlling farmer preferred traits in cassava varieties adapted to mid-altitude tropical climatic conditions of western Kenya. Field Crops Res. 2012, 133, 113–118. [Google Scholar] [CrossRef]
- Peninah, N.; Richard, E.; Joseph, K. Combining ability for beta-carotene and important quantitative traits in a cassava F1 population. J. Plant Breed. Crop Sci. 2014, 6, 24–30. [Google Scholar]
- Esuma, W.; Kawuki, R.; Herselman, L.; Labuschagne, M.; Ferguson, M.E. Identification of genomic regions associated with cassava resistance to green mite infestation and whitefly in Uganda using genotyping-by-sequencing. Front. Plant Sci. 2016, 7, 1786. [Google Scholar]
- Wolfe, M.D.; Kulakow, P.; Rabbi, I.Y.; Jannink, J.L. Marker-based estimates reveal significant nonadditive effects in clonally propagated cassava (Manihot esculenta): Implications for the prediction of total genetic value and the selection of varieties. G3 2016, 6, 3497. [Google Scholar] [CrossRef] [Green Version]
- Kawano, K.; Narintaraporn, P.; Narintaraporn, S.; Sarakarn, S.; Limsila, A.; Limsila, J.; Suphaharn, D.; Sarawat, V.; Wattananonta, W. Yield improvement in a multistage breeding program for cassava. Crop Sci. 1998, 38, 325–332. [Google Scholar] [CrossRef]
- Kawano, K.; Cock, J.H. Breeding cassava for underprivileged: Institutional, socio-economic and biological factors for success. J. Crop Improv. 2005, 14, 197–219. [Google Scholar] [CrossRef]
- Ceballos, H.; Fregene, M.; Perez, J.C.; Morante, N.; Calle, F. Chapter 12 Cassava genetic improvement. In Breeding Major Food Staples; Kang, M.S., Priyadarshan, P.M., Eds.; Blackwell Publishing Ltd.: Oxford, UK, 2007; pp. 365–391. [Google Scholar]
Parental lines | Pedigree | Type | Remarks |
---|---|---|---|
R1 | - | landrace | - |
R5 | 27-77-10 × R3 | Improved variety | developed by RFCRC 1 |
R90 | CMC76 × V43 | Improved variety | developed by RFCRC |
KU50 | R1 × R90 | Improved variety | developed by KU 2, DOA 3 and CIAT 4 |
HB80 | R5 × KU50 | Improved variety | developed by TTDI 5 and KU |
HNT | - | landrace | sweet cassava |
R1 | R5 | R90 | KU50 | HB80 | HNT | |
---|---|---|---|---|---|---|
R1 | 1: 39/29 | 2: 84/83 | 3: 53/43 | 4: 41/37 | 5: 38/26 | |
R5 | 6: 26/25 | 7: 41/38 | 8: 11/6 | 9: 30/26 | ||
R90 | 10: 81/62 | 11: 52/34 | 12: 28/24 | |||
KU50 | 13: 37/38 | 14: 13/12 | ||||
HB80 | 15: 4/2 | |||||
HNT |
Source of Variation | df | FSY | FRY | HI | SC |
---|---|---|---|---|---|
Year | 1 | 1578.76 * | 6.194 | 0.179219 | 88.171 |
Rep (Year) | 2 | 24.22 * | 4.7085 *** | 0.021831 *** | 12.349 |
Genotype | 20 | 17.05 ** | 0.9156 ** | 0.004053 *** | 45.689 *** |
Progenitor | 5 | 3.45 | 0.5651 | 0.012927 | 41.652 |
P vs. C | 1 | 197.03 | 3.2688 | 0.000298 | 146.083 |
Cross | 14 | 9.05 | 0.8727 | 0.001152 | 39.959 *** |
GCA(gj) | 5 | 19.18 | 1.0707 | 0.001464 | 85.139 *** |
SCA(sij) | 9 | 3.42 | 0.7626 | 0.000979 | 14.86 |
Genotype × Year | 20 | 13.44 * | 0.8843 ** | 0.004262 *** | 7.799 |
Progenitor × Year | 5 | 3.94 | 0.7236 | 0.006577 *** | 15.576 |
Progenitor-Cross × Year | 1 | 121.92 *** | 1.2252 | 0.024754 *** | 7.46 |
Cross × Year | 14 | 9.09 | 0.9173 ** | 0.001971 | 5.046 |
GCA × Year | 5 | 15.71 * | 0.8976 * | 0.003369 * | 2.657 |
SCA × Year | 9 | 5.4 | 0.9283 * | 0.001194 | 6.374 |
Error | 40 | 5.75 | 0.327 | 0.001096 | 6.577 |
Total | 83 |
Source of | df | Year 1 | Year 2 | ||||||
---|---|---|---|---|---|---|---|---|---|
Variation | FSY | FRY | HI | SC | FSY | FRY | HI | SC | |
Genotypes | 20 | 29.72 * | 1.28 ** | 0.0062 *** | 18.43 *** | 0.77 * | 0.52 * | 0.0021 | 35.06 ** |
Progenitors | 5 | 7.09 | 0.80 | 0.01699 *** | 22.64 *** | 0.30 | 0.48 | 0.0025 | 34.59 * |
P vs. C | 1 | 314.4 *** | 0.25 | 0.00981 ** | 43.76 *** | 4.48 ** | 4.25 *** | 0.0152 ** | 109.78 ** |
Crosses | 14 | 17.46 | 1.52 ** | 0.00213 | 15.12 *** | 0.67 | 0.27 | 0.0010 | 29.89 * |
GCA(gj) | 5 | 34.23 * | 1.52 * | 0.0037 * | 30.97 *** | 0.66 | 0.45 | 0.0011 | 56.83 ** |
SCA(sij) | 9 | 8.15 | 1.53 ** | 0.0012 | 6.32 * | 0.68 | 0.16 | 0.0009 | 14.92 |
Error | 20 | 11.15 | 0.43 | 0.0011 | 2.64 | 0.35 | 0.23 | 0.0011 | 10.52 |
GCA:SCA | 4.20 | 0.99 | 3.08 | 4.90 | 0.97 | 2.81 | 1.22 | 3.90 | |
%GCA SS | 70.0 | 35.6 | 63.1 | 73.1 | 35.0 | 61.0 | 40.4 | 67.9 | |
%SCA SS | 30.0 | 64.4 | 36.9 | 26.9 | 65.0 | 39.0 | 59.6 | 32.1 | |
BR | 0.89 | 0.67 | 0.86 | 0.91 | 0.66 | 0.85 | 0.71 | 0.88 |
Line | Year 1 | Year 2 | ||||||
---|---|---|---|---|---|---|---|---|
FSY | FRY | HI | SC | FSY | FRY | HI | SC | |
R1 | −2.05 b | 0.33 a | 0.034 a | −1.54 b | 0.004 | −0.11 | 0.015 | −2.72 b |
R5 | 1.33 ab | −0.10 ab | 0.014 ab | 1.97 a | 0.23 | 0.46 | −0.006 | 2.07 ab |
R90 | −1.35 ab | 0.45 a | 0.004 ab | −1.62 b | 0.22 | 0.04 | 0.007 | −1.71 b |
KU50 | 0.42 ab | 0.20 ab | −0.013 b | −0.58 b | −0.43 | −0.05 | 0.007 | −0.47 ab |
HB80 | −1.63 b | −0.76 b | −0.017 b | 2.96 a | −0.27 | −0.14 | −0.015 | 4.30 a |
HNT | 3.28 a | −0.12 ab | −0.022 b | −1.19 b | 0.25 | −0.20 | −0.009 | −1.49 b |
Cross | Year 1 | Year 2 | |||||||
---|---|---|---|---|---|---|---|---|---|
FSY | FRY | HI | SC | FSY | FRY | HI | SC | ||
1 | R1 × R5 | −1.23 | 0.04 cdefg | 0.004 | 1.00 bcd | 0.34 | 0.37 | 0.003 | −0.31 |
2 | R1 × R90 | 0.05 | −0.22 efgh | 0.022 | 2.26 ab | 0.08 | −0.02 | −0.015 | 2.85 |
3 | R1 × KU50 | 1.53 | −0.48 gh | −0.026 | −0.46 defg | −0.71 | −0.40 | −0.005 | 0.43 |
4 | R1 × HB80 | 1.98 | 0.71 bc | −0.011 | −2.52 h | −0.09 | 0.21 | 0.017 | −1.42 |
5 | R1 × HNT | −2.33 | −0.05 defg | 0.010 | −0.28 defg | 0.38 | −0.16 | 0.001 | −1.56 |
6 | R5 × R90 | −1.69 | −0.35 fgh | −0.009 | −1.18 fgh | 0.16 | −0.19 | 0.001 | 2.72 |
7 | R5 × KU50 | 0.47 | 0.29 bcde | 0.018 | 0.57 cde | 0.20 | −0.05 | −0.029 | −0.02 |
8 | R5 × HB80 | −0.67 | −1.41 i | −0.007 | 1.38 abc | 0.21 | 0.05 | −0.002 | −2.04 |
9 | R5 × HNT | 3.12 | 1.44 a | −0.006 | −1.77 gh | −0.90 | −0.19 | 0.027 | −0.35 |
10 | R90 × KU50 | 1.55 | 0.15 cdef | −0.010 | 0.46 cde | 0.59 | 0.36 | 0.007 | −1.41 |
11 | R90 × HB80 | 0.40 | 0.46 bcd | −0.025 | −0.81 efg | −0.76 | −0.12 | 0.005 | 0.08 |
12 | R90 × HNT | −0.31 | −0.04 defg | 0.022 | −0.73 efg | −0.08 | −0.03 | 0.003 | −4.25 |
13 | KU50 × HB80 | −2.39 | 0.82 ab | 0.043 | −0.70 efg | −0.02 | −0.22 | 0.019 | −0.89 |
14 | KU50 × HNT | −1.16 | −0.77 h | −0.026 | 0.13 cdef | −0.06 | 0.30 | 0.008 | 1.88 |
15 | HB80 × HNT | 0.69 | −0.57 gh | −0.001 | 2.65 a | 0.66 | 0.08 | −0.039 | 4.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuanjit, P.; Vuttipongchaikij, S.; Wonnapinij, P.; Ceballos, H.; Kraichak, E.; Jompuk, C.; Kittipadakul, P. Evaluation of Yield Potential and Combining Ability in Thai Elite Cassava Varieties for Breeding Selection. Agronomy 2023, 13, 1546. https://doi.org/10.3390/agronomy13061546
Yuanjit P, Vuttipongchaikij S, Wonnapinij P, Ceballos H, Kraichak E, Jompuk C, Kittipadakul P. Evaluation of Yield Potential and Combining Ability in Thai Elite Cassava Varieties for Breeding Selection. Agronomy. 2023; 13(6):1546. https://doi.org/10.3390/agronomy13061546
Chicago/Turabian StyleYuanjit, Pongpitak, Supachai Vuttipongchaikij, Passorn Wonnapinij, Hernan Ceballos, Ekaphan Kraichak, Choosak Jompuk, and Piya Kittipadakul. 2023. "Evaluation of Yield Potential and Combining Ability in Thai Elite Cassava Varieties for Breeding Selection" Agronomy 13, no. 6: 1546. https://doi.org/10.3390/agronomy13061546
APA StyleYuanjit, P., Vuttipongchaikij, S., Wonnapinij, P., Ceballos, H., Kraichak, E., Jompuk, C., & Kittipadakul, P. (2023). Evaluation of Yield Potential and Combining Ability in Thai Elite Cassava Varieties for Breeding Selection. Agronomy, 13(6), 1546. https://doi.org/10.3390/agronomy13061546