Cyto-Embryological Analysis of Wild Kentucky Bluegrass Germplasm in Gansu Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Observation of Pollen Morphology and Size
2.3. Detection of Pollen Viability
2.4. Stigma Receptivity
2.5. Anther Dehiscence and Pinnate Stigma Observation
2.6. Embryological Analysis
2.7. Seed Germination Experiment
2.8. Data Statistics
3. Results
3.1. Detection of Pollen Viability and Stigma Receptivity
3.2. Development of Male Reproductive Organs in Kentucky Bluegrass
3.2.1. Anther Development
3.2.2. Microspore and Microgametophyte Development
3.3. Development of Female Reproductive Organs in Kentucky Bluegrass
3.3.1. Structure of Kentucky Bluegrass Ovary
3.3.2. Megaspore and Megagametophyte Development
3.4. Apomictic Embryo Sac Development Process
3.5. Fertilization Process of Kentucky Bluegrass
3.6. Seed Structure of Wild Kentucky Bluegrass
3.7. Seed Germination of Wild Kentucky Bluegrass
4. Discussion
4.1. Pollen Viability and Stigma Receptivity in Wild Kentucky Bluegrass
4.2. Microspore, Microgametophyte, Megaspore, and Megagametophyte Development in Wild Kentucky Bluegrass
4.2.1. The Developmental Process of Sexual Reproduction
4.2.2. The Developmental Process of Apomixes
4.3. Pollination, Fertilization, and Seed Development of Wild Kentucky Bluegrass
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gillespie, L.J.; Soreng, R.J. Phylogenetic analysis of the bluegrass genus Poa based on DNA restriction site date. Syst. Bot. 2005, 30, 84–105. [Google Scholar] [CrossRef]
- Wieners, R.R.; Fei, S.-z.; Johnson, R.C. Characterization of a USDA Kentucky Bluegrass (Poa pratensis L.) Core Collection for Reproductive Mode and DNA Content by Flow Cytometry. Genet. Resour. Crop Evol. 2006, 53, 1531–1541. [Google Scholar] [CrossRef]
- Zhang, J.Q.; Ma, H.L. The Female Gametophyte Characteristics and Gene Expression Analysis Involved in Apomixis of Wild Germplasm Materials of Kentucky Bluegrass in Gansu Province of China. J. Plant Growth Regul. 2022, 42, 2283–2304. [Google Scholar] [CrossRef]
- Souza Perez, M.; Speroni, G. New apomictic pathway in Myrtaceae inferred from Psidium cattleyanum female gametophyte ontogeny. Flora 2017, 234, 34–40. [Google Scholar] [CrossRef]
- Porcher, E.; Lande, R. Reproductive compensation in the evolution of plant mating systems. New Phytol. 2005, 166, 673–684. [Google Scholar] [CrossRef] [Green Version]
- Mazzucato, A.; Falcinelli, M.; Veronesi, F. Evolution and adaptedness in a facultatively apomictic grass, Poa pratensis L. Euphytica 1996, 92, 13–19. [Google Scholar] [CrossRef]
- Giełwanowska, I.; Kellmann−Sopyła, W. Generative reproduction of Antarctic grasses, the native species Deschampsia antarctica Desv. and the alien species Poa annua L. Pol. Polar Res. 2015, 36, 261–279. [Google Scholar] [CrossRef] [Green Version]
- Ghanbari, M.A.; Salehi, H.; Jowkar, A. Genetic Diversity Assessment of Iranian Kentucky Bluegrass Accessions: II. Nuclear DNA Content and Its Association with Morphological and Geographical Features. Mol. Biotechnol. 2023, 65, 84–96. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, X.; Wang, K.-l.; Liu, Q.-H.; Liu, Q.-C. Anther and ovule development in Clematis terniflora var. mandshurica (Ranunculaceae). Flora 2019, 253, 67–75. [Google Scholar] [CrossRef]
- Yudakova, O.I. Abnormalities of Female Gametophyte Development in Apomictic Bluegrass Forms. Russ. J. Dev. Biol. 2009, 39, 150–156. [Google Scholar] [CrossRef]
- Semerdjieva, I.; Sidjimova, B.; Jankova, E.; Kostova, M.; Jeliazkov, V. Study on Galanthus species in the Bulgarian flora. Heliyon 2019, 5, e03021. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Hao, Q.; Guo, X.; Liu, Q.; Sun, Y.; Liu, Q.; Wang, K. Anther and ovule development in Camellia japonica (Naidong) in relation to winter dormancy: Climatic evolution considerations. Flora 2017, 233, 127–139. [Google Scholar] [CrossRef]
- Snyman, S.J.; Komape, D.M.; Khanyi, H.; van den Berg, J.; Cilliers, D.; Lloyd Evans, D.; Barnard, S.; Siebert, S.J. Assessing the Likelihood of Gene Flow from Sugarcane (Saccharum Hybrids) to Wild Relatives in South Africa. Front. Bioeng. Biotechnol. 2018, 6, 72. [Google Scholar] [CrossRef]
- Xu, D.; Mondol, P.C.; Uzair, M.; Tucker, M.R.; Zhang, D. Agrobacterium-Mediated Genetic Transformation, Transgenic Production, and Its Application for the Study of Male Reproductive Development in Rice. J. Vis. Exp. JVE 2020, 164, e61665. [Google Scholar] [CrossRef]
- Yang, X.; Wei, J.; Xia, J.; Fang, Q.; Zhang, B. Histochemical characteristics and differentiation of the belowground buds of Medicago archiducis-nicolai during overwintering. Pratacult. Sci. 2022, 39, 300–308. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, H.; Liu, Y. Analysis on characteristics of female gametophyte and functional identification of genes related to inflorescences development of Kentucky bluegrass. Protoplasma 2021, 259, 1061–1079. [Google Scholar] [CrossRef]
- Ross, P.; Slovin, J.; Chen, C. A simplifed method for differential staining of aborted and non-aborted pollen grains. Int. J. Plant Biol. 2010, 1, 13. [Google Scholar] [CrossRef] [Green Version]
- Faure, J.E.; Aldon, D.; Rougier, M.; Dumas, C. Emerging data on pollen tube growth and fertilization in flowering plants. Protoplasma 1996, 193, 132–143. [Google Scholar] [CrossRef]
- Shukla, A.K.; Vijayaraghavan, M.R.; Chaudhry, B. Biology of Pollen; APH Publishing: Delhi, India, 1998. [Google Scholar]
- Quan, H.G.; Yu, K.L.; Hong, G.; Jin, Y.H.; Quan, X.L. Studies on the development of male gametophyte and pollen viability of datura stramonium. Agric. Sci. J. Yanbian Univ. 2021, 43, 25–30. [Google Scholar] [CrossRef]
- Palumbo, F.; Draga, S.; Vannozzi, A.; Lucchin, M.; Barcaccia, G. Trends in Apomixis Research: The 10 Most Cited Research Articles Published in the Pregenomic and Genomic Eras. Front. Plant Sci. 2022, 13, 878074. [Google Scholar] [CrossRef]
- Chahal, L.S.; Conner, J.A.; Ozias-Akins, P. Phylogenetically Distant BABY BOOM Genes from Setaria italica Induce Parthenogenesis in Rice. Front. Plant Sci. 2022, 13, 863908. [Google Scholar] [CrossRef] [PubMed]
- Xiong, H.Y.; Liu, Z.X. Mega- and Microsporogenesis and Development of Female and Male Gametophytes in Michelia maudiae Dunn. Bull. Bot. Res. 2018, 38, 212–217. [Google Scholar]
- Su, Q.D. Study on Rudimentary Panicle Development and Embryology in ‘Nassua’ Kentucky Bluegrass (Poa pratensis L.). Master’s Thesis, Huazhong Agricultural University, Wuhan, China, 2008. [Google Scholar]
- Tian, C.X.; Ma, H.L.; Zhang, Y.M. Embryo Types and Characteristics of Apomixis in Poa pratensis L. Sci. Agric. Sin. 2013, 46, 2633–2642. [Google Scholar] [CrossRef]
- Dumas, C. Developmental Biology of Flowering Plants, by Valayamghat Raghavan, Springer-Verlag, Berlin. ISBN 0-387-98781-9); DM 159.00. Plant Sci. 2000, 157, 267. [Google Scholar] [CrossRef]
- Liu, M.Q.; Wang, X.Q.; Luo, X.Z.; Dai, L.P.; Chen, S.Q. Microsporo genesis and development of male gametophyte of rabdosia rubescens (Hemsl.) Hara. Seed 2020, 39, 43–47. [Google Scholar] [CrossRef]
- Friedman, W.; Williams, J. Modularity of the angiosperm female gametophyte and its bearing on the early evolution of endosperm in flowering plants. Evol. Int. J. Org. Evol. 2003, 57, 216–230. [Google Scholar] [CrossRef]
- Brožová, V.; Koutecký, P.; Doležal, J. Plant apomixis is rare in Himalayan high-alpine flora. Sci. Rep. 2019, 9, 14386. [Google Scholar] [CrossRef] [Green Version]
- Solantzeva, M.V. Apomixis and hemigamy as one of its forms. Proc. Indian Natl. Sci. Acad. 1978, 44, 78–80. [Google Scholar]
- Young, B.A.; Sherwood, R.; Bashaw, E. Cleared-pistil and thick-sectioning techniques for detecting aposporous apomixis in grasses. Can. J. Bot.-Rev. Can. Bot. 1979, 57, 1668–1672. [Google Scholar] [CrossRef]
- Marshall, R.D.; Brown, A. The evolution of apomixis. Heredity 1981, 47, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Savidan, Y. Apomixis: Genetics and Breeding; Wiley Publisher: Hoboken, NJ, USA, 2010; Volume 18, pp. 13–86. [Google Scholar]
- Miles, J. Apomixis for Cultivar Development in Tropical Forage Grasses. Crop Sci. 2007, 47, S238. [Google Scholar] [CrossRef]
- Albertini, E.; Barcaccia, G.; Porceddu, A.; Sorbolini, S.; Falcinelli, M. The mode of reproduction is detected by path1 and sex1 SCAR markers in a wide range of facultative apomictic Kentucky biuegrass varieties. Mol. Breed. 2001, 7, 293–300. [Google Scholar] [CrossRef]
- Yahara, K.; Horie, R.; Kobayashi, I.; Sasaki, A. Evolution of DNA double-strand break repair by gene conversion: Coevolution between a phage and a restriction-modification system. Genetics 2007, 176, 513–526. [Google Scholar] [CrossRef] [Green Version]
- Pepin, G.; Funk, C. Evaluation of Turf, Reproductive, and Disease-Response Characteristics in Crossed and Selfed Progenies of Kentucky Bluegrass1. Crop Sci. 1974, 14, 356–359. [Google Scholar] [CrossRef]
- Kondrashov, A. Classification of hypotheses on the advantage of amphimixis. J. Hered. 1993, 84, 372–387. [Google Scholar] [CrossRef] [Green Version]
- Galla, G.; Siena, L.A.; Ortiz, J.P.A.; Baumlein, H.; Barcaccia, G.; Pessino, S.C.; Bellucci, M.; Pupilli, F. A Portion of the Apomixis Locus of Paspalum Simplex is Microsyntenic with an Unstable Chromosome Segment Highly Conserved Among Poaceae. Sci. Rep. 2019, 9, 3271. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhang, J.Q.; Niu, K.J.; Dong, W.K.; Ma, H.L.; Li, Y.Z. Identification of apomictic characteristics of wild Kentucky bluegrass germplasm Resources in Gansu. Grassl. Turf. 2020, 40, 84–89. [Google Scholar] [CrossRef]
- Iudakova, O.I.; Shakina, T.N. Specific features of early embryogenesis in apomictic Poa pratensis L. Ontogenez 2007, 38, 5–11. [Google Scholar] [CrossRef]
- Zhang, J.Q.; Jia, X.F.; Li, F.; Li, Y.Z.; Ma, H.L. Effects of temperature and glume status on germination and polyembryonic seedling frequency in seven wild germplasm of Kentucky bluegrass native to Gansu. Grassl. Turf. 2021, 41, 70–77. [Google Scholar] [CrossRef]
- Takeuchi, Y.; Kosaza, M.; Ozaki, Y.; Tomiyoshi, K.; Matsuishi, T.; Okubo, H. Origin of polyembryonic seeds and production of haploids in asparagus. Acta Hortic. 2020, 1301, 57–66. [Google Scholar] [CrossRef]
- Ferreira, D.; Camargo, J.L.; Ferraz, I. Do polyembryonic seeds of Carapa surinamensis (Meliaceae) have advantages for seedling development? Acta Amaz. 2019, 49, 97–104. [Google Scholar] [CrossRef] [Green Version]
- Tan, F.; Chen, H.; Hu, H.L.; Liao, Y.H.; Hu, T.X.; Chen, Y.F.; Zhou, G.L.; Wang, X. A Study on the Correlation among Germination Rate, Polyembryony Rate, Seed Size of Phoebe Zhennan S. Lee. J. Agric. Univ. 2018, 36, 640–647. [Google Scholar] [CrossRef]
- Reshma, U.R.; Simi, S. Screening of Mango Landraces for Polyembryony and Confirmation of Seedling Origin using Microsatellite Markers. Agric. Sci. Dig. 2021, 42, 128–136. [Google Scholar] [CrossRef]
- Kishore, K.; Monika, N.; Rinchen, D.; Lepcha, B.; Pandey, B. Polyembryony and seedling emergence traits in apomictic citrus. Sci. Hortic. 2012, 138, 101–107. [Google Scholar] [CrossRef]
- Mendes-Rodrigues, C.; Sampaio, D.; Costa, M.; Caetano, A.; Ranal, M.; Bittencourt Junior, N.; Oliveira, P. Polyembryony increases embryo and seedling mortality but also enhances seed individual survival in Handroanthus species (Bignoniaceae). Flora-Morphol. Distrib. Funct. Ecol. Plants 2012, 207, 264–274. [Google Scholar] [CrossRef]
- Mendes-Rodrigues, C.; Oliveira, P.E. Polyembryony in Melastomataceae from Brazilian Cerrado: Multiple embryos in a small world. Plant Biol. 2012, 14, 845–853. [Google Scholar] [CrossRef]
Materials | Pollen Diameter//μm | Pollen Shape | Pollen Viability | Stigma Receptivity | |||
---|---|---|---|---|---|---|---|
Max | Min | Mean | Round | Oval | |||
GN | 30.36 | 16.24 | 23.12 ± 1.12 a | 83.33% ± 3.33 a | 16.67% ± 3.33 a | 89.13% ± 1.92 a | 80.00% ± 4.41 a |
LN | 28.42 | 15.65 | 21.77 ± 1.03 a | 76.67% ± 3.33 a | 23.33% ± 3.33 a | 85.38% ± 1.97 a | 82.00% ± 5.00 a |
Materials | Germination Potential | Germination Rate | One-Embryo Seedling Rate | Two-Embryo Seedling Rate | Three-Embryo Seedling Rate | Polyembryony Seedling Rate |
---|---|---|---|---|---|---|
GN | 51.60% ± 1.63 a | 83.10% ± 0.98 a | 100% ± 0.00 a | 0 ± 0.00 b | 0 ± 0.00 b | 0 ± 0.00 b |
LN | 53.40% ± 1.67 a | 79.00% ± 2.24 b | 92.15% ± 0.99 b | 7.72% ± 1.00 a | 0.13% ± 0.11 a | 7.85% ± 0.99 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Ma, H. Cyto-Embryological Analysis of Wild Kentucky Bluegrass Germplasm in Gansu Province, China. Agronomy 2023, 13, 1569. https://doi.org/10.3390/agronomy13061569
Zhang J, Ma H. Cyto-Embryological Analysis of Wild Kentucky Bluegrass Germplasm in Gansu Province, China. Agronomy. 2023; 13(6):1569. https://doi.org/10.3390/agronomy13061569
Chicago/Turabian StyleZhang, Jinqing, and Huiling Ma. 2023. "Cyto-Embryological Analysis of Wild Kentucky Bluegrass Germplasm in Gansu Province, China" Agronomy 13, no. 6: 1569. https://doi.org/10.3390/agronomy13061569
APA StyleZhang, J., & Ma, H. (2023). Cyto-Embryological Analysis of Wild Kentucky Bluegrass Germplasm in Gansu Province, China. Agronomy, 13(6), 1569. https://doi.org/10.3390/agronomy13061569