Monitoring of Cropland Abandonment Based on Long Time Series Remote Sensing Data: A Case Study of Fujian Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Definition of Abandoned Land
2.2. Study Area
2.3. Research Data
2.3.1. Remote Sensing Data
2.3.2. Basic Geographic Data
2.3.3. Statistical Data
2.3.4. Validation Sample Data
2.4. Abandoned Farmland Extraction Method
2.4.1. Construction of Abandoned Farmland Based on Farmland Boundaries
2.4.2. Construction of Multidimensional Classification Feature for Abandoned Farmland
- 1.
- Spectral characteristics
- 2.
- Texture characteristics
- 3.
- Terrain characteristics
2.5. Data Processing
2.5.1. Random Forest Classification Method
2.5.2. Extraction of Abandoned Farmland Based on the LandTrendr Algorithm
2.6. Model Evaluation
2.7. Calculation of Cropland Abandonment Rate
2.8. Driving Factors for Abandoned Farmland
3. Results
3.1. Classification Feature Filtering
3.2. Time Series Farmland Probability Classification
3.3. The Results of LandTrendr Extraction
3.4. Model Validation
3.5. Analysis of the Change in Abandoned Farmland Area in Fujian Province
3.6. Driving Factors of Cropland Abandonment
4. Discussion
4.1. Extraction of Abandoned Farmland Based on Remote Sensing Index Time Series Change Detection
4.2. Drivers of Cropland Abandonment
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cheng, W.-F.; Zhou, Y.; Wang, S.-X.; Han, Y.; Wang, F.-T.; Pu, Q.-Y. Study on the Method of Recognizing Abandoned Farmlands Based on Multispectral Remote Sensing. Spectrosc. Spectr. Anal. 2011, 31, 1615–1620. [Google Scholar]
- Xiong, Z.; Yao, Z.; Zhang, Y. Influential Factors of cropland abandonment Using Combination Weight and SEM: From the Perspective of Farmers Individual Capital. Econ. Geogr. 2017, 37, 155–161. [Google Scholar]
- Yang, G.; Xu, W. Cultivated land abandoning and its governance: Literature review and research prospective. J. China Agric. Univ. 2015, 20, 279–288. [Google Scholar]
- Shi, T.; Li, X. Cropland abandonment in Europe and Its Enlightenment to China. Geogr. Geo-Inf. Sci. 2013, 29, 101–103. [Google Scholar]
- Shao, J.A.; Zhang, S.; Li, X. Farmland marginalization in the mountainous areas: Characteristics, influencing factors and policy implications. Acta Geogr. Sin. 2014, 69, 227–242. [Google Scholar] [CrossRef]
- Ge, L.; Gao, M.; Hu, Z.; Han, X. Reasons of cultivated land abandonment in mountainous area based on farmers persperctive. Chin. J. Agric. Resour. Reg. Plan. 2012, 33, 42–46. [Google Scholar]
- Khanal, N.R.; Watanabe, T. Abandonment of Agricultural Land and Its Consequences. Mt. Res. Dev. 2006, 26, 32–40. [Google Scholar] [CrossRef] [Green Version]
- Yin, H.; Prishchepov, A.V.; Kuemmerle, T.; Bleyhl, B.; Buchner, J.; Radeloff, V.C. Mapping agricultural land abandonment from spatial and temporal segmentation of Landsat time series. Remote Sens. Environ. 2018, 210, 12–24. [Google Scholar] [CrossRef]
- Zhang, B.; Yang, Q.; Yan, Y.; Xue, M.; Su, K.; Zang, B. Characteristics and Reasons of Different Households Farming Abandonment Behavior in the Process of Rapid Urbanization Based on a Survey from 540 Households in 10 Counties of Chongqing Municipality. Resour. Sci. 2011, 33, 2047–2054. [Google Scholar]
- Potdar, M.B. Sorghum yield modelling based on crop growth parameters determined from visible and near-IR channel NOAA AVHRR data. Int. J. Remote Sens. 1993, 14, 895–905. [Google Scholar] [CrossRef]
- Anderson, K.; Gaston, K.J. Lightweight unmanned aerial vehicles will revolutionize spatial ecology. Front. Ecol. Environ. 2013, 11, 138–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chere, Z.; Abegaz, A.; Tamene, L.; Abera, W. Modeling and mapping the spatiotemporal variation in agricultural drought based on a satellite-derived vegetation health index across the highlands of Ethiopia. Model. Earth Syst. Environ. 2022, 8, 4539–4552. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, F.; Huang, J.; Li, C.; Zhang, B. Spatial pattern evolution of abandoned arable land and its influencing factor in industrialized region. Trans. Chin. Soc. Agric. Eng. 2019, 35, 246–255. [Google Scholar]
- Chen, L.; Jia, J.; Wang, H. An overview of applying high resolution remote sensing to natural resources survey. Remote Sens. Land Resour. 2019, 31, 1–7. [Google Scholar]
- Doraiswamy, P.C.; Hatfield, J.L.; Jackson, T.J.; Akhmedov, B.; Prueger, J.; Stern, A. Crop condition and yield simulations using Landsat and MODIS. Remote Sens. Environ. 2004, 92, 548–559. [Google Scholar] [CrossRef]
- Dong, J.; Xiao, X.; Menarguez, M.A.; Zhang, G.; Qin, Y.; Thau, D.; Biradar, C.; Moore, B., III. Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine. Remote Sens. Environ. 2016, 185, 142–154. [Google Scholar] [CrossRef] [Green Version]
- Smaliychuk, A.; Mueller, D.; Prishchepov, A.V.; Levers, C.; Kruhlov, I.; Kuemmerle, T. Recultivation of abandoned agricultural lands in Ukraine: Patterns and drivers. Glob. Environ. Chang.-Hum. Policy Dimens. 2016, 38, 70–81. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Walker, E.; Venturini, V. Land surface evapotranspiration estimation combining soil texture information and global reanalysis datasets in Google Earth Engine. Remote Sens. Lett. 2019, 10, 929–938. [Google Scholar] [CrossRef]
- Pan, X.; Wang, Z.; Gao, Y.; Dang, X.; Han, Y. Detailed and automated classification of land use/land cover using machine learning algorithms in Google Earth Engine. Geocarto Int. 2022, 37, 5415–5432. [Google Scholar] [CrossRef]
- Gandharum, L.; Hartono, D.M.; Karsidi, A.; Ahmad, M. Monitoring Urban Expansion and Loss of Agriculture on the North Coast of West Java Province, Indonesia, Using Google Earth Engine and Intensity Analysis. Sci. World J. 2022, 2022, 3123788. [Google Scholar] [CrossRef]
- Khanal, N.; Uddin, K.; Matin, M.A.; Tenneson, K. Automatic Detection of Spatiotemporal Urban Expansion Patterns by Fusing OSM and Landsat Data in Kathmandu. Remote Sens. 2019, 11, 2296. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Huang, H.; Sun, F. A Pixel-Based Vegetation Greenness Trend Analysis over the Russian Tundra with All Available Landsat Data from 1984 to 2018. Remote Sens. 2021, 13, 4933. [Google Scholar] [CrossRef]
- Huang, H.; Chen, Y.; Clinton, N.; Wang, J.; Wang, X.; Liu, C.; Gong, P.; Yang, J.; Bai, Y.; Zheng, Y.; et al. Mapping major land cover dynamics in Beijing using all Landsat images in Google Earth Engine. Remote Sens. Environ. 2017, 202, 166–176. [Google Scholar] [CrossRef]
- Maure, E.D.R.; Ilyushchenko, S.; Terauchi, G. A Simple Procedure to Preprocess and Ingest Level-2 Ocean Color Data into Google Earth Engine. Remote Sens. 2022, 14, 4906. [Google Scholar] [CrossRef]
- Bunting, E.L.; Munson, S.M.; Bradford, J.B. Assessing plant production responses to climate across water-limited regions using Google Earth Engine. Remote Sens. Environ. 2019, 233, 111397. [Google Scholar] [CrossRef]
- Zeng, Z.; Estes, L.; Ziegler, A.D.; Chen, A.; Searchinger, T.; Hua, F.; Guan, K.; Jintrawet, A.; Wood, E.F. Highland cropland expansion and forest loss in Southeast Asia in the twenty-first century. Nat. Geosci. 2018, 11, 556–562. [Google Scholar] [CrossRef]
- Burke, M.; Lobell, D.B. Satellite-based assessment of yield variation and its determinants in smallholder African systems. Proc. Natl. Acad. Sci. USA 2017, 114, 2189–2194. [Google Scholar] [CrossRef] [Green Version]
- Tuckett, P.A.; Ely, J.C.; Sole, A.J.; Livingstone, S.J.; Davison, B.J.; van Wessem, J.M.; Howard, J. Rapid accelerations of Antarctic Peninsula outlet glaciers driven by surface melt. Nat. Commun. 2019, 10, 4311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Guo, Y.; He, J.; Liu, T.; Zhang, H.; Cheng, Y.; Yang, X.; Qin, F.; Wang, L. Approach for winter wheat yield estimation with remote sensing image at field scale. J. China Agric. Resour. Reg. Plan. 2021, 42, 243–253. [Google Scholar]
- Yang, Y.; Wu, Z.; Luo, J.; Huang, Q.; Zhang, D.; Wu, T.; Sun, Y.; Cao, Z.; Dong, W.; Liu, W. Parcel-based crop distribution extraction using the spatiotemporal collaboration of remote sensing data. Trans. Chin. Soc. Agric. Eng. 2021, 37, 166–174. [Google Scholar]
- Ni, G. Vegetation Index and lts Advances. Arid. Meteorol. 2003, 4, 71–75. [Google Scholar]
- Cai, Z.; Bao, N.; Liu, S. Estimation Method of Fractional Vegetation Coverage for Grassland Based on Chinese GF-1 Satellite Image: Taking Hulun Buir Prairie Open-Pit Coal Mine as an Example. Geogr. Geo-Inf. Sci. 2017, 33, 32–38+44. [Google Scholar]
- Hou, Q.; Wang, F.; Yan, L. Extraction of color image texture feature based on gray-level co-occurrence matrix. Remote Sens. Land Resour. 2013, 25, 26–32. [Google Scholar]
- Jobanputra, R.; Clausi, D.A. Preserving boundaries for image texture segmentation using grey level co-occurring probabilities. Pattern Recognit. 2006, 39, 234–245. [Google Scholar] [CrossRef]
- Liu, L.; Kuang, G.Y. Overview of Image Textural Feature Extraction Methods. J. Image Graph. 2009, 14, 622–635. [Google Scholar]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. Stud. Media Commun. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Conners, R.W.; Trivedi, M.M.; Harlow, C.A. Segmentation of a high-resolution urban scene using texture operators. Comput. Vis. Graph. Image Process. 1984, 25, 273–310. [Google Scholar] [CrossRef]
- Breiman, L. Random forests, machine learning 45. J. Clin. Microbiol. 2001, 2, 199–228. [Google Scholar]
- Parente, L.; Ferreira, L.; Faria, A.; Nogueira, S.; Araujo, F.; Teixeira, L.; Hagen, S. Monitoring the brazilian pasturelands: A new mapping approach based on the landsat 8 spectral and temporal domains. Int. J. Appl. Earth Obs. Geoinf. 2017, 62, 135–143. [Google Scholar] [CrossRef]
- Wang, M.; Liu, P.; Chen, X.; Wang, F.; Song, Y.; Liu, H. Land Expansion of Urban Construction in the Three Provinces of Northeast China Based on Google Earth Engine. J. Jilin Univ. Earth Sci. Ed. 2022, 52, 292–304. [Google Scholar]
- Li, J.; Ding, W.; Wang, B.; Nie, X.; Cui, C. An evaluation method for the influence of folk sports on body indicators based on random forest. J. Nanjing Univ. Nat. Sci. 2021, 57, 59–67. [Google Scholar]
- Kennedy, R.E.; Yang, Z.; Cohen, W.B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—Temporal segmentation algorithms. Remote Sens. Environ. 2010, 114, 2897–2910. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.; Gorelick, N.; Braaten, J.; Cavalcante, L.; Cohen, W.B.; Healey, S. Implementation of the LandTrendr Algorithm on Google Earth Engine. Remote Sens. 2018, 10, 691. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Gong, J.; Li, T.; Hu, Y. Extraction of abandoned farmland based on MaxEnt model: A case study of Wusheng County, Sichuan Province. J. Agric. Resour. Environ. 2021, 38, 1084–1093. [Google Scholar]
- Zhou, D.; Wu, J.; Wen, W.; Jiang, G.; Li, Y.; Li, G. Abandonment Characteristics and Influencing Factors of Cultivated Land Abandonment in Major Crop-producing Areas. Trans. Chin. Soc. Agric. Mach. 2021, 52, 127–137. [Google Scholar]
- Liu, C.; Nie, W.; Zhao, X.; Shen, W. Regional differences and influencing factors in the contracted land use patterns for rural migrant workers: A perspective of social inclusion. J. Nat. Resour. 2022, 37, 424–439. [Google Scholar] [CrossRef]
- Zhu, X.; Xiao, G.; Zhang, D.; Guo, L. Mapping abandoned farmland in China using time series MODIS NDVI. Sci. Total Environ. 2021, 755, 142651. [Google Scholar] [CrossRef]
- Wu, M.; Hu, Y.; Wang, H.; Liu, G.; Yang, L. Remote sensing extraction and feature analysis of abandoned farmland in hilly and mountainous areas:A case study of Xingning, Guangdong. Remote Sens. Appl.-Soc. Environ. 2020, 20, 100403. [Google Scholar]
- Wang, L.; Chen, Q.; Wu, Y.; Zhou, Z.; Dan, Y. Accurate recognition and extraction of karst abandoned land features based on cultivated land parcels and time series NDVI. Remote Sens. Land Resour. 2020, 32, 23–31. [Google Scholar]
- Yusoff, N.M.; Muharam, F.M. The Use of Multi-Temporal Landsat Imageries in Detecting Seasonal Crop Abandonment. Remote Sens. 2015, 7, 11974–11991. [Google Scholar] [CrossRef] [Green Version]
- Hussain, M.; Chen, D.; Cheng, A.; Wei, H.; Stanley, D. Change detection from remotely sensed images: From pixel-based to object-based approaches. ISPRS J. Photogramm. Remote Sens. 2013, 80, 91–106. [Google Scholar] [CrossRef]
- Yoon, H.; Kim, S. Detecting abandoned farmland using harmonic analysis and machine learning. ISPRS J. Photogramm. Remote Sens. 2020, 166, 201–212. [Google Scholar] [CrossRef]
- Wang, H.; Wang, X.; Gao, L.; Li, Q.; Zhao, L.; Du, X.; Zhang, Y. Study on Extraction Method of Abandoned Farmland based on the Seasonal Variation Characteristics of Remotely Sensed Images. Remote Sens. Technol. Appl. 2020, 35, 596–605. [Google Scholar]
- Morell-Monzo, S.; Estornell, J.; Sebastia-Frasquet, M.-T. Comparison of Sentinel-2 and High-Resolution Imagery for Mapping Land Abandonment in Fragmented Areas. Remote Sens. 2020, 12, 2062. [Google Scholar] [CrossRef]
- Tiechou, S. Research progress of cropland abandonment process and influence factors at home and abroad. Hubei Agric. Sci. 2020, 59, 11–16. [Google Scholar]
- Prishchepov, A.V.; Mueller, D.; Dubinin, M.; Baumann, M.; Radeloff, V.C. Determinants of agricultural land abandonment in post-Soviet European Russia. Land Use Policy 2013, 30, 873–884. [Google Scholar] [CrossRef] [Green Version]
- Benayas, R. Abandonment of agricultural land: An overview of drivers and consequences. Cab Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2007, 2, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Gellrich, M.; Zimmermann, N.E. Investigating the regional-scale pattern of agricultural land abandonment in the Swiss mountains: A spatial statistical modelling approach. Landsc. Urban Plan. 2007, 79, 65–76. [Google Scholar] [CrossRef]
- Aide, T.M. ECOLOGY: Enhanced: Globalization, Migration, and Latin American Ecosystems. Science 2004, 305, 1915–1916. [Google Scholar] [CrossRef]
- Witmer, F.D.W. Detecting war-induced abandoned agricultural land in northeast Bosnia using multispectral, multitemporal Landsat TM imagery. Int. J. Remote Sens. 2008, 29, 3805–3831. [Google Scholar] [CrossRef]
Indices | Formulas | Descriptions |
---|---|---|
Overall accuracy (OA) | Ratio of the number of correctly classified category pixels to the total number of category pixels [41]. | |
Kappa coefficient | For evaluating the consistency of classification results [41]. | |
User accuracy (UA) | Ratio of the number of correctly classified pixels in a category to the total number of pixels in that category [42]. | |
Producer’s accuracy (PA) | Ratio of the number of correctly classified pixels of a category to the total number of true reference pixels of that category [41]. |
Name of Variables | Description of Variables |
---|---|
Natural population growth rate | Trends and rates of natural population growth (%). |
Agricultural practitioners | Number of people engaged in agricultural labour (people). |
Urbanization rate | Urban population/total population (%). |
Per capita disposable income of rural residents | Per capita disposable income of rural residents (yuan). |
Soil organic matter content | Organic matter content within unit land (g/kg). |
Field road accessibility | Distance between farmland and roads with a road width of 3 m or more (meters). |
Irrigation guarantee rate | The irrigation condition of the farmland is 1–4 levels from high to low, with level 1 being fully satisfied, level 2 being basically satisfied, level 3 being generally satisfied, and level 4 is no irrigation condition. |
Serial Number | Features | Importance | Serial Number | Features | Importance |
---|---|---|---|---|---|
1 | EVI_max | 145.46 | 19 | SWIR2_median | 154.61 |
2 | EVI_mean | 145.37 | 20 | SWIR2_minmum | 159.91 |
3 | EVI_median | 158.34 | 21 | blue_max | 120.54 |
4 | EVI_minmum | 152.71 | 22 | blue_mean | 117.31 |
5 | MSAVI_max | 163.26 | 23 | blue_median | 150.53 |
6 | MSAVI_mean | 178.35 | 24 | blue_minmum | 119.13 |
7 | MSAVI_median | 185.75 | 25 | green_max | 144.21 |
8 | MSAVI_minmum | 188.52 | 26 | green_mean | 145.22 |
9 | NDVI_max | 118.92 | 27 | green_median | 144.94 |
10 | NDVI_mean | 161.42 | 28 | green_minmum | 120.27 |
11 | NDVI_median | 167.50 | 29 | nir_max | 122.98 |
12 | NDVI_minmum | 175.91 | 30 | nir_mean | 152.55 |
13 | SWIR1_max | 148.54 | 31 | nir_median | 152.08 |
14 | SWIR1_mean | 117.82 | 32 | nir_minmum | 160.02 |
15 | SWIR1_median | 117.06 | 33 | red_max | 123.66 |
16 | SWIR1_minmum | 144.78 | 34 | red_mean | 115.32 |
17 | SWIR2_max | 151.14 | 35 | red_median | 181.58 |
18 | SWIR2_mean | 155.65 | 36 | red_minmum | 145.12 |
Serial Number | Features | Importance | Serial Number | Features | Importance |
---|---|---|---|---|---|
1 | Asm | 74.11 | 10 | Imcorr2 | 80.37 |
2 | Contrast | 97.56 | 11 | Inertia | 94.87 |
3 | Corr | 97.81 | 12 | MaxCorr | 0.00 |
4 | Dent | 60.58 | 13 | Prom | 100.96 |
5 | Diss | 85.77 | 14 | Savg | 145.60 |
6 | Dvar | 83.89 | 15 | Sent | 74.65 |
7 | Ent | 60.60 | 16 | Shade | 146.69 |
8 | Idm | 91.83 | 17 | Svar | 92.68 |
9 | Imcorr1 | 84.24 | 18 | Var | 86.92 |
Serial Number | Features | Importance |
---|---|---|
1 | Slope | 185.86 |
2 | Elevation | 264.01 |
Serial Number | Features | Importance | Serial Number | Features | Importance |
---|---|---|---|---|---|
1 | elevation | 264.01 | 16 | EVI_minmum | 152.71 |
2 | MSAVI_minmum | 188.52 | 17 | nir_mean | 152.55 |
3 | SLOPE | 185.86 | 18 | nir_median | 152.08 |
4 | MSAVI_median | 185.75 | 19 | SWIR2_max | 151.14 |
5 | red_median | 181.58 | 20 | blue_median | 150.53 |
6 | MSAVI_mean | 178.35 | 21 | SWIR1_max | 148.54 |
7 | NDVI_minmum | 175.91 | 22 | shade | 146.69 |
8 | NDVI_median | 167.50 | 23 | savg | 145.60 |
9 | MSAVI_max | 163.26 | 24 | EVI_max | 145.46 |
10 | NDVI_mean | 161.42 | 25 | EVI_mean | 145.37 |
11 | nir_minmum | 160.02 | 26 | green_mean | 145.22 |
12 | SWIR2_minmum | 159.91 | 27 | red_minmum | 145.12 |
13 | EVI_median | 158.34 | 28 | green_median | 144.94 |
14 | SWIR2_mean | 155.65 | 29 | SWIR1_minmum | 144.78 |
15 | SWIR2_median | 154.61 | 30 | green_max | 144.21 |
Years | PA | UA | OA | Kappa |
---|---|---|---|---|
2010 | 0.95 | 0.94 | 0.94 | 0.87 |
2011 | 0.96 | 0.94 | 0.95 | 0.89 |
2012 | 0.93 | 0.95 | 0.93 | 0.86 |
2013 | 0.96 | 0.96 | 0.93 | 0.79 |
2014 | 0.96 | 0.94 | 0.95 | 0.89 |
2015 | 0.94 | 0.96 | 0.95 | 0.88 |
2016 | 0.95 | 0.97 | 0.95 | 0.89 |
2017 | 0.95 | 0.97 | 0.94 | 0.84 |
2018 | 0.97 | 0.97 | 0.96 | 0.85 |
2019 | 0.96 | 0.96 | 0.93 | 0.79 |
2020 | 0.96 | 0.97 | 0.95 | 0.84 |
2021 | 0.98 | 0.97 | 0.96 | 0.88 |
Years | Validation Accuracy of Farmland | Validation Accuracy of Abandoned Farmland |
---|---|---|
2017 | 99.80% | - |
2018 | 99.73% | 87.02% |
2020 | - | 87.50% |
Prefecture-Level Cities | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 |
---|---|---|---|---|---|---|---|---|---|---|
Fuzhou | 1.74 | 4.48 | 2.47 | 3.11 | 2.97 | 3.17 | 2.88 | 3.33 | 1.87 | 2.92 |
Ningde | 1.66 | 5.09 | 1.75 | 3.72 | 3.46 | 3.01 | 4.01 | 3.56 | 2.65 | 3.92 |
Putian | 1.05 | 2.14 | 1.68 | 2.33 | 2.37 | 1.90 | 1.80 | 1.77 | 1.09 | 1.67 |
Quanzhou | 2.79 | 3.30 | 3.28 | 3.40 | 3.84 | 3.85 | 3.32 | 3.14 | 2.55 | 3.22 |
Sanming | 3.32 | 3.16 | 4.10 | 3.60 | 3.85 | 4.75 | 4.63 | 3.98 | 4.40 | 3.84 |
Xiamen | 0.21 | 0.29 | 0.21 | 0.21 | 0.30 | 0.30 | 0.30 | 0.25 | 0.29 | 0.46 |
Zhangzhou | 3.09 | 6.80 | 5.83 | 8.04 | 7.71 | 4.00 | 3.94 | 4.81 | 4.44 | 5.31 |
Longyan | 7.59 | 8.56 | 9.74 | 5.10 | 9.24 | 9.12 | 10.54 | 6.24 | 7.22 | 5.04 |
Nanping | 1.66 | 2.16 | 1.99 | 2.33 | 3.20 | 3.70 | 2.86 | 2.45 | 2.89 | 3.21 |
The whole province | 23.12 | 35.97 | 31.04 | 31.83 | 36.94 | 33.79 | 34.27 | 29.54 | 27.40 | 29.59 |
Prefecture-Level Cities | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 |
---|---|---|---|---|---|---|---|---|---|---|
Fuzhou | 1.12 | 2.87 | 1.58 | 2.00 | 1.91 | 2.03 | 1.85 | 2.14 | 1.20 | 1.87 |
Ningde | 1.02 | 3.12 | 1.07 | 2.28 | 2.12 | 1.85 | 2.46 | 2.18 | 1.63 | 2.41 |
Putian | 1.43 | 2.91 | 2.29 | 3.17 | 3.23 | 2.59 | 2.45 | 2.41 | 1.48 | 2.27 |
Quanzhou | 1.92 | 2.27 | 2.26 | 2.34 | 2.64 | 2.65 | 2.29 | 2.16 | 1.76 | 2.22 |
Sanming | 1.69 | 1.61 | 2.09 | 1.83 | 1.96 | 2.42 | 2.36 | 2.03 | 2.24 | 1.95 |
Xiamen | 1.11 | 1.54 | 1.11 | 1.11 | 1.59 | 1.59 | 1.59 | 1.32 | 1.54 | 2.44 |
Zhangzhou | 1.73 | 3.80 | 3.26 | 4.49 | 4.31 | 2.24 | 2.20 | 2.69 | 2.48 | 2.97 |
Longyan | 4.53 | 5.11 | 5.81 | 3.04 | 5.51 | 5.44 | 6.29 | 3.72 | 4.31 | 3.01 |
Nanping | 0.70 | 0.91 | 0.83 | 0.98 | 1.34 | 1.55 | 1.20 | 1.03 | 1.21 | 1.35 |
The whole province | 1.45 | 2.26 | 1.95 | 1.99 | 2.32 | 2.12 | 2.15 | 1.85 | 1.72 | 1.85 |
Variables | Regression Coefficient (STD) |
---|---|
Natural population growth rate | 0.960 |
(1.00) | |
Agricultural practitioners | −0.344 *** |
(7.34) | |
Urbanization rate | 0.475 ** |
(2.81) | |
Per capita disposable income of rural residents | 0.299 |
(1.59) | |
Soil organic matter content | −0.172 *** |
(6.25) | |
Field road accessibility | 0.032 * |
(2.60) | |
Irrigation guarantee rate | 1.104 *** |
(9.25) | |
Constant term | −6.959 *** |
(−3.46) | |
Sample size | 90 |
R2 | 0.900 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Jin, S.; Zhu, G.; Guo, J. Monitoring of Cropland Abandonment Based on Long Time Series Remote Sensing Data: A Case Study of Fujian Province, China. Agronomy 2023, 13, 1585. https://doi.org/10.3390/agronomy13061585
Wu J, Jin S, Zhu G, Guo J. Monitoring of Cropland Abandonment Based on Long Time Series Remote Sensing Data: A Case Study of Fujian Province, China. Agronomy. 2023; 13(6):1585. https://doi.org/10.3390/agronomy13061585
Chicago/Turabian StyleWu, Jiayu, Shaofei Jin, Gaolong Zhu, and Jia Guo. 2023. "Monitoring of Cropland Abandonment Based on Long Time Series Remote Sensing Data: A Case Study of Fujian Province, China" Agronomy 13, no. 6: 1585. https://doi.org/10.3390/agronomy13061585
APA StyleWu, J., Jin, S., Zhu, G., & Guo, J. (2023). Monitoring of Cropland Abandonment Based on Long Time Series Remote Sensing Data: A Case Study of Fujian Province, China. Agronomy, 13(6), 1585. https://doi.org/10.3390/agronomy13061585