Application of Biosynthesized Silver Nanoparticles from Oak Fruit Exudates against Pectobacterium carotovorum subsp. carotovorum Causing Postharvest Soft Rot Disease in Vegetables
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Source of the Pathogen
2.2. Preparation of Oak Fruits Exudates
2.3. Green Synthesis of Silver Nanoparticles
2.4. UV-Vis Spectroscopy Analysis of SNPs
2.5. Physicochemical Properties of SNPs (TEM, AFM, XRD, DLS and FTIR)
2.6. Antibacterial Assays
2.7. Determination of Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC)
2.8. Growth Studies of Pcc
2.9. In Vivo Evaluation of the SNPs against Soft Rot Disease on Potato Tubers, Carrot Roots and Fruits of Zucchini and Eggplant
2.10. Investigation on the Curative Activity of SNPs against Pcc In Vivo
2.11. Statistical Analysis
3. Results
3.1. Visual Observation and UV-Vis Spectroscopy Studies
3.2. Analysis of High-Resolution Transmission Electron Microscopy (TEM) and Atomic Force Microscopy (AFM)
3.3. XRD Analysis
3.4. Dynamic Light Scattering (DLS) Analysis
3.5. FTIR Analysis
3.6. Antibacterial Activity of SNPs
3.7. MIC and MBC Studies
3.8. Evaluation of SNPs Effects on Pcc Growth
3.9. Inhibitory Effects of the SNPs on Soft Rot Disease in Tested Vegetables
3.10. In Vivo Curative Activity of SNPs against Soft Rot Disease
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bayda, S.; Adeel, M.; Tuccinardi, T.; Cordani, M.; Rizzolio, F. The history of nanoscience and nanotechnology: From chemical-physical applications to nanomedicine. Molecules 2019, 25, 112. [Google Scholar] [CrossRef] [Green Version]
- Soltani Nejad, M.; Samandari Najafabadi, N.; Aghighi, S.; Pakina, E.; Zargar, M. Evaluation of Phoma sp. biomass as an endophytic fungus for synthesis of extracellular gold nanoparticles with antibacterial and antifungal properties. Molecules 2022, 27, 1181. [Google Scholar] [CrossRef]
- Tarighi, S.; Soltani Nejad, M. Ecofriendly fabrication of silver nanoparticles using quince petal extract and its antibacterial properties against fire blight disease. J. Nat. Pes. Res. 2023, 4, 100026. [Google Scholar] [CrossRef]
- Kumar, V.; Singh, S.; Srivastava, B.; Bhadouria, R.; Singh, R. Green synthesis of silver nanoparticles using leaf extract of Holoptelea integrifolia and preliminary investigation of its antioxidant, anti-inflammatory, antidiabetic and antibacterial activities. J. Environ. Chem. Eng. 2019, 7, 103094. [Google Scholar] [CrossRef]
- Acidereli, H.; Karataş, Y.; Burhan, H.; Gülcan, M.; Şen, F. Chapter 8—Magnetic nanoparticles. In Nanoscale Processing; Thomas, S., Balakrishnan, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 197–236. [Google Scholar]
- Jorge de Souza, T.A.; Rosa Souza, L.R.; Franchi, L.P. Silver nanoparticles: An integrated view of green synthesis methods, transformation in the environment, and toxicity. Ecotoxicol. Environ. Saf. 2019, 171, 691–700. [Google Scholar] [CrossRef]
- Soltani Nejad, M.; Bonjar, G.H.S.; Khatami, M.; Amini, A.; Aghighi, S. In vitro and in vivo antifungal properties of silver nanoparticles against Rhizoctonia solani, a common agent of rice sheath blight disease. IET Nanobiotechnol. 2017, 11, 236–240. [Google Scholar] [CrossRef]
- Stater, E.P.; Sonay, A.Y.; Hart, C.; Grimm, J. The ancillary effects of nanoparticles and their implications for nanomedicine. Nat. Nanotechnol. 2021, 16, 1180–1194. [Google Scholar] [CrossRef]
- Cho, I.-H.; Kim, D.H.; Park, S. Electrochemical biosensors: Perspective on functional nanomaterials for on-site analysis. Biomater. Res. 2020, 24, 6. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.-H.; Mujumdar, A.S.; Vidyarthi, S.K.; Zielinska, M.; Liu, H.; Deng, L.-Z.; Xiao, H.-W. Nanotechnology for food safety and security: A Comprehensive Review. Food Rev. Int. 2021, 1–21. [Google Scholar] [CrossRef]
- Neme, K.; Nafady, A.; Uddin, S.; Tola, Y.B. Application of nanotechnology in agriculture, postharvest loss reduction and food processing: Food security implication and challenges. Heliyon 2021, 7, e08539. [Google Scholar] [CrossRef]
- Mittal, D.; Kaur, G.; Singh, P.; Yadav, K.; Ali, S.A. Nanoparticle-based sustainable agriculture and food science: Recent advances and future outlook. Front. Nanotechnol. 2020, 2, 10. [Google Scholar] [CrossRef]
- Patil, S.; Chandrasekaran, R. Biogenic nanoparticles: A comprehensive perspective in synthesis, characterization, application and its challenges. J. Genet. Eng. Biotechnol. 2020, 18, 67. [Google Scholar] [CrossRef] [PubMed]
- Ying, S.; Guan, Z.; Ofoegbu, P.C.; Clubb, P.; Rico, C.; He, F.; Hong, J. Green synthesis of nanoparticles: Current developments and limitations. Environ. Technol. Innov. 2022, 26, 102336. [Google Scholar] [CrossRef]
- Rane, A.V.; Kanny, K.; Abitha, V.K.; Thomas, S. Chapter 5—Methods for Synthesis of Nanoparticles and Fabrication of Nanocomposites. In Synthesis of Inorganic Nanomaterials; Mohan Bhagyaraj, S., Oluwafemi, O.S., Kalarikkal, N., Thomas, S., Eds.; Woodhead Publishing: Cambridge, UK, 2018; pp. 121–139. [Google Scholar]
- Jain, S.; Mehata, M.S. Medicinal plant leaf extract and pure flavonoid mediated green synthesis of silver nanoparticles and their enhanced antibacterial property. Sci. Rep. 2017, 7, 15867. [Google Scholar] [CrossRef] [Green Version]
- Hasan, K.M.F.; Xiaoyi, L.; Shaoqin, Z.; Horváth, P.G.; Bak, M.; Bejó, L.; Sipos, G.; Alpár, T. Functional silver nanoparticles synthesis from sustainable point of view: 2000 to 2023—A review on game changing materials. Heliyon 2022, 8, e12322. [Google Scholar] [CrossRef]
- Narayanan, M.; Divya, S.; Natarajan, D.; Senthil-Nathan, S.; Kandasamy, S.; Chinnathambi, A.; Alahmadi, T.A.; Pugazhendhi, A. Green synthesis of silver nanoparticles from aqueous extract of Ctenolepis garcini L. and assess their possible biological applications. Process Biochem. 2021, 107, 91–99. [Google Scholar] [CrossRef]
- Jalab, J.; Abdelwahed, W.; Kitaz, A.; Al-Kayali, R. Green synthesis of silver nanoparticles using aqueous extract of Acacia cyanophylla and its antibacterial activity. Heliyon 2021, 7, e08033. [Google Scholar] [CrossRef]
- Yang, B.; Gao, Y.; Zhang, C.; Han, J.; Liu, Y.; Zheng, X. Potato (Solanum tuberosum L.) can be grown safety on human consumption in slight Hg-contaminated soils across China mainland. Sci. Rep. 2020, 10, 8351. [Google Scholar] [CrossRef]
- Czajkowski, R.; Pérombelon, M.C.M.; Jafra, S.; Lojkowska, E.; Potrykus, M.; van der Wolf, J.M.; Sledz, W. Detection, identification and differentiation of Pectobacterium and Dickeya species causing potato blackleg and tuber soft rot: A review. Ann. Appl. Biol. 2015, 166, 18–38. [Google Scholar] [CrossRef] [Green Version]
- Abd-El-Khair, H.; Abdel-Gaied, T.G.; Mikhail, M.S.; Abdel-Alim, A.I.; El-Nasr, H.I.S. Biological control of Pectobacterium carotovorum subsp. carotovorum, the causal agent of bacterial soft rot in vegetables, in vitro and in vivo tests. Bull. Natl. Res. Cent. 2021, 45, 37. [Google Scholar] [CrossRef]
- Kang, M.; Kim, S.-J.; Lee, J.Y.; Yoon, S.-R.; Kim, S.H.; Ha, J.-H. Inactivation of Pectobacterium carotovorum subsp. carotovorum on Chinese cabbage (Brassica rapa L. subsp. pekinensis) by wash treatments with phenolic compounds. LWT 2018, 93, 229–236. [Google Scholar] [CrossRef]
- Bayat, M.; Kavhiza, N.; Orujov, E.; Zargar, M.; Akhrarov, M.; Temewei, A.G. Integrated weed control methods utilizing planting pattern in sugar beet. Res. Crops 2019, 20, 413–418. [Google Scholar]
- Nouri, M.; Baghaee-Ravari, S.; Emadzadeh, B. Nano-emulsified savory and thyme formulation show limited efficacy to suppress Pectobacterium carotovorum subsp. carotovorum compared with pure oil. Ind. Crops Prod. 2021, 161, 113216. [Google Scholar] [CrossRef]
- Yi, L.; Liu, X.; Qi, T.; Deng, L.; Zeng, K. A new way to reduce postharvest loss of vegetables: Antibacterial products of vegetable fermentation and its controlling soft rot caused by Pectobacterium carotovorum. Biol. Control 2021, 161, 104708. [Google Scholar] [CrossRef]
- Choi, O.; Kim, J. Pectobacterium carotovorum subsp. brasiliense Causing Soft Rot on Paprika in Korea. J. Phytopathol. 2013, 161, 125–127. [Google Scholar] [CrossRef]
- Siddiqui, Z.A.; Hashmi, A.; Khan, M.R.; Parveen, A. Management of bacteria Pectobacterium carotovorum, Xanthomonas campestris pv. carotae, and fungi Rhizoctonia solani, Fusarium solani and Alternaria dauci with silicon dioxide nanoparticles on carrot. J. Veg. Sci. 2020, 26, 547–557. [Google Scholar] [CrossRef]
- Catara, V.; Bella, P.; Polizzi, G.; Paratore, A. First report of bacterial stem rot caused by Pectobacterium carotovorum subsp. carotovorum and P. carotovorum subsp. atrosepticum on grafted eggplant in Italy. Plant Dis. 2001, 85, 921. [Google Scholar] [CrossRef]
- Soltani Nejad, M.; Samandari Najafabadi, N.; Aghighi, S.; Shahidi Bonjar, A.H.; Murtazova, K.M.-S.; Nakhaev, M.R.; Zargar, M. Investigating the potential of Streptomyces spp. in suppression of Rhizoctonia solani (AG1-IA) causing rice sheath blight disease in northern Iran. Agronomy 2022, 12, 2292. [Google Scholar] [CrossRef]
- García-Pastor, M.E.; Falagán, N.; Giné-Bordonaba, J.; Wójcik, D.A.; Terry, L.A.; Alamar, M.C. Cultivar and tissue-specific changes of abscisic acid, its catabolites and individual sugars during postharvest handling of flat peaches (Prunus persica cv. platycarpa). Postharvest Biol. Technol. 2021, 181, 111688. [Google Scholar] [CrossRef]
- Lutz, M.C.; Colodner, A.; Tudela, M.A.; Carmona, M.A.; Sosa, M.C. Antifungal effects of low environmental risk compounds on development of pear postharvest diseases: Orchard and postharvest applications. Sci. Hortic. 2022, 295, 110862. [Google Scholar] [CrossRef]
- Khatami, M.; Nejad, M.S.; Salari, S.; Almani, P.G.N. Plant-mediated green synthesis of silver nanoparticles using Trifolium resupinatum seed exudate and their antifungal efficacy on Neofusicoccum parvum and Rhizoctonia solani. IET Nanobiotechnol. 2016, 10, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Pirtarighat, S.; Ghannadnia, M.; Baghshahi, S. Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment. Chem. Chem. 2019, 9, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Rautela, A.; Rani, J.; Debnath, M. Green synthesis of silver nanoparticles from Tectona grandis seeds extract: Characterization and mechanism of antimicrobial action on different microorganisms. J. Anal. Sci. Technol. 2019, 10, 5. [Google Scholar] [CrossRef] [Green Version]
- Soltani Nejad, M.; Khatami, M.; Shahidi Bonjar, G.H. Extracellular synthesis gold nanotriangles using biomass of Streptomyces microflavus. IET Nanobiotechnol. 2016, 10, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Akhlaghi, M.; Tarighi, S.; Taheri, P. Effects of plant essential oils on growth and virulence factors of Erwinia amylovora. J. Plant Pathol. 2020, 102, 409–419. [Google Scholar] [CrossRef]
- Hajian-Maleki, H.; Baghaee-Ravari, S.; Moghaddam, M. Efficiency of essential oils against Pectobacterium carotovorum subsp. carotovorum causing potato soft rot and their possible application as coatings in storage. Postharvest Biol. Technol. 2019, 156, 110928. [Google Scholar] [CrossRef]
- Zargar, M.; Pakina, E. Reduced rates of herbicide combined with biological components for suppressing weeds in wheat fields of Moscow, Russia. Res. Crops 2014, 15, 332–338. [Google Scholar] [CrossRef]
- Sameza, M.L.; Nguemnang Mabou, L.C.; Tchameni, S.N.; Boat Bedine, M.A.; Tchoumbougnang, F.; Jazet Dongmo, P.M.; Boyom Fekam, F. Evaluation of clove essential oil as a mycobiocide against Rhizopus stolonifer and Fusarium solani, tuber rot causing fungi in yam (Dioscorea rotundata Poir.). J. Phytopathol. 2016, 164, 433–440. [Google Scholar] [CrossRef]
- Sabouri, Z.; Rangrazi, A.; Amiri, M.S.; Khatami, M.; Darroudi, M. Green synthesis of nickel oxide nanoparticles using Salvia hispanica L. (chia) seeds extract and studies of their photocatalytic activity and cytotoxicity effects. Bioprocess Biosyst. Eng. 2021, 44, 2407–2415. [Google Scholar] [CrossRef]
- Sharma, P.; Pant, S.; Rai, S.; Yadav, R.B.; Dave, V. Green synthesis of silver nanoparticle capped with Allium cepa and their catalytic reduction of textile dyes: An ecofriendly approach. J. Polym. 2018, 26, 1795–1803. [Google Scholar] [CrossRef]
- Soltani Nejad, M.; Khatami, M.; Shahidi Bonjar, G.H. Streptomyces somaliensis mediated green synthesis of silver nanoparticles. Nanomed. J. 2015, 2, 217–222. [Google Scholar] [CrossRef]
- Askari, Z.; Vahabi, M.R.; Allafchian, A.; Mousavi, S.A.; Jalali, S.A.H. Biosynthesis of antibacterial silver nanoparticles using Astragalus verus Olivier. Micro Nano Lett. 2020, 15, 66–71. [Google Scholar] [CrossRef]
- Stabryla, L.M.; Johnston, K.A.; Diemler, N.A.; Cooper, V.S.; Millstone, J.E.; Haig, S.-J.; Gilbertson, L.M. Role of bacterial motility in differential resistance mechanisms of silver nanoparticles and silver ions. Nat. Nanotechnol. 2021, 16, 996–1003. [Google Scholar] [CrossRef] [PubMed]
- Urnukhsaikhan, E.; Bold, B.-E.; Gunbileg, A.; Sukhbaatar, N.; Mishig-Ochir, T. Antibacterial activity and characteristics of silver nanoparticles biosynthesized from Carduus crispus. Sci. Rep. 2021, 11, 21047. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Zheng, J. Antibacterial activity of silver nanoparticles: Structural effects. Adv. Healthc. Mater. 2018, 7, 1701503. [Google Scholar] [CrossRef]
- Alizadeh, A.; Salouti, M.; Alizadeh, H.; Kazemizadeh, A.R.; Safari, A.A.; Mahmazi, S. Enhanced antibacterial effect of azlocillin in conjugation with silver nanoparticles against Pseudomonas aeruginosa. IET Nanobiotechnol. 2017, 11, 942–947. [Google Scholar] [CrossRef]
- Zhang, C.; Hu, Z.; Deng, B. Silver nanoparticles in aquatic environments: Physiochemical behavior and antimicrobial mechanisms. Water Res. 2016, 88, 403–427. [Google Scholar] [CrossRef] [Green Version]
- Kalwar, K.; Shan, D. Antimicrobial effect of silver nanoparticles (AgNPs) and their mechanism a mini review. Micro Nano Lett. 2018, 13, 277–280. [Google Scholar] [CrossRef]
- Ivask, A.; ElBadawy, A.; Kaweeteerawat, C.; Boren, D.; Fischer, H.; Ji, Z.; Chang, C.H.; Liu, R.; Tolaymat, T.; Telesca, D. Toxicity mechanisms in Escherichia coli vary for silver nanoparticles and differ from ionic silver. ACS Nano 2014, 8, 374–386. [Google Scholar] [CrossRef]
- Ghadamkheir, M.; Vladimirovich, K.P.; Orujov, E.; Bayat, M.; Madumarov, M.M.; Avdotyin, V.; Zargar, M. Influence of sulfur fertilization on infection of wheat Take-all disease caused by the fungus Gaeumannomyces graminis var. tritici. Res. Crops 2020, 21, 627–633. [Google Scholar]
- Madl, A.K.; Plummer, L.E.; Carosino, C.; Pinkerton, K.E. Nanoparticles, lung injury, and the role of oxidant stress. Annu. Rev. Plant Physiol. 2014, 76, 447–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghazy, N.A.; Abd El-Hafez, O.A.; El-Bakery, A.M.; El-Geddawy, D.I.H. Impact of silver nanoparticles and two biological treatments to control soft rot disease in sugar beet (Beta vulgaris L.). Egypt. J. Biol. Pest Control 2021, 31, 3. [Google Scholar] [CrossRef]
- Tripathi, D.K.; Singh, S.; Singh, S.; Pandey, R.; Singh, V.P.; Sharma, N.C.; Prasad, S.M.; Dubey, N.K.; Chauhan, D.K. An overview on manufactured nanoparticles in plants: Uptake, translocation, accumulation and phytotoxicity. Plant Physiol. Biochem. 2017, 110, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Slavin, Y.N.; Asnis, J.; Häfeli, U.O.; Bach, H. Metal nanoparticles: Understanding the mechanisms behind antibacterial activity. J. Nanobiotechnol. 2017, 15, 65. [Google Scholar] [CrossRef]
- Sahani, S.; Sharma, Y.C. Advancements in applications of nanotechnology in global food industry. Food Chem. 2021, 342, 128318. [Google Scholar] [CrossRef]
Growth (OD = 600 nm) | Treatments | |||
---|---|---|---|---|
Concentration (µg/mL) | Control | SNPs | Streptomycin | |
200 | 1.69 *a | 0 b | 0 b | |
150 | 1.72 a | 0.05 b | 0 b | |
100 | 1.75 a | 0.11 bc | 0 b | |
50 | 1.73 a | 0.18 c | 0 b | |
25 | 1.63 a | 0.21 c | 0 b | |
12.50 | 1.74 a | 0.37 c | 0 b | |
6.25 | 1.68 a | 0.53 c | 0.08 cb | |
3.12 | 1.77 a | 0.92 ac | 0.28 c | |
1.62 | 1.77 a | 1.04 a | 0.55 c | |
SE | 0.58 | 0.05 | 0.03 |
Treatments | SNPs | Control | ||
---|---|---|---|---|
RDI (%) a | P b | RDI (%) | P | |
Potato | 74.3 ± 8.1 | 1.6 ± 0.4 *b | _ | 7.1 ± 0.5 a |
Zucchini | 57.2 ± 6.3 | 3.1 ± 0.3 bc | - | 5.2 ± 0.3 a |
Carrot | 48.7 ± 5.7 | 3.4 ± 0.5 bc | - | 4.9 ± 0.2 a |
Eggplant | 65.1 ± 5.9 | 2.8 ± 0.7 b | - | 6.2 ± 0.6 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soltani Nejad, M.; Samandari Najafabadi, N.; Aghighi, S.; Zargar, M.; Stybayev, G.; Baitelenova, A.; Kipshakbayeva, G. Application of Biosynthesized Silver Nanoparticles from Oak Fruit Exudates against Pectobacterium carotovorum subsp. carotovorum Causing Postharvest Soft Rot Disease in Vegetables. Agronomy 2023, 13, 1624. https://doi.org/10.3390/agronomy13061624
Soltani Nejad M, Samandari Najafabadi N, Aghighi S, Zargar M, Stybayev G, Baitelenova A, Kipshakbayeva G. Application of Biosynthesized Silver Nanoparticles from Oak Fruit Exudates against Pectobacterium carotovorum subsp. carotovorum Causing Postharvest Soft Rot Disease in Vegetables. Agronomy. 2023; 13(6):1624. https://doi.org/10.3390/agronomy13061624
Chicago/Turabian StyleSoltani Nejad, Meysam, Neda Samandari Najafabadi, Sonia Aghighi, Meisam Zargar, Gani Stybayev, Aliya Baitelenova, and Gulden Kipshakbayeva. 2023. "Application of Biosynthesized Silver Nanoparticles from Oak Fruit Exudates against Pectobacterium carotovorum subsp. carotovorum Causing Postharvest Soft Rot Disease in Vegetables" Agronomy 13, no. 6: 1624. https://doi.org/10.3390/agronomy13061624
APA StyleSoltani Nejad, M., Samandari Najafabadi, N., Aghighi, S., Zargar, M., Stybayev, G., Baitelenova, A., & Kipshakbayeva, G. (2023). Application of Biosynthesized Silver Nanoparticles from Oak Fruit Exudates against Pectobacterium carotovorum subsp. carotovorum Causing Postharvest Soft Rot Disease in Vegetables. Agronomy, 13(6), 1624. https://doi.org/10.3390/agronomy13061624