The Effect of Foliar Zinc Application on the Leaf Chlorophyll Concentrations and Grain Yields of the Winter Wheat (Triticum aestivum L.) in the Field Experiments of Two Seasons
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Background of the Experiment
2.2. Treatments
2.3. Measurements with SPAD-502 Meter
2.4. UV Spectrophotometric Measurement of Chlorophyll Concentration
Chlorophyll b (Cb), µg mL = 21.50 A646.8–5.10 A663.2,
2.5. Statistics
3. Results
3.1. The Effect of Zn Treatments to Chlorophyll Concentration
3.2. Results of SPAD Tests
3.3. Effects of Different Nutrient Levels and Foliar Fertilizer Treatments on Crop Yield
4. Discussion
5. Conclusions
- The two varieties reacted differently to different weather conditions in terms of chlorophyll concentration and the amount of crop yield. This result has practical relevance, as this is an important consideration for farmers to select the optimal wheat variety. In the dry year of 2021/2022, Zvezdana produced higher yields after zinc treatment. Zinc treatments had different effects on the four nutrient levels in the experiment.
- The effectiveness of the foliar Zn treatment also depends on the nutrient levels and varieties.
- Further studies are needed to draw more conclusions about the interactions between the variables.
- Analytical measurements have confirmed the effectiveness of SPAD to measure chlorophyll concentrations.
- This is confirmed by the strong correlation between the results. Since measurement with SPAD is a faster and cheaper way to determine chlorophyll content, it can be used in some cases instead of analytical tests.
- The correlation between yields and chlorophyll content was higher in the dry year of 2021/2022 than in the year of 2020/2021 of favorable weather conditions.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Growing Season | Nutrient Level | Zn Treatment | Second Sampling (µg g−1 FW) | Third Sampling (µg g−1 FW) |
---|---|---|---|---|
2020/2021 | A | control | 147 aA * | 159 aA |
1st | 160 aA | 201 aA | ||
2nd | 125 aA | 158 aA | ||
3rd | 111 aA | 152 aA | ||
B | control | 177 aA | 273 aB | |
1st | 179 aA | 266 aB | ||
2nd | 159 aA | 150 aA | ||
3rd | 202 aBC | 224 aB | ||
C | control | 183 aA | 94 aA | |
1st | 182 aA | 129 bA | ||
2nd | 142 aA | 217 cA | ||
3rd | 143 aAB | 140 bdA | ||
D | control | 178 abA | 173 aA | |
1st | 193 abA | 144 aA | ||
2nd | 174 aA | 157 aA | ||
3rd | 218 bC | 199 aA | ||
2021/2022 | A | control | 113 aAB | 126 aA |
1st | 178 bAB | 152 aA | ||
2nd | 186 bcA | 122 aA | ||
3rd | 214 bdcA | 117 aA | ||
B | control | 80 aA | 125 aA | |
1st | 138 bA | 175 bAB | ||
2nd | 148 bcAB | 152 abA | ||
3rd | 121 abcB | 151 abA | ||
C | control | 124 abAB | 193 aB | |
1st | 184 bB | 100 bC | ||
2nd | 113 aB | 192 aB | ||
3rd | 150 abB | 212 aB | ||
D | control | 157 abB | 204 aB | |
1st | 140 abAB | 196 aB | ||
2nd | 183 acA | 195 aB | ||
3rd | 141 abB | 222 aB |
Growing Season | Nutrient Level | Zn Treatment | Second Sampling (µg g−1 FW) | Third Sampling (µg g−1 FW) |
---|---|---|---|---|
2021 | A | control | 183 aA * | 145 aA |
1st | 126 bA | 151 aA | ||
2nd | 132 abA | 166 aA | ||
3rd | 167 abA | 151 aA | ||
B | control | 155 aA | 294 aB | |
1st | 228 aB | 277 aA | ||
2nd | 226 aB | 264 aA | ||
3rd | 179 aA | 334 aB | ||
C | control | 179 aA | 179 aA | |
1st | 175 aAB | 184 aA | ||
2nd | 189 aAB | 191 aB | ||
3rd | 158 aA | 192 aA | ||
D | control | 179 aA | 170 aAB | |
1st | 206 aB | 155 aA | ||
2nd | 190 aAB | 147.85 aAB | ||
3rd | 170.08 aA | 218 aAB | ||
2022 | A | control | 158 aA | 121 aA |
1st | 109 aA | 176 aA | ||
2nd | 164 aA | 151 aA | ||
3rd | 133 aA | 138 aA | ||
B | control | 164 aA | 231 aB | |
1st | 108 bA | 180 abA | ||
2nd | 105 bB | 118 bA | ||
3rd | 102 bA | 160 abA | ||
C | control | 138 aA | 203 aAB | |
1st | 151 aB | 101 bB | ||
2nd | 182 aA | 153 abA | ||
3rd | 145 aA | 125 bAB | ||
D | control | 118 aA | 232 aB | |
1st | 156 aB | 144 bAB | ||
2nd | 164 aA | 130 bA | ||
3rd | 270 bB | 224 aB |
References
- Hlaváčová, M.; Klem, K.; Rapantová, B.; Novotná, K.; Urban, O.; Hlavinka, P.; Trnka, M. Interactive effects of high temperature and drought stress during stem elongation, anthesis and early grain filling on the yield formation and photosynthesis of winter wheat. Field Crops Res. 2018, 221, 182–195. [Google Scholar] [CrossRef]
- Curtis, B.C. Wheat in the World. Available online: http://www.fao.org/3/y4011e/y4011e04.htm (accessed on 28 December 2022).
- Szabó, M. Fajtakérdés, fajtarotáció, fajtavédelem. In A Búzatermesztés Kézikönyve; Barabás, Z., Ed.; Mezőgazdasági Kiadó: Budapest, Hungary, 1987; pp. 237–251. [Google Scholar]
- Erekul, O.; Köhn, W. Effect of weather and soil conditions on yield components and bread-making quality of winter wheat (Triticum aestivum L.) and winter Triticale (Triticosecale Wittm.) varieties in North-East Germany. J. Agron. Crop Sci. 2006, 192, 452–464. [Google Scholar] [CrossRef]
- Mahajan, S.; Tuteja, N. Cold, salinity and drought stresses: An overview. Arch. Biochem. Biophys. 2005, 444, 139–158. [Google Scholar] [CrossRef]
- de Almeida Cançado, G.M. The importance of genetic diversity to manage abiotic stress. In Abiotic Stress in Plants–Mechanisms and Adaptations; InTechOpen: Rijeka, Croatia, 2011; pp. 351–366. [Google Scholar] [CrossRef] [Green Version]
- Murata, N.; Takahashi, S.; Nishiyama, Y.; Allakhverdiev, S.I. Photoinhibition of photosystem II under environmental stress. Biochim. Et Biophys. Acta (BBA)-Bioenerg. 2007, 1767, 414–421. [Google Scholar] [CrossRef] [Green Version]
- Statkevičiūtė, G.; Liatukas, Ž.; Cesevičienė, J.; Jaškūnė, K.; Armonienė, R.; Kuktaite, R.; Brazauskas, G. Impact of Combined Drought and Heat Stress and Nitrogen on Winter Wheat Productivity and End-Use Quality. Agronomy 2022, 12, 1452. [Google Scholar] [CrossRef]
- Mani, R.G.; Smet, J.H.; von Klitzing, K.; Narayanamurti, V.; Johnson, W.B.; Umansky, V. Zero-resistance states induced by electromagnetic-wave excitation in GaAs/AlGaAs heterostructures. Nature 2002, 420, 646–650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bacci, L.; De Vincenzi, M.; Rapi, B.; Arca, B.; Benincasa, F. Two methods for the analysis of colorimetric components applied to plant stress monitoring. Comput. Electron. Agric. 1998, 19, 167–186. [Google Scholar] [CrossRef]
- Kristó, I.; Vályi-Nagy, M.; Rácz, A.; Tar, M.; Irmes, K.; Szentpéteri, L.; Ujj, A. Effects of Weed Control Treatments on Weed Composition and Yield Components of Winter Wheat (Triticum aestivum L.) and Winter Pea (Pisum sativum L.) Intercrops. Agronomy 2022, 12, 2590. [Google Scholar] [CrossRef]
- Trnka, M.; Hlavinka, P.; Semenov, M.A. Adaptation options for wheat in Europe will be limited by increased adverse weather events under climate change. J. R. Soc. Interface 2015, 12, 20150721. [Google Scholar]
- Prasad, P.V.V.; Staggenborg, S.A.; Ristic, Z. Impacts of drought and/or heat stress on physiological, developmental, growth, and yield processes of crop plants. In Response of Crops to Limited Water: Understanding and Modeling Water Stress Effects on Plant Growth Processes; American Society of Agronomy, Inc.: Madison, WI, USA, 2008; Volume 1, pp. 301–355. [Google Scholar] [CrossRef] [Green Version]
- Simova-Stoilova, L.; Stoyanova, Z.; Demirevska-Kepova, K. Ontogenic changes in leaf pigments, total soluble protein and Rubisco in two barley varieties in relation to yield. Bulg. J. Plant Physiol. 2001, 27, 15–24. [Google Scholar]
- Pepó, P. Újabb Adatok az Őszi Búza Fajtaspecifikus Tápanyagellátásához; Debreceni Agrártudományi Egyetem Tudományos Közleményei: Debrecen, Hungary, 1995; Volume XXXII, pp. 125–142. [Google Scholar]
- Kristó, I.; Tar, M.; Vályi Nagy, M.; Petróczi, I.M. Impact of nutrient supply on the relative development of yield components of winter wheat. Columella J. Agric. Environ. Sci. 2020, 7, 25–32. [Google Scholar] [CrossRef]
- Szabó, M. Őszi Búza Műtrágyázási és CCC Hatás Kísérlet, Országos Mezőgazdasági Fajta-és Termeléstechnikai Minősítő Intézet; Budapest, Hungary, 1966; Volume 1.
- Ágoston, T.; Pepó, P. Examination of the Effect of Cropyear on the Yield Potential and Yield Stability of Winter Wheat Varieties. Acta Agrar. Debr. 2005, 16, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Panozzo, J.F.; Eagles, H.A. Cultivar and environmental effects on quality characters in wheat. II. Protein. Aust. J. Agric. Res. 2000, 51, 629–636. [Google Scholar] [CrossRef]
- Gavito, M.E.; Curtis, P.S.; Mikkelsen, T.N.; Jakobsen, I. Interactive effects of soil temperature, atmospheric carbon dioxide and soil N on root development, biomass and nutrient uptake of winter wheat during vegetative growth. J. Exp. Bot. 2001, 52, 1913–1923. [Google Scholar] [CrossRef] [Green Version]
- Ayala-Silva, T.; Beyl, C.A. Changes in spectral reflectance of wheat leaves in response to specific macronutrient deficiency. Adv. Space Res. 2005, 35, 305–317. [Google Scholar] [CrossRef]
- Uauy, C.; Distelfeld, A.; Fahima, T.; Blechl, A.; Dubcovsky, J. A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 2006, 314, 1298–1301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gregersen, P.L.; Culetic, A.; Boschian, L.; Krupinska, K. Plant senescence and crop productivity. Plant Mol. Biol. 2013, 82, 603–622. [Google Scholar] [CrossRef] [PubMed]
- Árendás, T.; Csathó, P.; Németh, T. Tápanyagellátás a minőségorientált búzatermesztésben. In A jó minőségű keményszemű búza nemesítése és termesztése; Martonvásár–Nádudvar–Szeged: Budapest, Hungary, 2001; pp. 73–74. [Google Scholar]
- Jagodin, B.A. Sulphur, magnesium and micronutrients and their role in plant nutrition. A búzatermesztés kézikönyve. Mezőgazdasági Kiadó, Budapest, Hungary, 1987; 356p.
- Wojtkowiak, K.; Stepien, A.; Warechowska, M.; Raczkowski, M. Content of copper, iron, manganese and zinc in typical light brown soil and spring triticale grain depending on a fertilization system. J. Elem. 2014, 19, 833–844. [Google Scholar] [CrossRef]
- Harnos, N.; Erdélyi, É.; Árendás, T. Tartamkísérletek jelentősége a klímaváltozás hatásainak tanulmányozásában. In Tartamkísérletek Jelentősége a Növénytermesztés Fejlesztésében; Berzsenyi, Z., Árendás, T., Eds.; A Magyar Tudományos Akadémia Mezőgazdasági Kutatóintézete: Martonvásár, Hungary, 2009; pp. 101–106. [Google Scholar]
- Irmes, K.; Kristó, I.; Vályi-Nagy, M.; Rácz, A.; Tar, M. Provocation study of a long-term experiment in winter wheat using zn foliar fertilizers applied at different times. Res. J. Agric. Sci. 2021, 53, 69–80. [Google Scholar]
- Izsáki, Z. Alap-és levéltrágyázás hatása a takarmánylucerna termésére és beltartalmára. Növénytermelés 1987, 36, 377–383. [Google Scholar]
- Solomon Wisdom, G.O.; Ndana, R.W.; Abdulrahim, Y. The Comparative study of the effect of organic manure cow dung and inorganic fertilizer NPK on the growth rate of maize (Zea mays L). Int. Res. J. Agric. Sci. Soil Sci. 2012, 2, 516–519. [Google Scholar]
- Péntek, A.; Fazekas, C. A cink hiányának kiváltó okai a talaj-növény rendszerben. Acta Agrar. Kaposváriensis 2016, 20, 48–61. [Google Scholar]
- Mengel, K. A növények táplálkozása és anyagcseréje. In Ernährung und Stoffwechsel der Planze; Mezőgazdasági Kiadó: Budapest, Hungary, 1976; pp. 162–163. [Google Scholar]
- Birkás, M. Földmûvelés és Földhasználat; Mezõgazda Kiadó: Budapest, Hungary, 2006; pp. 279–280. [Google Scholar]
- Xian, X.; Shokohifard, G.I. Effect of pH on chemical forms and plant availability of cadmium, zinc, and lead in polluted soils. Water Air Soil Pollut. 1989, 45, 265–273. [Google Scholar] [CrossRef]
- Alloway, B.J. Heavy metals in soils. Blackie Academic and Professional; Chapman & Hall: London, UK, 1995; p. 368. [Google Scholar] [CrossRef]
- Kádár, I. A szennyezett talajok vizsgálatáról. In Kármentesítési Kézikönyv 2; Környezetvédelmi Minisztérium: Budapest, Hungary, 1998. [Google Scholar]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1987; Volume 148, pp. 350–382. [Google Scholar] [CrossRef]
- Marquard, R.D.; Tipton, J.L. Relationship between extractable chlorophyll and an in situ method to estimate leaf greenness. HortScience 1987, 22, 1327. [Google Scholar] [CrossRef]
- Tian, Y.; Zhu, Y.; Cao, W.; Fan, X.; Liu, X. Monitoring protein and starch accumulation in wheat grains with leaf SPAD and canopy spectral reflectance. Zhongguo Nong ye ke xue = Zhongguo Nongye Kexue 2004, 37, 808–813. [Google Scholar]
- Uchino, H.; Watanabe, T.; Ramu, K.; Sahrawat, K.L.; Marimuthu, S.; Wani, S.P.; Ito, O. Effects of nitrogen application on sweet sorghum (Sorghum bicolor (L.) Moench) in the semi-arid tropical zone of India. Jpn. Agric. Res. Q. 2013, 47, 65–73. [Google Scholar] [CrossRef] [Green Version]
- Percival, G.C.; Keary, I.P.; Noviss, K. The potential of a chlorophyll concentration SPAD meter to quantify nutrient stress in foliar tissue of Sycamore (Acer pseudoplatanus), English Oak,(Quercus robur), and European Beech (Fagus sylvatica). Arboric. Urban For. 2008, 34, 89. [Google Scholar] [CrossRef]
- Kandel, B.P. Spad value varies with age and leaf of maize plant and its relationship with grain yield. BMC Res. Notes 2020, 13, 475. [Google Scholar] [CrossRef] [PubMed]
- Skudra, I.; Ruza, A. Effect of nitrogen and sulphur fertilization on chlorophyll concentration in winter wheat. Rural. Sustain. Res. 2017, 37, 29–37. [Google Scholar] [CrossRef] [Green Version]
- Debreczeni, B.; Debreczeni, B. A Tápanyag-és a Vízellátás Kapcsolata; Mezőgazdasági Kiadó: Budapest, Hungary, 1984. [Google Scholar]
- Árendás, T.; Bónis, P.; Berzsenyi, Z.; Sugár, E.; Láng, L. Fajta és tápláltság: A búzaminőség és a minőségstabilitás alapjai. Martonvásár 2014, 1, 8–9. [Google Scholar]
- Pollhamer, E. A búza minősége a különböző agrotechnikai kísérletekben. In Martonvásár 1963–1971; Akadémiai Kiadó: Budapest, Hungary, 1973. [Google Scholar]
- Pecznik, J. A fotoszintézis és környezeti tényezői. In Levéltrágyázás; Mezőgazdasági Kiadó: Budapest, Hungary, 1976; pp. 5–7. [Google Scholar]
- Rose, T.J.; Impa, S.M.; Rose, M.T.; Pariasca-Tanaka, J.; Mori, A.; Heuer, S.; Wissuwa, M. Enhancing phosphorus and zinc acquisition efficiency in rice: A critical review of root traits and their potential utility in rice breeding. Ann. Bot. 2013, 112, 331–345. [Google Scholar] [CrossRef] [Green Version]
- Akgun, İ.; Karaman, R.; Eraslan, F.; Kaya, M. Effect of zinc on some grain quality parameters in bread and Durum wheat cultivars. Univers. J. Agric. Res. 2016, 4, 260–265. [Google Scholar] [CrossRef] [Green Version]
- Peck, A.W.; McDonald, G.K.; Graham, R.D. Zinc nutrition influences the protein composition of flour in bread wheat (Triticum aestivum L.). J. Cereal Sci. 2008, 47, 266–274. [Google Scholar] [CrossRef]
- Thorne, W. Zinc deficiency and its control. Adv. Agron. 1957, 9, 31–65. [Google Scholar] [CrossRef]
- Zhou, Y.; Lam, H.M.; Zhang, J. Inhibition of photosynthesis and energy dissipation induced by water and high light stresses in rice. J. Exp. Bot. 2007, 58, 1207–1217. [Google Scholar] [CrossRef] [PubMed]
- Huseynova, I.M. Photosynthetic characteristics and enzymatic antioxidant capacity of leaves from wheat cultivars exposed to drought. Biochim. Et Biophys. Acta (BBA)-Bioenerg. 2012, 1817, 1516–1523. [Google Scholar] [CrossRef] [Green Version]
- Bojović, B.M.; Stojanović, J. Chlorophyll and carotenoid content in wheat cultivars as a function of mineral nutrition. Arch. Biol. Sci. 2005, 57, 283–290. [Google Scholar] [CrossRef]
- Riahi, A.; Hdider, C. Bioactive compounds and antioxidant activity of organically grown tomato (Solanum lycopersicum L.) cultivars as affected by fertilization. Sci. Hortic. 2013, 151, 90–96. [Google Scholar] [CrossRef]
- Distelfeld, A.; Avni, R.; Fischer, A.M. Senescence, nutrient remobilization, and yield in wheat and barley. J. Exp. Bot. 2014, 65, 3783–3798. [Google Scholar] [CrossRef] [Green Version]
- Pearce, S.; Tabbita, F.; Cantu, D.; Buffalo, V.; Avni, R.; Vazquez-Gross, H.; Dubcovksy, J. Regulation of Zn and Fe transporters by the GPC1 gene during early wheat monocarpic senescence. BMC Plant Biol. 2014, 14, 368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martre, P.; Jamieson, P.D.; Semenov, M.A.; Zyskowski, R.F.; Porter, J.R.; Triboi, E. Modelling protein content and composition in relation to crop nitrogen dynamics for wheat. Eur. J. Agron. 2006, 25, 138–154. [Google Scholar] [CrossRef]
- Maharaj, R.; Arul, J.; Nadeau, P. Effect of photochemical treatment in the preservation of fresh tomato (Lycopersicon esculentum cv. Capello) by delaying senescence. Postharvest Biol. Technol. 1999, 15, 13–23. [Google Scholar] [CrossRef]
- Robson, P.R.; Donnison, I.S.; Wang, K.; Frame, B.; Pegg, S.E.; Thomas, A.; Thomas, H. Leaf senescence is delayed in maize expressing the Agrobacterium IPT gene under the control of a novel maize senescence-enhanced promoter. Plant Biotechnol. J. 2004, 2, 101–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benbella, M.; Paulsen, G.M. Efficacy of treatments for delaying senescence of wheat leaves: II. Senescence and grain yield under field conditions. Agron. J. 1998, 90, 332–338. [Google Scholar] [CrossRef]
Date of Treatments | Name of Treatments | Nutrient Level A | Nutrient Level B | Nutrient Level C | Nutrient Level D | |
---|---|---|---|---|---|---|
1 October 2020 | 29 September 2021 | autumn multinutrient fertilizer (NPK) | N:P:K = 30:0:0 | N:P:K = 30:30:30 | N:P:K = 60:60:60 | N:P:K = 60:60:60 |
10 March 2021 | 28 February 2022 | top-dressing fertilization I. (ammonium nitrate) | N = 30 | N = 60 | N = 60 | N = 60 |
26 April 2021 | 9 May 2022 | top-dressing fertilization II. (ammonium nitrate) | N = 0 | N = 0 | N = 0 | N = 30 |
Nutrient Level | pH Value | Liquid Limit | CaCO m m%−1 | Humus % | Nitrogen mg kg−1 | Potassium mg kg−1 | Phosphorus mg kg−1 | Zinc mg kg−1 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Depth (cm) | 0–25 | 25–50 | 0–25 | 25–50 | 0–25 | 25–50 | 0–25 | 25–50 | 0–25 | 25–50 | 0–25 | 25–50 | 0–25 | 25–50 | 0–25 | 25–50 |
A | 7.53 | 7.55 | 39.9 | 42.5 | 6.15 | 6.48 | 2.24 | 2.24 | 16.9 | 12.7 | 258 | 230 | 231 | 187 | 1.43 | 1.18 |
B | 7.65 | 7.72 | 39.5 | 41.2 | 10.4 | 11.3 | 2.15 | 2.07 | 16.3 | 12.5 | 239 | 197 | 217 | 167 | 1.29 | 1.00 |
C | 7.67 | 7.72 | 40.2 | 43.1 | 10.6 | 11.9 | 2.20 | 2.14 | 17.4 | 11.9 | 287 | 201 | 352 | 214 | 1.30 | 0.82 |
D | 7.54 | 7.63 | 40.5 | 43.1 | 6.76 | 5.86 | 2.33 | 2.3 | 17.2 | 12. | 336 | 275 | 409 | 280 | 1.62 | 1.24 |
Nutrient Level | Zn Treatment | Treatments (L ha−1 Doses) | Applied at Tillering (BBCH 21–22) | Applied at Flag Leaf Elongation (BBCH 37) | 2021 | 2022 |
---|---|---|---|---|---|---|
A | control | 0 | - | - | - | - |
A | 1st | 1 | 🗸 | 9 April | 8 April | |
A | 2nd | 2 | 🗸 | 9 April | 8 April | |
A | 3rd | 2 × 1 | 🗸 | 🗸 | 9 April + 11 May | 9 April + 11 May |
B | control | 0 | - | - | - | - |
B | 1st | 1 | 🗸 | 9 April | 8 April | |
B | 2nd | 2 | 🗸 | 9 April | 8 April | |
B | 3rd | 2 × 1 | 🗸 | 🗸 | 9 April + 11 May | 9 April + 11 May |
C | control | 0 | - | - | - | - |
C | 1st | 1 | 🗸 | 9 April | 8 April | |
C | 2nd | 2 | 🗸 | 9 April | 8 April | |
C | 3rd | 2 × 1 | 🗸 | 🗸 | 9 April + 11 May | 9 April + 11 May |
D | control | 0 | - | - | - | - |
D | 1st | 1 | 🗸 | 9 April | 8 April | |
D | 2nd | 2 | 🗸 | 9 April | 8 April | |
D | 3rd | 2 × 1 | 🗸 | 🗸 | 9 April + 11 May | 9 April + 11 May |
Sampling | Number of Measurements | 2021 | 2022 | 2021 GK Pilis-Zvezdana | 2022 GK Pilis-Zvezdana |
---|---|---|---|---|---|
SPAD | 1 | 10 May | 6 May | BBCH 61-BBCH 65 | BBCH 55-BBCH55 |
2 | 18 May | 9 May | BBCH 65-BBCH 65 | BBCH 58-BBCH 58 | |
3 | 26 May | 16 May | BBCH 65-BBCH 69 | BBCH 59-BBCH 59 | |
4 | 1 June | 23 May | BBCH 71-BBCH 73 | BBCH 65-BBCH 65 | |
5 | 7 June | 30 May | BBCH 75-BBCH 75 | BBCH 69-BBCH 69 | |
6 | 14 June | 6 June | BBCH 77-BBCH 81 | BBCH 77- BBCH 77 | |
Chlorophyll | 1 | 9 April | 30 Marc | BBCH 24-BBCH 24 | BBCH 24-BBCH 24 |
2 | 25 April | 26 April | BBCH 49-BBCH 47 | BBCH 49-BBCH 47 | |
3 | 26 May | 23 May | BBCH 65-BBCH 69 | BBCH 65-BBCH 65 |
Growing Season | Genotype | Nutrient Level | Control (t ha−1) | 1st Treatment (t ha−1) | 2nd Treatment (t ha−1) | 3rd Treatment (t ha−1) |
---|---|---|---|---|---|---|
2021 | Zvezdana | A | 4.49 AaA * | 4.41 aaA * | 4.48 aaA * | 4.31 aaA * |
B | 4.83 aaA * | 4.70 aabA * | 4.76 aaA * | 4.62 aaA * | ||
C | 5.75 aaA * | 5.88 abA * | 6.11 bbA * | 6.03 abA * | ||
D | 6.76 abA * | 6.81 acA * | 6.60 abA * | 6.89 abA * | ||
GK Pilis | A | 4.58 aaA * | 4.35 aaA * | 4.40 aaA * | 4.61 aaA * | |
B | 5.38 aaA * | 5.18 abA * | 5.61 abB * | 5.27 abB * | ||
C | 7.01 abB * | 7.15 acB * | 7.15 acB * | 7.38 acB * | ||
D | 7.72 abB * | 7,25 acA * | 7.22 acB * | 7.49 acA * | ||
2022 | Zvezdana | A | 1.95 aaA | 2.38 aaA * | 2.28 aaA * | 2.15 aaA * |
B | 3.31 abA | 3.53 abA * | 3.43 abA * | 3.63 abA * | ||
C | 3.62 abA | 3.66 abA * | 3.85 abA * | 3.78 abA * | ||
D | 2.88 acA | 3.12 abA * | 3.34 abA * | 3.35 abA * | ||
GK Pilis | A | 1.99 aaA | 2.09 aaA * | 2.04 aaA * | 2.14 aaA * | |
B | 2.64 abB | 2.70 abB * | 2.79 abB * | 2.74 aaB * | ||
C | 3.35 acA | 3.69 acA * | 3.63 acA * | 3.47 abA * | ||
D | 3.03 abcA | 3.09 acA * | 2.82 abA * | 2.47 aaB * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Irmes, K.; Kristó, I.; Szentpéteri, L.; Rácz, A.; Vályi-Nagy, M.; Kassai, M.K.; Valentinyi, K.V.; Tar, M. The Effect of Foliar Zinc Application on the Leaf Chlorophyll Concentrations and Grain Yields of the Winter Wheat (Triticum aestivum L.) in the Field Experiments of Two Seasons. Agronomy 2023, 13, 1640. https://doi.org/10.3390/agronomy13061640
Irmes K, Kristó I, Szentpéteri L, Rácz A, Vályi-Nagy M, Kassai MK, Valentinyi KV, Tar M. The Effect of Foliar Zinc Application on the Leaf Chlorophyll Concentrations and Grain Yields of the Winter Wheat (Triticum aestivum L.) in the Field Experiments of Two Seasons. Agronomy. 2023; 13(6):1640. https://doi.org/10.3390/agronomy13061640
Chicago/Turabian StyleIrmes, Katalin, István Kristó, Lajos Szentpéteri, Attila Rácz, Marianna Vályi-Nagy, Mária Katalin Kassai, Klára Veresné Valentinyi, and Melinda Tar. 2023. "The Effect of Foliar Zinc Application on the Leaf Chlorophyll Concentrations and Grain Yields of the Winter Wheat (Triticum aestivum L.) in the Field Experiments of Two Seasons" Agronomy 13, no. 6: 1640. https://doi.org/10.3390/agronomy13061640
APA StyleIrmes, K., Kristó, I., Szentpéteri, L., Rácz, A., Vályi-Nagy, M., Kassai, M. K., Valentinyi, K. V., & Tar, M. (2023). The Effect of Foliar Zinc Application on the Leaf Chlorophyll Concentrations and Grain Yields of the Winter Wheat (Triticum aestivum L.) in the Field Experiments of Two Seasons. Agronomy, 13(6), 1640. https://doi.org/10.3390/agronomy13061640