Improving Morpho-Physiological Indicators, Yield, and Water Productivity of Wheat through an Optimal Combination of Mulching and Planting Patterns in Arid Farming Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site Description
2.2. Experimental Design and Treatments
2.3. Measurements and Calculations
2.3.1. Growth Parameters and Growth Indicators
2.3.2. Physiological Attributes
2.3.3. Yield and Crop Water Productivity
2.3.4. Stress Tolerance Indices
2.4. Statistical Analysis
3. Results
3.1. Vegetative Growth Parameters
3.2. Crop Growth Indicators
3.3. Physiological Attributes
3.4. Grain Yield and Water Productivity
3.5. Stress Tolerance Indices
3.6. Relationship of Growth Indicators with Grain Yield and Water Productivity
3.7. Selection of the Optimal IMPPs through Their Association with Studied Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Golla, B. Agricultural production system in arid and semi-arid regions. J. Agric. Sci. Food Technol. 2021, 7, 234–244. [Google Scholar]
- Zheng, H.; Sang, Z.; Wang, K.; Xu, Y.; Cai, Z. Distribution of irrigated and rainfed agricultural land in a semi-arid sandy area. Land 2022, 11, 1621. [Google Scholar] [CrossRef]
- Siebert, S.; Burke, J.; Faures, J.-M.; Frenken, K.; Hoogeveen, J.; Döll, P.; Portmann, F.T. Groundwater use for irrigation—A global inventory. Hydrol. Earth Syst. Sci. 2010, 14, 1863–1880. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.M.; Jin, S.L.; Liu, C.A.; Xiong, Y.C.; Si, J.T.; Li, X.G.; Gan, Y.T.; Li, F.M. Ridge-furrow and plastic-mulching tillage enhances maize-soil interactions: Opportunities and challenges in a semiarid agroecosystem. Field Crop. Res. 2012, 126, 181–188. [Google Scholar] [CrossRef]
- Ren, X.; Zhang, P.; Liu, X.; Ali, S.; Chen, X.; Jia, Z. Impacts of different mulching patterns in rainfall-harvesting planting on soil water and spring corn growth development in semi humid regions of China. Soil Res. 2017, 55, 285–295. [Google Scholar] [CrossRef]
- El-Hendawy, S.; Alsamin, B.; Mohammed, N.; Al-Suhaibani, N.; Refay, Y.; Alotaibi, M.; Tola, E.; Mattar, M.A. Combining planting patterns with mulching bolsters the soil water content, growth, yield, and water use efficiency of spring wheat under limited water supply in arid regions. Agronomy 2022, 12, 1298. [Google Scholar] [CrossRef]
- Li, W.; Xiong, L.; Wang, C.; Liao, Y.; Wu, W. Optimized ridge–furrow with plastic film mulching system to use precipitation efficiently for winter wheat production in dry semi–humid areas. Agric. Water Manag. 2019, 218, 211–221. [Google Scholar] [CrossRef]
- Kader, M.A.; Singha, A.; Begum, M.A.; Jewel, A.; Khan, F.H.; Khan, N.I. Mulching as water-saving technique in dryland agriculture: Review article. Bull. Natl. Res. Cent. 2019, 43, 147. [Google Scholar] [CrossRef] [Green Version]
- Sun, D.; Li, H.; Wang, E.; He, W.; Hao, W.; Yan, C.; Li, Y.; Xurong Mei, X.; Zhang, Y.; Sun, Z.; et al. An overview of the use of plastic-film mulching in China to increase crop yield and water-use efficiency. Natl. Sci. Rev. 2020, 7, 1523–1526. [Google Scholar] [CrossRef]
- Cheng, D.; Wang, Z.; Yang, L.; Zhang, L.; Zhang, Q. Combined effects of mulching and crop density on soil evaporation, temperature, and water use efficiency of winter wheat. Exp. Agric. 2021, 57, 163–174. [Google Scholar] [CrossRef]
- Rana, G.; Katerji, N. Measurement and estimation of actual evapotranspiration in the field under Mediterranean climate: A review. Eur. J. Agron. 2000, 13, 125–153. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Gong, S.; Xu, D.; Juan, S.; Zhao, Y. Evapotranspiration, crop coefficient and yield for drip-irrigated winter wheat with straw mulching in North China Plain. Field Crop. Res. 2018, 217, 218–228. [Google Scholar] [CrossRef]
- Yang, J.; Mao, X.; Wang, K.; Yang, W. The coupled impact of plastic film mulching and deficit irrigation on soil water/heat transfer and water use efficiency of spring wheat in Northwest China. Agric. Water Manag. 2018, 201, 232–245. [Google Scholar] [CrossRef]
- El-Hendawy, S.E.; Al-Suhaibani, N.; Elsayed, S.; Refay, Y.; Alotaibi, M.; Dewir, Y.H.; Hassan, W.; Schmidhalter, U. Combining biophysical parameters, spectral indices and multivariate hyperspectral models for estimating yield and water productivity of spring wheat across different agronomic practices. PLoS ONE 2019, 14, e0212294. [Google Scholar]
- Liu, Y.; Zhang, X.; Xi, L.; Liao, Y.; Han, J. Ridge-furrow planting promotes wheat grain yield and water productivity in the irrigated sub-humid region of China. Agric. Water Manag. 2020, 231, 105935. [Google Scholar] [CrossRef]
- Javaid, M.M.; AlGwaiz, H.I.M.; Waheed, H.; Ashraf, M.; Mahmood, A.; Li, F.-M.; Attia, K.A.; Nadeem, M.A.; AlKahtani, M.D.F.; Fiaz, S.; et al. Ridge-furrow mulching enhances capture and utilization of rainfall for improved maize production under rain-fed conditions. Agronomy 2022, 12, 1187. [Google Scholar] [CrossRef]
- Mak-Mensah, E.; Zhang, D.; Zhou, X.; Zhao, X.; Wang, X.; Zhao, W.; Wang, Q.; Ahiakpa, J.K. Effect of co-application of ridge-furrow rainwater harvesting and mulching on fodder yield, quality, and soil desiccation in alfalfa (Medicago sativa) production. J. Soil Sci. Plant. Nutr. 2022, 22, 2587–2602. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, D.; Zhou, X.; Mak-Mensah, E.; Zhao, X.; Zhao, W.; Wang, X.; Stellmach, D.; Liu, Q.; Li, X. Optimum planting configuration for alfalfa production with ridge-furrow rainwater harvesting in a semiarid region of China. Agric. Water Manag. 2022, 266, 107594. [Google Scholar] [CrossRef]
- Saglam, M.; Sintim, H.; Bary, A.; Miles, C.; Ghimire, S.; Inglis, D.; Flury, M. Modeling the effect of biodegradable paper and plastic mulch on soil moisture dynamics. Agric. Water Manag. 2017, 193, 240–250. [Google Scholar] [CrossRef]
- Shen, Q.; Ding, R.; Du, T.; Tong, L.; Li, S. Water use effectiveness is enhanced using film mulch through increasing transpiration and decreasing evapotranspiration. Water 2019, 11, 1153. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Coulter, J.A.; Palta, J.A.; Xie, J.; Luo, Z.; Li, L.; Carberry, P.; Li, Q.; Deng, X. Mulching-induced changes in tuber yield and nitrogen use efficiency in potato in china: A meta-analysis. Agronomy 2019, 9, 793. [Google Scholar] [CrossRef] [Green Version]
- Samui, I.; Skalicky, M.; Sarkar, S.; Brahmachari, K.; Sau, S.; Ray, K.; Hossain, A.; Ghosh, A.; Nanda, M.K.; Bell, R.W.; et al. Yield response, nutritional quality, and water productivity of tomato (Solanum lycopersicum L.) are influenced by drip irrigation and straw mulch in the coastal saline ecosystem of Ganges delta, India. Sustainability 2020, 12, 6779. [Google Scholar] [CrossRef]
- Li, Y.; Hu, Y.; Song, D.; Liang, S.; Qin, X.; Siddique, K.H. The effects of straw incorporation with plastic film mulch on soil properties and bacterial community structure on the loess plateau. Eur. J. Soil Sci. 2021, 72, 979–994. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, L.; Liu, J.; Fu, Q.; Xu, Q.; Idimesheva, O. Soil water and temperature characteristics under different straw mulching and tillage measures in the black soil region of China. J. Soil Water Conserv. 2021, 76, 256–262. [Google Scholar] [CrossRef]
- Xie, J.; Wang, L.; Li, L.; Anwar, S.; Luo, Z.; Zechariah, E.; Kwami Fudjoe, S. Yield, economic benefit, soil water balance, and water use efficiency of intercropped maize/potato in responses to mulching practices on the semiarid loess plateau. Agriculture 2021, 11, 1100. [Google Scholar] [CrossRef]
- Tang, M.; Gao, X.; Wu, P.; Li, H.; Zhang, C. Effects of living mulch and branches mulching on soil moisture, temperature and growth of rain-fed jujube trees. Plants 2022, 11, 2654. [Google Scholar] [CrossRef]
- Bu, L.D.; Liu, J.L.; Zhu, L.; Luo, S.S.; Chen, X.P.; Li, S.Q.; Hill, R.L.; Zhao, Y. The effects of mulching on maize growth, yield and water use in a semi-arid region. Agric. Water Manag. 2013, 123, 71–78. [Google Scholar] [CrossRef]
- Xu, J.; Li, C.; Liu, H.; Zhou, P.; Tao, Z.; Wang, P.; Meng, Q.; Zhao, M. The effects of plastic film mulching on maize growth and water use in dry and rainy years in Northeast China. PLoS ONE 2015, 10, e0125781. [Google Scholar] [CrossRef]
- Yin, W.; Chai, Q.; Guo, Y.; Feng, F.; Zhao, C.; Yu, A.; Hu, F. Analysis of leaf area index dynamic and grain yield components of intercropped wheat and maize under straw mulch combined with reduced tillage in arid environments. J. Agric. Sci. 2016, 8, 26–42. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Gong, S.; Xu, D.; Mo, Y.; Zhang, B. Straw mulching improves soil water content, increases flag leaf photosynthetic parameters and maintains the yield of winter wheat with different irrigation amounts. Agric. Water Manag. 2021, 249, 106809. [Google Scholar] [CrossRef]
- He, Z.; Zhang, T.; Liu, X.; Shang, X. Water-yield relationship responses of maize to ridge-furrow planting systems coupled with multiple irrigation levels in China’s Horqin sandy land. Agronomy 2018, 8, 221. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Zuo, Y.; Zhang, Q.; Yang, L.; Zhao, E.; Liang, L.; Tong, Y. Ridge-furrow with plastic film and straw mulch increases water availability and wheat production on the Loess Plateau. Sci. Rep. 2018, 8, 6503. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Kamran, M.; Xue, X.; Zhao, J.; Cai, T.; Jia, Z.; Zhang, P.; Han, Q. Ridge-furrow mulching system drives the efficient utilization of key production resources and the improvement of maize productivity in the Loess Plateau of China. Soil Tillage Res. 2019, 190, 10–21. [Google Scholar] [CrossRef]
- Li, F.M.; Li, X.G.; Javaid, M.M.; Ashraf, M.; Zhang, F. Ridge-furrow plastic film mulching farming for sustainable dryland agriculture on the Chinese loess plateau. Agron. J. 2020, 112, 3284–3294. [Google Scholar] [CrossRef]
- Li, C.; Wen, X.; Wan, X.; Liu, Y.; Han, J.; Liao, Y.; Wu, W. Towards the highly effective use of precipitation by ridge-furrow with plastic film mulching instead of relying on irrigation resources in a dry semi-humid area. Field Crop. Res. 2016, 188, 62–73. [Google Scholar] [CrossRef]
- Luo, J.; Liang, Z.; Xi, L.; Liao, Y.; Liu, Y. Plastic-covered ridge-furrow planting combined with supplemental irrigation based on measuring soil moisture promotes wheat grain yield and irrigation water use efficiency in irrigated fields on the Loess Plateau, China. Agronomy 2020, 10, 1010. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration. In Guidelines for Computing Crop Water Requirements; Irrigation and Drainage Paper No. 56; FAO: Rome, Italy, 1998; 300p. [Google Scholar]
- Hunt, R. Basic Growth Analysis: Plant Growth Analysis for Beginners; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 1987, 148, 350–382. [Google Scholar]
- Gao, H.; Yan, C.; Liu, Q.; Li, Z.; Yang, X.; Qi, R. Exploring optimal soil mulching to enhance yield and water use efficiency in maize cropping in China: A meta-analysis. Agric. Water Manag. 2019, 255, 105741. [Google Scholar] [CrossRef]
- Prem, P.; Ranjan, P.; Seth, N.; Patle, G.T. Mulching techniques to conserve the soil water and advance the crop production—A Review. Curr. World Environ. 2020, 15, 10–30. [Google Scholar]
- Gao, Y.H.; Xie, Y.P.; Jiang, H.Y.; Wu, B.; Niu, J.Y. Soil water status and root distribution across the rooting zone in maize with plastic film mulching. Field Crop. Res. 2014, 156, 40–47. [Google Scholar] [CrossRef]
- Jia, Q.M.; Chen, K.Y.; Chen, Y.Y.; Ali, S.; Manzoor, A.; Fahad Sohail, S. Mulch covered ridges affect grain yield of maize through regulating root growth and root-bleeding sap under simulated rainfall conditions. Soil Tillage Res. 2018, 175, 101–111. [Google Scholar] [CrossRef]
- Niu, L.; Yan, Y.; Hou, P.; Bai, W.; Zhao, R.; Wang, Y.; Li, S.; Du, T.S.; Zhao, M.; Song, J.; et al. Influence of plastic film mulching and planting density on yield, leaf anatomy, and root characteristics of maize on the Loess Plateau. Crop. J. 2020, 8, 548–564. [Google Scholar] [CrossRef]
- Wang, Y. Multi-site assessment of the effects of plastic-film mulch on dryland maize productivity in semiarid areas in China. Agric. For. Meteorol. 2016, 220, 160–169. [Google Scholar] [CrossRef]
- Yin, W.; Yu, A.; Guo, Y.; Fan, H.; Hu, F.; Fan, Z.; Zhao, C.; Chai, Q.; Coulter, J.A. Growth trajectories of wheat–maize intercropping with straw and plastic management in arid conditions. Agron. J. 2020, 112, 2777–2790. [Google Scholar] [CrossRef]
- Yin, W.; Chai, Q.; Guo, Y.; Fan, H.; Fan, Z.; Hu, F.; Zhao, C.; Yu, A.; Coulter, J.A. No tillage with plastic re-mulching maintains high maize productivity via regulating hydrothermal effects in an arid region. Front. Plant. Sci. 2021, 12, 649684. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Ding, R.; Kang, S.; Hao, X.; Du, T.; Tong, L.; Li, S. Plastic mulch decreases available energy and evapotranspiration and improves yield and water use efficiency in an irrigated maize cropland. Agric. Water Manag. 2016, 179, 122–131. [Google Scholar] [CrossRef]
- Wu, Y.; Huang, F.; Jia, Z.; Ren, X.; Cai, T. Response of soil water, temperature, and maize (Zea may L.) production to different plastic film mulching patterns in semi-arid areas of northwest China. Soil Tillage Res. 2017, 166, 113–121. [Google Scholar] [CrossRef]
- Sekhon, N.K.; Hira, G.S.; Sidhu, A.S.; Thind, S.S. Response of soyabean (Glycine max Mer.) to wheat straw mulching in different cropping seasons. Soil Use Manag. 2005, 21, 422–426. [Google Scholar]
- Li, S.; Li, Y.; Lin, H.; Feng, H.; Dyck, M. Effects of different mulching technologies on evapotranspiration and summer maize growth. Agric. Water Manag. 2018, 201, 309–318. [Google Scholar] [CrossRef]
- Kader, M.A.; Nakamura, K.; Senge, M.; Mojid, M.A.; Kawashima, S. Soil hydro-thermal regimes and water use efficiency of rain-fed soybean (Glycine max) as affected by organic mulches. Agric. Water Manag. 2019, 223, 105707. [Google Scholar] [CrossRef]
- Li, S.; Zhang, S.; Pu, Y.; Li, T.; Xu, X.; Jia, Y.; Deng, O.; Gong, G. Dynamics of soil labile organic carbon fractions and C-cycle enzyme activities under straw mulch in Chengdu Plain. Soil Tillage Res. 2016, 155, 289–297. [Google Scholar] [CrossRef]
- Noor, M.A.; Nawaz, M.M.; Ma, W.; Zhao, M. Wheat straw mulch improves summer maize productivity and soil properties. Ital. J. Agron. 2021, 16, 1623. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, J.; Yang, L.; Kamran, M.; Xue, X.; Dong, Z.; Jia, Z.; Han, Q. Ridge-furrow mulching system regulates diurnal temperature amplitude and wetting-drying alternation behavior in soil to promote maize growth and water use in a semiarid region. Field Crop. Res. 2019, 233, 121–130. [Google Scholar] [CrossRef]
- Chen, P.; Gu, X.; Li, Y.; Qiao, L.; Li, Y.; Fang, H.; Yin, M.; Zhou, C. Effects of different ridge-furrow mulching systems on yield and water use efficiency of summer maize in the Loess Plateau of China. J. Arid. Land 2021, 13, 947–961. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, J.; Chen, X.; Wang, Z. Straw mulch as an alternative to plastic film mulch: Positive evidence from dryland wheat production on the Loess Plateau. Sci. Total Environ. 2019, 676, 782–791. [Google Scholar] [CrossRef]
- Ghosh, P.K.; Dayal, D.; Bandyopadhyay, K.K.; Mohanty, M. Evaluation of straw and polythene mulch for enhancing productivity of irrigated summer groundnut. Field Crop. Res. 2006, 99, 76–86. [Google Scholar] [CrossRef]
- Dong, Q.; Yang, Y.; Yu, K.; Feng, H. Effects of straw mulching and plastic film mulching on improving soil organic carbon and nitrogen fractions, crop yield and water use efficiency in the Loess Plateau, China. Agric. Water Manag. 2018, 201, 133–143. [Google Scholar] [CrossRef]
- Guan, X.K.; Wei, L.; Turner, N.C.; Ma, S.C.; Yang, M.D.; Wang, T.C. Improved straw management practices promote in situ straw decomposition and nutrient release, and increase crop production. J. Clean. Prod. 2020, 250, 119514. [Google Scholar] [CrossRef]
- Wang, J.; Ghimire, R.; Fu, X.; Sainju, U.M.; Liu, W. Straw mulching increases precipitation storage rather than water use efficiency and dryland winter wheat yield. Agric. Water Manag. 2018, 206, 95–101. [Google Scholar] [CrossRef]
- Ding, J.; Wu, J.; Ding, D.; Yang, Y.; Gao, C.; Hu, W. Effects of tillage and straw mulching on the crop productivity and hydrothermal resource utilization in a winter wheat-summer maize rotation system. Agric. Water Manag. 2021, 254, 106933. [Google Scholar] [CrossRef]
- Al-Suhaibani, N.; El-Hendawy, S.; Schmidhalter, U. influence of varied plant density on growth, yield and economic return of drip irrigated faba bean (Vicia faba L.). Turk. J. Field Crops. 2013, 18, 185–197. [Google Scholar]
- Karki, S.; Poudel, N.K.; Bhusal, G.; Simkhada, S.; Regmi, B.R.; Adhikari, B.; Poudel, S. Growth parameter and yield attributes of rice (Oryza sativa) as influenced by different combination of nitrogen sources. World J. Agric. Res. 2018, 6, 58–64. [Google Scholar]
- Zhu, G.; Ren, Z.; Liu, Y.; Lu, F.; Gu, L.; Shi, Y.; Liu, J.; Zhou, G.; Nimir, N.E.A.; Mohapatra, P.K. Optimization of leaf properties and plant phenotype through yield-based genetic improvement of rice over a period of seventy years in the Yangtze River Basin of China. Food Energy Secur. 2020, 9, e223. [Google Scholar] [CrossRef]
Full Name | Abb. | Formula |
---|---|---|
Yield index | YI | |
Stress tolerance index | STI | |
Stress sensitive index | SSI | |
Geometric mean productivity index | GMP | |
Mean relative performance index | MRP | |
Relative efficiency index | REI |
Studied Factor | 80 Days after Sowing | 100 Days after Sowing | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PH | TN | GLN | GLA | GLDW | PDW | PH | TN | GLN | GLA | GLDW | PDW | ||
Season (s) | |||||||||||||
Season 1 | 68.80 a | 3.65 a | 7.88 b | 119.67 a | 0.696 a | 6.01 a | 77.11 a | 4.45 a | 6.48 a | 82.28 a | 0.564 a | 10.01 a | |
Season 2 | 69.92 a | 3.97 a | 8.23 a | 98.37 b | 0.653 a | 6.34 a | 79.04 a | 4.51 a | 6.15 a | 77.11 a | 0.548 a | 9.81 a | |
Irrigation (IR) | |||||||||||||
1.00 ET | 77.89 a | 4.24 a | 9.80 a | 134.11 a | 0.834 a | 6.85 a | 85.21 a | 5.00 a | 7.94 a | 100.56 a | 0.674 a | 12.17 a | |
0.50 ET | 60.82 b | 3.39 b | 6.31 b | 83.93 b | 0.515 b | 5.50 b | 70.94 b | 3.96 b | 4.69 b | 58.83 b | 0. 438 b | 7.65 b | |
Integrations of mulching and planting patterns (IMPPs) | |||||||||||||
FNM | 65.95 d | 3.23 d | 6.93 d | 92.71 d | 0.563 e | 5.69 c | 73.88 cd | 3.94 d | 5.01 d | 63.98 d | 0.460 d | 8.33 d | |
FPFM | 74.86 a | 4.41 a | 9.14 a | 131.91 a | 0.808 a | 6.70 a | 81.73 ab | 4.68 ab | 7.49 ab | 90.47 a | 0.650 a | 11.58 a | |
FCRM | 71.20 bc | 4.11 b | 8.54 bc | 116.29 b | 0.724 bc | 6.54 a | 82.99 a | 4.87 a | 7.58 a | 92.45 a | 0.638 a | 11.13 b | |
RBNM | 65.46 d | 3.29 d | 7.06 d | 91.93 d | 0.583 e | 5.57 c | 74.09 cd | 4.20 cd | 5.15 d | 64.87 cd | 0.462 d | 8.18 d | |
RBPFM | 72.55 ab | 4.32 ab | 9.03 ab | 125.83 a | 0.756 b | 6.61 a | 79.95 b | 4.66 ab | 7.10 b | 88.39 a | 0.608 b | 11.25 ab | |
RBCRM | 70.41 bc | 4.25 ab | 8.26 c | 117.28 b | 0.698 cd | 6.60 a | 82.24 ab | 4.93 a | 7.24 b | 91.02 a | 0.608 b | 10.96 b | |
RFNM | 65.67 d | 3.27 d | 7.21 d | 89.79 d | 0.592 e | 5.59 c | 73.19 d | 4.12 d | 4.91 d | 69.16 c | 0.474 d | 8.38 d | |
RFPFM | 68.77 cd | 3.63 c | 8.27 c | 106.41 c | 0.673 d | 6.13 b | 76.55 c | 4.47 bc | 6.05 c | 77.21 b | 0.548 c | 9.49 c | |
ANOVA | df | ||||||||||||
Season (S) | 1 | 0.259 ns | 0.054 ns | 0.017 * | 0.005 ** | 0.096 ns | 0.186 ns | 0.322 ns | 0.069 ns | 0.192 ns | 0.094 ns | 0.303 ns | 0.214 ns |
IR | 1 | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** |
IR × S | 1 | 0.035 ns | 0.877 ns | 0.048 * | <0.001 *** | 0.849 ns | <0.001 *** | 0.385 ns | 0.077 ns | 0.152 ns | 0.025 * | 0.039 * | <0.001 *** |
IMPPs | 7 | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | 0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** |
IMPPs × S | 7 | 0.826 ns | 0.660 ns | 0.361 ns | 0.008 ** | 0.694 ns | 0.868 ns | <0.950 ns | 0.964 ns | 0.888 ns | <0.001 *** | 0.023 * | 0.973 ns |
IMPPs × IR | 7 | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | 0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** |
IMPPs × IR × S | 7 | 0.909 ns | 0.716 ns | 0.540 ns | 0.180 ns | 0.902 ns | 0.995 ns | <0.961 ns | 0.695 ns | 0.207 ns | 0.032 * | 0.344 ns | 0.943 ns |
LAI-1 | LAI-2 | AGR | RGR | NAR | LAD | LAR | CGR-1 | CGR-2 | RWC | Chla | Chlb | Chlt | GY | WP | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Season (s) | ||||||||||||||||
Season 1 | 3.42 a | 2.35 a | 0.200 a | 0.024 a | 1.906 a | 57.70 a | 12.49 a | 6.80 a | 4.78 a | 78.92 a | 1.65 a | 0.67 a | 2.32 a | 5410.4 a | 1.135 a | |
Season 2 | 2.81 a | 2.20 a | 0.173 b | 0.020 b | 1.813 a | 50.14 b | 10.75 b | 5.65 b | 4.34 a | 77.16 a | 1.35 b | 0.59 a | 1.98 b | 5655.2 a | 1.209 a | |
Irrigation (IR) | ||||||||||||||||
1.00 ET | 3.83 a | 2.87 a | 0.266 a | 0.028 a | 2.254 a | 67.05 a | 12.57 a | 8.76 a | 6.57 a | 83.97 a | 1.77 a | 0.76 a | 2.53 a | 6895.0 a | 1.061 b | |
0.50 ET | 2.40 b | 1.68 b | 0.107 b | 0.016 b | 1.464 b | 40.79 b | 10.67 b | 3.68 b | 2.55 b | 72.11 b | 1.27 b | 0.50 b | 1.77 b | 4170.6 b | 1.283 a | |
Integrations of mulching with planting patterns (IMPPs) | ||||||||||||||||
FNM | 2.65 d | 1.83 d | 0.132 d | 0.017 d | 1.475 d | 44.77 d | 10.78 e | 4.45 e | 3.16 c | 74.06 d | 1.20 e | 0.55 d | 1.76 e | 5181.7 c | 1.077 e | |
FPFM | 3.77 a | 2.58 a | 0.244 a | 0.026 a | 2.145 a | 63.54 a | 12.28 a | 8.43 a | 5.71 a | 80.75 a | 1.69 b | 0.66 abc | 2.35 b | 5900.0 a | 1.281 a | |
FCRM | 3.32 b | 2.64 a | 0.229 ab | 0.025 a | 2.071 ab | 59.64 b | 11.68 bcd | 7.30 bc | 5.90 a | 79.48 a | 1.82 a | 0.70 ab | 2.52 a | 5790.8 ab | 1.189 bc | |
RBNM | 2.63 d | 1.85 cd | 0.131 d | 0.017 d | 1.501 d | 44.80 d | 11.16 de | 4.52 e | 3.08 c | 75.36 cd | 1.24 e | 0.56 d | 1.80 e | 5185.8 c | 1.074 e | |
RBPFM | 3.60 a | 2.53 a | 0.231 ab | 0.025 a | 2.099 a | 61.20 ab | 12.04 ab | 7.90 ab | 5.51 a | 79.70 a | 1.56 c | 0.62 bcd | 2.18 c | 5670.8 ab | 1.221 ab | |
RBCRM | 3.35 b | 2.60 a | 0.218 b | 0.024 ab | 1.991 ab | 59.51 b | 11.83 abc | 7.02 c | 5.53 a | 78.68 ab | 1.75 b | 0.71 a | 2.46 a | 5639.2 b | 1.156 cd | |
RFNM | 2.57 d | 1.98 c | 0.139 d | 0.020 c | 1.746 c | 45.41 d | 11.39 cd | 4.53 e | 3.50 c | 76.96 bc | 1.33 d | 0.59 cd | 1.93 d | 5160.8 c | 1.108 de | |
RFPFM | 3.04 c | 2.21 b | 0.168 c | 0.022 bc | 1.844 bc | 52.46 c | 11.82 abc | 5.63 d | 4.09 b | 79.32 a | 1.56 c | 0.65 abc | 2.22 c | 5733.3 ab | 1.271 a | |
ANOVA | ||||||||||||||||
S.O.V | df | |||||||||||||||
S | 1 | 0.005 ** | 0.094 ns | 0.009 ** | 0.23 * | 0.083 ns | 0.003 ** | 0.007 ** | 0.019 * | 0.058 ns | 0.063 ns | 0.004 ** | 0.075 ns | 0.012 * | 0.174 ns | 0.097 ns |
IR | 1 | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | 0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.00 *** | <0.001 *** | <0.001 *** |
IR × S | 1 | <0.001 *** | 0.025 * | 0.063 ns | 0.252 ns | 0.079 ns | 0.036 * | 0.651 ns | 0.008 ** | 0.240 ns | 0.001 ** | 0.368 ns | 0.924 ns | 0.577 ns | 0.016 * | 0.003 ** |
IMPPs | 7 | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | 0.002 ** | <0.001 *** | <0.001 *** | <0.001 *** |
IMPPs × S | 7 | <0.008 ** | <0.001 *** | 0.866 ns | 0.882 ns | <0.623 ns | 0.001 *** | <0.001 *** | 0.367 ns | 0.944 ns | 0.645 ns | <0.001 *** | 0.624 ns | <0.001 *** | 0.557 ns | 0.362 ns |
IMPPs × IR | 7 | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.002 ** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.003 ** | <0.001 *** | <0.001*** | <0.001*** |
IMPPs × IR × S | 7 | <0.180 ns | <0.032 * | 0.983 ns | 0.965 ns | <0.944 ns | <0.046 * | 0.001 *** | 0.902 ns | <0.975 ns | 0.909 ns | <0.001 *** | 0.907 ns | <0.001 *** | 0.245 ns | 0.181 ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Hendawy, S.; Alsamin, B.; Mohammed, N.; Refay, Y. Improving Morpho-Physiological Indicators, Yield, and Water Productivity of Wheat through an Optimal Combination of Mulching and Planting Patterns in Arid Farming Systems. Agronomy 2023, 13, 1660. https://doi.org/10.3390/agronomy13061660
El-Hendawy S, Alsamin B, Mohammed N, Refay Y. Improving Morpho-Physiological Indicators, Yield, and Water Productivity of Wheat through an Optimal Combination of Mulching and Planting Patterns in Arid Farming Systems. Agronomy. 2023; 13(6):1660. https://doi.org/10.3390/agronomy13061660
Chicago/Turabian StyleEl-Hendawy, Salah, Bazel Alsamin, Nabil Mohammed, and Yahya Refay. 2023. "Improving Morpho-Physiological Indicators, Yield, and Water Productivity of Wheat through an Optimal Combination of Mulching and Planting Patterns in Arid Farming Systems" Agronomy 13, no. 6: 1660. https://doi.org/10.3390/agronomy13061660
APA StyleEl-Hendawy, S., Alsamin, B., Mohammed, N., & Refay, Y. (2023). Improving Morpho-Physiological Indicators, Yield, and Water Productivity of Wheat through an Optimal Combination of Mulching and Planting Patterns in Arid Farming Systems. Agronomy, 13(6), 1660. https://doi.org/10.3390/agronomy13061660