Deciphering Ciprofloxacin’s Impact on Growth Attributes and Antioxidant Compounds in Pasankalla Quinoa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design of Exposure of Quinoa to Ciprofloxacin
2.3. Morphological Characteristics Analysis
2.4. Total Polyphenol Content (TPC)
2.5. Antioxidant Capacity by DPPH
2.6. Antioxidant Capacity by Oxygen Radical Absorbance Capacity (ORAC)
2.7. Quantification of Target Polyphenols
2.8. Statistics Analysis
3. Results
3.1. Impact of Dosage of CIP on Some Physical Characteristics
3.1.1. Root Length and Plant Growth
3.1.2. Biomass of Some Parts of the Plant
3.2. Impact of Dosage of CIP on Antioxidant Compounds
3.2.1. Total Polyphenol Content (TPC)
3.2.2. Antioxidant Capacity
3.2.3. Polyphenols Profile
4. Discussion
4.1. Root Length
4.2. Plant Growth Retardation
4.3. Weight of Root and Stem Biomass
4.4. Grain and Panicle
4.5. Total Polyphenol Content and Antioxidant Activity
4.6. Polyphenolic Profile
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Agraria Produccion y Exportacion de Quinua en Peru. Available online: https://agraria.pe/noticias/exportacion-peruana-de-quinua-cayo-en-2022-debido-a-los-nuev-31119 (accessed on 24 March 2023).
- Gamboa, C.; Van den Broeck, G.; Maertens, M. Smallholders’ Preferences for Improved Quinoa Varieties in the Peruvian Andes. Sustainability 2018, 10, 3735. [Google Scholar] [CrossRef] [Green Version]
- Diaz-Valencia, Y.K.; Alca, J.J.; Calori-Domingues, M.A.; Zanabria-Galvez, S.J.; Da Cruz, S.H. Nutritional Composition, Total Phenolic Compounds and Antioxidant Activity of Quinoa (Chenopodium Quinoa Willd.) of Different Colours. Nov. Biotechnol. Chim. 2018, 17, 74–85. [Google Scholar] [CrossRef] [Green Version]
- Sellami, M.H.; Pulvento, C.; Lavini, A. Agronomic Practices and Performances of Quinoa under Field Conditions: A Systematic Review. Plants 2021, 10, 72. [Google Scholar] [CrossRef] [PubMed]
- Mercado, W.; Ortega, R.; Minaya, C. Classification, Technical Efficiency, and Economic Performance of Producers in the Main Productive Region of Quinoa in Peru. Sci. Agropecu. 2022, 13, 175–184. [Google Scholar] [CrossRef]
- Jacobsen, S.E. The Worldwide Potential for Quinoa (Chenopodium quinoa Willd.). Food Rev. Int. 2003, 19, 167–177. [Google Scholar] [CrossRef]
- Aluwi, N.A.; Murphy, K.M.; Ganjyal, G.M. Physicochemical Characterization of Different Varieties of Quinoa. Cereal Chem. 2017, 94, 847–856. [Google Scholar] [CrossRef]
- Gunarathna, M.H.J.P.; Sakai, K.; Nakandakari, T.; Kazuro, M.; Onodera, T.; Kaneshiro, H.; Uehara, H.; Wakasugi, K. Optimized Subsurface Irrigation System (OPSIS): Beyond Traditional Subsurface Irrigation. Water 2017, 9, 599. [Google Scholar] [CrossRef] [Green Version]
- Gekenidis, M.T.; Qi, W.; Hummerjohann, J.; Zbinden, R.; Walsh, F.; Drissner, D. Antibiotic-Resistant Indicator Bacteria in Irrigation Water: High Prevalence of Extended-Spectrum Beta-Lactamase (ESBL)-Producing Escherichia coli. PLoS ONE 2018, 13, e0207857. [Google Scholar] [CrossRef]
- Liu, C.; Tan, L.; Zhang, L.; Tian, W.; Ma, L. A Review of the Distribution of Antibiotics in Water in Different Regions of China and Current Antibiotic Degradation Pathways. Front. Environ. Sci. 2021, 9, 692298. [Google Scholar] [CrossRef]
- Nunes, B.; Veiga, V.; Frankenbach, S.; Serôdio, J.; Pinto, G. Evaluation of Physiological Changes Induced by the Fluoroquinolone Antibiotic Ciprofloxacin in the Freshwater Macrophyte Species Lemna Minor and Lemna Gibba. Environ. Toxicol. Pharmacol. 2019, 72, 103242. [Google Scholar] [CrossRef]
- Gomes, M.P.; Gonçalves, C.A.; de Brito, J.C.M.; Souza, A.M.; da Silva Cruz, F.V.; Bicalho, E.M.; Figueredo, C.C.; Garcia, Q.S. Ciprofloxacin Induces Oxidative Stress in Duckweed (Lemna minor L.): Implications for Energy Metabolism and Antibiotic-Uptake Ability. J. Hazard. Mater. 2017, 328, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Hanna, N.; Sun, P.; Sun, Q.; Li, X.; Yang, X.; Ji, X.; Zou, H.; Ottoson, J.; Nilsson, L.E.; Berglund, B.; et al. Presence of Antibiotic Residues in Various Environmental Compartments of Shandong Province in Eastern China: Its Potential for Resistance Development and Ecological and Human Risk. Environ. Int. 2018, 114, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Igwegbe, C.A.; Oba, S.N.; Aniagor, C.O.; Adeniyi, A.G.; Ighalo, J.O. Adsorption of Ciprofloxacin from Water: A Comprehensive Review. J. Ind. Eng. Chem. 2021, 93, 57–77. [Google Scholar] [CrossRef]
- Girardi, C.; Greve, J.; Lamshöft, M.; Fetzer, I.; Miltner, A.; Schäffer, A.; Kästner, M. Biodegradation of Ciprofloxacin in Water and Soil and Its Effects on the Microbial Communities. J. Hazard. Mater. 2011, 198, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.M.; Huang, H.B.; Du, H.; Lin, J.; Xiang, L.; Li, Y.W.; Cai, Q.Y.; Li, H.; Mo, C.H.; Liu, J.S.; et al. Intraspecific Variability of Ciprofloxacin Accumulation, Tolerance, and Metabolism in Chinese Flowering Cabbage (Brassica parachinensis). J. Hazard. Mater. 2018, 349, 252–261. [Google Scholar] [CrossRef]
- Yan, Y.; Pengmao, Y.; Xu, X.; Zhang, L.; Wang, G.; Jin, Q.; Chen, L. Migration of Antibiotic Ciprofloxacin during Phytoremediation of Contaminated Water and Identification of Transformation Products. Aquat. Toxicol. 2020, 219, 105374. [Google Scholar] [CrossRef]
- Gomes, M.P.; Rocha, D.C.; Moreira de Brito, J.C.; Tavares, D.S.; Marques, R.Z.; Soffiatti, P.; Sant’Anna-Santos, B.F. Emerging Contaminants in Water Used for Maize Irrigation: Economic and Food Safety Losses Associated with Ciprofloxacin and Glyphosate. Ecotoxicol. Environ. Saf. 2020, 196, 110549. [Google Scholar] [CrossRef]
- Sharma, P.; Jha, A.B.; Dubey, R.S.; Pessarakli, M. Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. J. Bot. 2012, 2012, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Tuladhar, P.; Sasidharan, S.; Saudagar, P. Role of Phenols and Polyphenols in Plant Defense Response to Biotic and Abiotic Stresses; Elsevier Inc.: Amsterdam, The Netherlands, 2020; ISBN 9780128229194. [Google Scholar]
- Abbas, M.; Saeed, F.; Anjum, F.M.; Afzaal, M.; Tufail, T.; Bashir, M.S.; Ishtiaq, A.; Hussain, S.; Suleria, H.A.R. Natural Polyphenols: An Overview. Int. J. Food Prop. 2017, 20, 1689–1699. [Google Scholar] [CrossRef] [Green Version]
- Korkina, L.; Pastore, S.; De Luca, C.; Kostyuk, V. Metabolism of Plant Polyphenols in the Skin: Beneficial Versus Deleterious Effects. Curr. Drug Metab. 2008, 9, 710–729. [Google Scholar] [CrossRef]
- Maeda, H.; Dudareva, N. The Shikimate Pathway and Aromatic Amino Acid Biosynthesis in Plants. Annu. Rev. Plant Biol. 2012, 63, 73–105. [Google Scholar] [CrossRef]
- Schmid, J.; Amrhein, N. Molecular Organization of the Shikimate Pathway in Higher Plants. Phytochemistry 1995, 39, 737–749. [Google Scholar] [CrossRef]
- Stiller, A.; Garrison, K.; Gurdyumov, K.; Kenner, J.; Yasmin, F.; Yates, P.; Song, B.H. From Fighting Critters to Saving Lives: Polyphenols in Plant Defense and Human Health. Int. J. Mol. Sci. 2021, 22, 8995. [Google Scholar] [CrossRef]
- Kulbat, K. The Role of Phenolic Compounds in Plant Resistance. Biotechnol. Food Sci. 2016, 80, 97–108. [Google Scholar]
- Nieto-Juarez, J.; Torres-Palma, R.; Botero-Coy, A.; Hernández, F. Pharmaceuticals and Environmental Risk Assessment in Municipal Wastewater Treatment Plants and Rivers from Peru. Environ. Int. J. 2021, 155, 106674. [Google Scholar] [CrossRef] [PubMed]
- Vilca, F.Z.; Galarza, N.C.; Tejedo, J.R.; Cuba, W.A.Z.; Quiróz, C.N.C.; Tornisielo, V.L. Occurrence of Residues of Veterinary Antibiotics in Water, Sediment and Trout Tissue (Oncorhynchus mykiss) in the Southern Area of Lake Titicaca, Peru. J. Great Lakes Res. 2021, 47, 1219–1227. [Google Scholar] [CrossRef]
- Singleton, V.; Rossi, J. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Gálvez Ranilla, L.; Christopher, A.; Sarkar, D.; Shetty, K.; Chirinos, R.; Campos, D. Phenolic Composition and Evaluation of the Antimicrobial Activity of Free and Bound Phenolic Fractions from a Peruvian Purple Corn (Zea mays L.) Accession. J. Food Sci. 2017, 82, 2968–2976. [Google Scholar] [CrossRef]
- Maldonado, I.; Vega Quispe, A.P.; Merma Chacca, D.; Zirena Vilca, F. Optimization of the Elimination of Antibiotics by Lemna Gibba and Azolla filiculoides Using Response Surface Methodology (RSM). Front. Environ. Sci. 2022, 10, 1–13. [Google Scholar] [CrossRef]
- Sharma, S.S.; Dietz, K.J.; Mimura, T. Vacuolar Compartmentalization as Indispensable Component of Heavy Metal Detoxification in Plants. Plant Cell Environ. 2016, 39, 1112–1126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maldonado, I.; Moreno, E.G.; Zirena, F. Application of Duckweed (Lemna sp.) and Water Fern (Azolla sp.) in the Removal of Pharmaceutical Residues in Water: State of Art Focus on Antibiotics. Sci. Total Environ. 2022, 838, 156565. [Google Scholar] [CrossRef]
- Tasho, R.P.; Ryu, S.H.; Cho, J.Y. Effect of Sulfadimethoxine, Oxytetracycline, and Streptomycin Antibiotics in Three Types of Crop Plants-Root, Leafy, and Fruit. Appl. Sci. 2020, 10, 1111. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Ullah, F.; Zhou, D.X.; Yi, M.; Zhao, Y. Mechanisms of ROS Regulation of Plant Development and Stress Responses. Front. Plant Sci. 2019, 10, 800. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Guo, Y.; Shi, M.; Qiu, T.; Gao, M.; Tian, S.; Wang, X. Effect of Antibiotic Type and Vegetable Species on Antibiotic Accumulation in Soil-Vegetable System, Soil Microbiota, and Resistance Genes. Chemosphere 2021, 263, 128099. [Google Scholar] [CrossRef] [PubMed]
- Wild, E.; Dent, J.; Thomas, G.O.; Jones, K.C. Direct Observation of Organic Contaminant Uptake, Storage, and Metabolism within Plant Roots. Environ. Sci. Technol. 2005, 39, 3695–3702. [Google Scholar] [CrossRef]
- Bagheri, M.; Al-jabery, K.; Wunsch, D.C.; Burken, J.G. A Deeper Look at Plant Uptake of Environmental Contaminants Using Intelligent Approaches. Sci. Total Environ. 2019, 651, 561–569. [Google Scholar] [CrossRef]
- Kłosińska-Szmurło, E.; Pluciński, F.A.; Grudzień, M.; Betlejewska-Kielak, K.; Biernacka, J.; Mazurek, A.P. Experimental and Theoretical Studies on the Molecular Properties of Ciprofloxacin, Norfloxacin, Pefloxacin, Sparfloxacin, and Gatifloxacin in Determining Bioavailability. J. Biol. Phys. 2014, 40, 335–345. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Cao, X.; Kang, F.; Cheng, Z. PAHs Pass Through the Cell Wall and Partition into Organelles of Arbuscular Mycorrhizal Roots of Ryegrass. J. Environ. Qual. 2011, 40, 653–656. [Google Scholar] [CrossRef]
- Ahmadi, S.H.; Solgi, S.; Sepaskhah, A.R. Quinoa: A Super or Pseudo-Super Crop? Evidences from Evapotranspiration, Root Growth, Crop Coefficients, and Water Productivity in a Hot and Semi-Arid Area under Three Planting Densities. Agric. Water Manag. 2019, 225, 105784. [Google Scholar] [CrossRef]
- Gomes, M.P.; Richardi, V.S.; Bicalho, E.M.; da Rocha, D.C.; Navarro-Silva, M.A.; Soffiatti, P.; Garcia, Q.S.; Sant’Anna-Santos, B.F. Effects of Ciprofloxacin and Roundup on Seed Germination and Root Development of Maize. Sci. Total Environ. 2019, 651, 2671–2678. [Google Scholar] [CrossRef]
- Agathokleous, E.; Kitao, M.; Calabrese, E.J. Human and Veterinary Antibiotics Induce Hormesis in Plants: Scientific and Regulatory Issues and an Environmental Perspective. Environ. Int. 2018, 120, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Gomes, M.P.; de Brito, J.C.M.; Carvalho Carneiro, M.M.L.; Ribeiro da Cunha, M.R.; Garcia, Q.S.; Figueredo, C.C. Responses of the Nitrogen-Fixing Aquatic Fern Azolla to Water Contaminated with Ciprofloxacin: Impacts on Biofertilization. Environ. Pollut. 2018, 232, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Aderemi, A.O.; Novais, S.C.; Lemos, M.F.; Alves, L.M.; Hunter, C.; Pahl, O. Oxidative Stress Responses and Cellular Energy Allocation Changes in Microalgae Following Exposure to Widely Used Human Antibiotics. Aquat. Toxicol. 2018, 203, 130–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomes, M.P.; Moreira Brito, J.C.; Cristina Rocha, D.; Navarro-Silva, M.A.; Juneau, P. Individual and Combined Effects of Amoxicillin, Enrofloxacin, and Oxytetracycline on Lemna Minor Physiology. Ecotoxicol. Environ. Saf. 2020, 203, 111025. [Google Scholar] [CrossRef]
- Kesiraju, K.; Tyagi, S.; Mukherjee, S.; Rai, R.; Singh, N.K.; Sreevathsa, R.; Dash, P.K. An Apical Meristem-Targeted in Planta Transformation Method for the Development of Transgenics in Flax (Linum usitatissimum): Optimization and Validation. Front. Plant Sci. 2021, 11, 562056. [Google Scholar] [CrossRef] [PubMed]
- Turcios, A.E.; Papenbrock, J. Biofiltration of the Antibacterial Drug Sulfamethazine by the Species Chenopodium Quinoa and Its Further Biodegradation through Anaerobic Digestion. J. Environ. Sci. (China) 2019, 75, 54–63. [Google Scholar] [CrossRef]
- Guarino, F.; Ruiz, K.B.; Castiglione, S.; Cicatelli, A.; Biondi, S. The Combined Effect of Cr(III) and NaCl Determines Changes in Metal Uptake, Nutrient Content, and Gene Expression in Quinoa (Chenopodium quinoa Willd.). Ecotoxicol. Environ. Saf. 2020, 193, 110345. [Google Scholar] [CrossRef]
- Ross, D.L.; Elkinton, S.K.; Riley, C.M. Physicochemical Propierties of the Fluoroquinolone Antimicrobials. III. 1-Octanol/Water Partition Coefficients and Their Relationships to Structure. Int. J. Pharm. 1992, 88, 379–389. [Google Scholar] [CrossRef]
- Gawlik-Dziki, U.; Świeca, M.; Sułkowski, M.; Dziki, D.; Baraniak, B.; Czyz, J. Antioxidant and Anticancer Activities of Chenopodium Quinoa Leaves Extracts-In Vitro Study. Food Chem. Toxicol. 2013, 57, 154–160. [Google Scholar] [CrossRef]
- Bose, J.; Rodrigo-Moreno, A.; Shabala, S. ROS Homeostasis in Halophytes in the Context of Salinity Stress Tolerance. J. Exp. Bot. 2014, 65, 1241–1257. [Google Scholar] [CrossRef] [PubMed]
- Turcios, A.E.; Papenbrock, J. Enzymatic Degradation of the Antibiotic Sulfamethazine by Using Crude Extracts of Different Halophytic Plants. Int. J. Phytoremediat. 2019, 21, 1104–1111. [Google Scholar] [CrossRef]
- García, M.A.; García Molano, J.F.; Quito Martínez, C.A. Efecto de La Salinidad Por NaCl En El Crecimiento y Desarrollo de Plantas de Chenopodium Quinoa Willd. Cienc. Desarro. 2018, 10, 19–29. [Google Scholar] [CrossRef] [Green Version]
- Bedoya-Perales, N.S.; Pumi, G.; Talamini, E.; Padula, A.D. The Quinoa Boom in Peru: Will Land Competition Threaten Sustainability in One of the Cradles of Agriculture? Land Use Policy 2018, 79, 475–480. [Google Scholar] [CrossRef]
- Li, L.; Lietz, G.; Seal, C.J. Phenolic, Apparent Antioxidant and Nutritional Composition of Quinoa (Chenopodium quinoa Willd.) Seeds. Int. J. Food Sci. Technol. 2021, 56, 3245–3254. [Google Scholar] [CrossRef]
- Gómez-Caravaca, A.M.; Segura-Carretero, A.; Fernández-Gutiérrez, A.; Caboni, M.F. Simultaneous Determination of Phenolic Compounds and Saponins in Quinoa (Chenopodium quinoa Willd) by a Liquid Chromatography-Diode Array Detection-Electrospray Ionization-Time-of-Flight Mass Spectrometry Methodology. J. Agric. Food Chem. 2011, 59, 10815–10825. [Google Scholar] [CrossRef]
- Tiwari, S. Reactive Oxygen Species and Antioxidants: A Continuous Scuffle within the Cell. In Reactive Oxygen Species in Plants: Boon or Bane-Revisiting the Role of ROS; John Wiley & Sons: Hoboken, NJ, USA, 2017; pp. 187–203. [Google Scholar] [CrossRef]
- Alscher, R.G.; Donahue, J.L.; Cramer, C.L. Reactive Oxygen Species and Antioxidants: Relationships in Green Cells. Physiol. Plant. 1997, 100, 224–233. [Google Scholar] [CrossRef]
- Kumar, N.; Goel, N. Phenolic Acids: Natural Versatile Molecules with Promising Therapeutic Applications. Biotechnol. Reports 2019, 24, e00370. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, A.K.; Das, S. Role of Phenolic Compounds in Plant-Defensive Mechanisms Santosh. In Plant Phenolics in Sustainable Agriculture; Springer: Singapore, 2020; ISBN 9789811548901. [Google Scholar]
- Šamec, D.; Karalija, E.; Šola, I.; Vujčić Bok, V.; Salopek-Sondi, B. The Role of Polyphenols in Abiotic Stress Response: The Influence of Molecular Structure. Plants 2021, 10, 118. [Google Scholar] [CrossRef]
- Allcca-Alca, E.E.; León-Calvo, N.C.; Luque-Vilca, O.M.; Martínez-Cifuentes, M.; Pérez-Correa, J.R.; Mariotti-Celis, M.S.; Huamán-Castilla, N.L. Hot Pressurized Liquid Extraction of Polyphenols from the Skin and Seeds of Vitis Vinifera L. Cv. Negra Criolla Pomace a Peruvian Native Pisco Industry Waste. Agronomy 2021, 11, 866. [Google Scholar] [CrossRef]
- Antognoni, F.; Potente, G.; Biondi, S.; Mandrioli, R.; Marincich, L.; Ruiz, K. Free and Conjugated Phenolic Profiles and Antioxidant Activity and Environment. Plants 2021, 10, 1046. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Li, X.; Zhang, B.; Chen, P.X.; Liu, R.; Tsao, R. Characterisation of Phenolics, Betanins and Antioxidant Activities in Seeds of Three Chenopodium Quinoa Willd. Genotypes. Food Chem. 2015, 166, 380–388. [Google Scholar] [CrossRef] [PubMed]
- Pilco-Quesada, S.; Tian, Y.; Yang, B.; Repo-Carrasco-Valencia, R.; Suomela, J.P. Effects of Germination and Kilning on the Phenolic Compounds and Nutritional Properties of Quinoa (Chenopodium quinoa) and Kiwicha (Amaranthus caudatus). J. Cereal Sci. 2020, 94, 102996. [Google Scholar] [CrossRef]
- Wang, D.; Cao, D.; Yao, Y.; Wang, J.; Li, Z.; Liu, B. Understanding the Chemical Foundation and Genetic Mechanism of the Black Grain Trait in Quinoa by Integrating Metabolome and Transcriptome Analyses. Biotechnol. Biotechnol. Equip. 2020, 34, 1095–1103. [Google Scholar] [CrossRef]
- Yu, K.; Song, Y.; Lin, J.; Dixon, R.A. The Complexities of Proanthocyanidin Biosynthesis and Its Regulation in Plants. Plant Commun. 2022, 4, 100498. [Google Scholar] [CrossRef]
- Jiang, L.; Yue, M.; Liu, Y.; Zhang, N.; Lin, Y.; Zhang, T.; Wang, Y.; Li, M.; Luo, Y.; Zhang, Y.; et al. A Novel R2R3-MYB Transcription Factor FaMYB5 Positively Regulates Anthocyanin and Proanthocyanidin Biosynthesis in Cultivated Strawberries (Fragaria × ananassa). Plant Biotechnol. J. 2023, 21, 1140–1158. [Google Scholar] [CrossRef]
- Ullah, C.; Unsicker, S.B.; Reichelt, M.; Gershenzon, J.; Hammerbacher, A. Accumulation of Catechin and Proanthocyanidins in Black Poplar Stems After Infection by Plectosphaerella populi: Hormonal Regulation, Biosynthesis and Antifungal Activity. Front. Plant Sci. 2019, 10, 1441. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, H.; Yang, Y.; Li, M.; Zhang, Y.; Liu, J.; Dong, J.; Li, J.; Butelli, E.; Xue, Z.; et al. The Control of Red Colour by a Family of MYB Transcription Factors in Octoploid Strawberry (Fragaria × ananassa) Fruits. Plant Biotechnol. J. 2020, 18, 1169–1184. [Google Scholar] [CrossRef] [Green Version]
- Rauf, A.; Imran, M.; Abu-Izneid, T.; Iahtisham-Ul-Haq; Patel, S.; Pan, X.; Naz, S.; Sanches Silva, A.; Saeed, F.; Rasul Suleria, H.A. Proanthocyanidins: A Comprehensive Review. Biomed. Pharmacother. 2019, 116, 108999. [Google Scholar] [CrossRef]
Soil Physicochemical Parameters | Mechanical Analysis | ||||
---|---|---|---|---|---|
Parameter | Unity | Value | Parameter | Unity | Value |
pH | pH | 7.7 | Sand | % | 33.6 |
Electrical conductivity | mS/m | 138.7 | Silt | % | 35.3 |
Organic matter | % | 2.0 | Clay | % | 31.1 |
Nitrogen | % | 0.1 | Textural class | - | Clay loam |
Phosphorus | ppm | 8.8 | |||
Potassium | ppm | 909.8 | |||
Calcium carbonates | % | 1.1 |
Treatments | Plant | Root | ||
---|---|---|---|---|
Mean | SD | Mean | SD | |
Control | 50.50 b | ±3.04 | 19.00 a | ±2.65 |
1 μg/L | 47.17 a,b | ±1.61 | 19.67 a | ±4.04 |
10 μg/L | 40.17 a | ±6.21 | 19.33 a | ±1.53 |
100 μg/L | 42.33 a | ±2.31 | 20.83 a | ±1.76 |
Treatments CIP (μg/L) | Grain | Panicle | Stem | Root | ||||
---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
Control | 0.81 | ±0.09 | 4.59 | ±1.03 | 12.61 | ±2.62 | 1.47 | ±0.21 |
1 μg/L | 1.50 | ±0.63 | 4.08 | ±0.73 | 11.33 | ±1.08 | 1.24 | ±0.23 |
10 μg/L | 0.79 | ±0.33 | 3.29 | ±0.95 | 10.32 | ±2.91 | 1.02 | ±0.28 |
100 μg/L | 0.63 | ±0.04 | 2.87 | ±0.58 | 12.11 | ±0.84 | 1.54 | ±0.23 |
Treatments CIP (μg/L) | TPC (mg GAE/gdw) | DPPH (IC50: mg/mL) | ORAC (µmol ET/gdw) | |||
---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | |
Control | 4.40 b | ±0.06 | 8.37 b | ±0.46 | 87.92 b | ±6.08 |
1 μg/L | 3.63 a | ±0.05 | 10.28 c | ±0.06 | 70.67 a | ±5.44 |
10 μg/L | 5.44 c | ±0.09 | 5.71 a | ±0.10 | 92.57 b | ±4.05 |
100 μg/L | 5.79 d | ±0.13 | 5.42 a | ±0.02 | 121.73 c | ±5.62 |
Description | Treatments | |||||||
---|---|---|---|---|---|---|---|---|
Control | 1 µg/L | 10 µg/L | 100 µg/L | |||||
Phenolic acid (µg/gdw) | Mean | CV % | Mean | CV % | Mean | CV % | Mean | CV % |
Caffeic | 0.08 a | 30.20 | 0.09 a | 16.37 | 0.11 a,b | 24.05 | 0.18 b | 13.73 |
Vanillic | 0.21 a | 16.50 | 0.26 a | 17.63 | 0.22 a | 12.30 | 0.33 b | 4.68 |
Subtotal | 0.29 | 0.35 | 0.33 | 0.51 | ||||
Flavanols (µg/gdw) | ||||||||
Catechin | 0.47 a | 11.33 | 0.50 a | 8.93 | 0.49 a | 6.61 | 0.71 b | 4.23 |
Epicatechin | 0.20 a | 19.88 | 0.20 a | 10.24 | 0.22 a | 13.68 | 0.38 b | 8.11 |
Procyanidin B2 | 0.30 a | 20.14 | 0.41 a,b | 5.04 | 0.45 b | 8.35 | 0.73 c | 7.00 |
Procyanidin A2 | 0.91 a | 11.83 | 0.92 a | 8.10 | 0.92 a | 12.30 | 2.92 b | 2.43 |
Subtotal | 1.89 | 2.04 | 2.09 | 4.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos, A.Q.; Ramos, Y.M.; Camaticona, N.M.Q.; Tejeda, J.L.R.; Quiróz, C.N.C.; Maldonado, I.; Huamán-Castilla, N.L.; Vilca, F.Z. Deciphering Ciprofloxacin’s Impact on Growth Attributes and Antioxidant Compounds in Pasankalla Quinoa. Agronomy 2023, 13, 1738. https://doi.org/10.3390/agronomy13071738
Ramos AQ, Ramos YM, Camaticona NMQ, Tejeda JLR, Quiróz CNC, Maldonado I, Huamán-Castilla NL, Vilca FZ. Deciphering Ciprofloxacin’s Impact on Growth Attributes and Antioxidant Compounds in Pasankalla Quinoa. Agronomy. 2023; 13(7):1738. https://doi.org/10.3390/agronomy13071738
Chicago/Turabian StyleRamos, Adan Quisocala, Yoselin Mamani Ramos, Nora Magaly Quispe Camaticona, José Luis Ramos Tejeda, Clara Nely Campos Quiróz, Ingrid Maldonado, Nils Leander Huamán-Castilla, and Franz Zirena Vilca. 2023. "Deciphering Ciprofloxacin’s Impact on Growth Attributes and Antioxidant Compounds in Pasankalla Quinoa" Agronomy 13, no. 7: 1738. https://doi.org/10.3390/agronomy13071738
APA StyleRamos, A. Q., Ramos, Y. M., Camaticona, N. M. Q., Tejeda, J. L. R., Quiróz, C. N. C., Maldonado, I., Huamán-Castilla, N. L., & Vilca, F. Z. (2023). Deciphering Ciprofloxacin’s Impact on Growth Attributes and Antioxidant Compounds in Pasankalla Quinoa. Agronomy, 13(7), 1738. https://doi.org/10.3390/agronomy13071738