Comprehensive Control System for Ginger Bacterial Wilt Disease Based on Anaerobic Soil Disinfestation
Abstract
:1. Introduction
2. Bacterial Wilt Disease
2.1. Outbreak of Bacterial Wilt Disease of Zingiberaceae Crops
2.2. Damage Caused by Bacterial Wilt Disease Occurrences
2.3. Characteristics of Bacterial Wilt Disease
2.4. Ecology of the Pathogen
3. Diagnosis/Control System
3.1. Disease Occurrence
3.2. Soil Disinfestation Measure
3.2.1. Experiences with Et-ASD in Managing Bacterial Wilt in Ginger
3.2.2. Solarization Using Calcium Cyanamide
3.2.3. Economic Analysis
3.3. Seed Rhizome Measure
4. Limitations and Challenges of the Study for the Proposed Control System
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hayward, A.C. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Ann. Rev. Phytopathol. 1991, 29, 65–87. [Google Scholar] [CrossRef] [PubMed]
- Denny, T.P.; Hayward, A.C., II. Gram Negative Bacteria Ralstonia. In Laboratory Guide for Identification of Plant Pathogenic Bacteria; Schaad, N.W., Jones, J.B., Chun, W., Eds.; APS Press: St. Paul, MN, USA, 2001; pp. 151–174. [Google Scholar]
- Yano, K.; Kawada, Y.; Horita, M.; Hikichi, Y.; Tsuchiya, K. Phylogenetic discrimination and host ranges of Ralstonia solnacearum isolates from Zingiberaceae plants. Jpn. J. Phytopathol. 2011, 77, 88–95. [Google Scholar] [CrossRef] [Green Version]
- Horita, M.; Tsuchiya, K.; Suga, Y.; Yano, K.; Waki, T.; Kurose, D.; Furuya, N. Current classification of Ralstonia solanacearum and genetic diversity of the strains in Japan. J. Gen. Plant Pathol. 2014, 80, 455–465. [Google Scholar] [CrossRef]
- Ajitomi, A.; Inoue, Y.; Horita, M.; Nakaho, K. Bacterial wilt of three Curcuma species, C. longa (turmeric), C. aromatica (wild turmeric) and C. zedoaria (zedoary) caused by Ralstonia solanacearum in Japan. J. Gen. Plant Pathol. 2015, 81, 315–319. [Google Scholar] [CrossRef]
- Yuliar; Asi Nion, Y.; Toyota, K. Recent trends in control methods for bacterial wilt diseases caused by Ralstonia solanacearum. Microbes Environ. 2015, 30, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsuchiya, K. Genetic diversity of Ralstonia solanacearum and disease management strategy. Jpn. J. Phytopathol. 2014, 80, 125–129. [Google Scholar] [CrossRef] [Green Version]
- Safni, I.; Cleenwerck, I.; De Vos, P.; Fegan, M.; Sly, L.; Kappler, U. Polyphasic taxonomic revision of the Ralstonia solanacearum species complex: Proposal to emend the descriptions of Ralstonia solanacearum and Ralstonia syzygii and reclassify current R. syzygii strains as Ralstonia syzygii subsp. syzygii subsp. nov., R. solanacearum phylotype IV strains as Ralstonia syzygii subsp. indonesiensis subsp. nov., banana blood disease bacterium strains as Ralstonia syzygii subsp. celebesensis subsp. nov. and R. solanacearum phylotype I and III strains as Ralstonia pseudosolanacearum sp. nov. Int. J. Syst. Evol. Microbiol. 2014, 64, 3087–3103. [Google Scholar]
- Peeters, N.; Guidot, A.; Vailleau, F.; Valls, M. Ralstonia solanacearum, a widespread bacterial plant pathogen in the post-genomic era. Mol. Plant Pathol. 2013, 14, 651–662. [Google Scholar] [CrossRef] [Green Version]
- Landry, D.; González-Fuente, M.; Deslandes, L.; Peeters, N. The large, diverse, and robust arsenal of Ralstonia solanacearum type III effectors and their in planta functions. Mol. Plant Pathol. 2020, 21, 1377–1388. [Google Scholar] [CrossRef]
- Iiyama, K.; Kodama, S.; Kusakabe, H.; Sakai, Y.; Horita, M.; Yano, K.; Kyaw, H.W.W.; Tsuchiya, K.; Furuya, N. Complete genome sequences of Ralstonia solanacearum strains isolated from Zingiberaceae plants in Japan. Microbiol. Resour. Announc. 2021, 10, e01303-20. [Google Scholar] [CrossRef]
- She, X.; Tang, Y.; He, Z.; Lan, G. Genome sequencing of Ralstonia solanacearum race 4, biovar 4, and phylotype I, strain YC45, isolated from Rhizoma kaempferiae in southern China. Genome Announc. 2015, 3, e01110-15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, A.; Munjal, V.; Sheoran, N.; Prameela, T.P.; Suseelabhai, R.; Aggarwal, R.; Jain, R.K.; Eapen, S.J. Draft genome sequence of highly virulent race 4/biovar 3 of Ralstonia solanacearum CaRs_Mep causing bacterial wilt in Zingiberaceae plants in India. Genome Announc. 2017, 5, e01420-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suraby, E.J.; Sruthi, K.B.; Antony, G. Genome-wide identification of type III effectors and other virulence factors in Ralstonia pseudosolanacearum causing bacterial wilt in ginger (Zingiber officinale). Mol. Genet. Genom. 2022, 297, 1371–1388. [Google Scholar] [CrossRef] [PubMed]
- Genin, S.; Denny, T.P. Pathogenomics of the Ralstonia solanacearum species complex. Annu. Rev. Phytopathol. 2012, 50, 67–89. [Google Scholar] [CrossRef]
- Iiyama, K.; Michishita, R.; Arima, H.; Kyaw, H.W.W.; Yano, K.; Horita, M.; Tsuchiya, K.; Furuya, N. Possible invasion pathway of Ralstonia pseudosolanacearum race 4 in ginger plant. J. Gen. Plant Pathol. 2022, 88, 246–250. [Google Scholar] [CrossRef]
- Horita, M. Outbreak of ginger bacterial wilt and the disease control based on the diagnosis of field soil and seed tuber. Plant Protect. 2022, 76, 68–72. (In Japanese) [Google Scholar]
- Elphinstone, J.; Hennessy, J.; Wilson, J.K.; Stead, D.E. Sensitivity of different methods for the detection of Ralstonia solanacearum in potato tuber extracts. EPPO Bull. 1996, 26, 663–678. [Google Scholar] [CrossRef]
- Horita, M.; Sakai, Y. Specific detection and quantification of Ralstonia pseudosolanacearum race 4 strains from Zingiberaceae plant cultivation soil by MPN–PCR. J. Gen. Plant Pathol. 2020, 86, 393–400. [Google Scholar] [CrossRef]
- Inoue, Y.; Nakaho, K. Sensitive quantitative detection of Ralstonia solanacearum in soil by the most probable number-polymerase chain reaction (MPN–PCR) method. Appl. Microbiol. Biotechnol. 2014, 98, 4169–4177. [Google Scholar] [CrossRef]
- Fredslund, L.; Ekelund, F.; Jacobsen, C.S.; Kaare Johnsen, K. Development and application of a most-probable-number-PCR assay to quantify flagellate populations in soil samples. Appl. Environ. Microbiol. 2001, 67, 1613–1618. [Google Scholar] [CrossRef] [Green Version]
- Momma, N.; Momma, M.; Kobara, Y. Biological soil disinfestation using ethanol: Effect on Fusarium oxysporum f.sp. lycopersici and soil microorganisms. J. Gen. Plant Pathol. 2010, 76, 336–344. [Google Scholar] [CrossRef]
- Momma, N.; Kobara, Y.; Momma, M. Fe2+ and Mn2+, potential agents to induce suppression of Fusarium oxysporum for biological soil disinfestation. J. Gen. Plant Pathol. 2011, 77, 331–335. [Google Scholar] [CrossRef]
- Momma, N. Anaerobic soil disinfestation, promoted by soil microbes. Soil Microorg. 2022, 76, 59–62. [Google Scholar]
- Hayashi, K.; Yano, K.; Oki, T.; Morita, Y.; Horita, M. Field trial of soil disinfestation mixing calcium cyanamide against ginger strains of Ralstonia solanacearum. Jpn. J. Phytopathol. 2020, 86, 243. (In Japanese) [Google Scholar]
- Chen, L.; Xie, X.; Kang, H.; Liu, R.; Shi, Y.; Li, L.; Xie, J.; Li, B.; Chai, A. Efficiency of calcium cyanamide on the control of tomato soil-borne disease and their impacts on the soil microbial community. Appl. Soil Ecol. 2022, 176, 1045222. [Google Scholar] [CrossRef]
- Namba, N. Hot water disinfection of ginger rhizome to root rot caused by Pythium myriotylum on ginger. Bull. Nagasaki Agric. Forest. Tech. Develop. Cent. 2016, 7, 107–121. [Google Scholar]
- Nelson, S. Bacterial Wilt of Edible Ginger in Hawaii; College of Tropical Agricultural and Human Resources, University of Hawaii at Manoa: Honolulu, HI, USA, 2013; Volume PD-99, pp. 1–8. [Google Scholar]
- Nakamura, Y.; Egashira, M.; Horita, M. Disinfection of Ralstonia solanacearum strains living on ginger rhizome surface by hot water immersion method. Jpn. J. Phytopathol. 2019, 85, 92. (In Japanese) [Google Scholar]
- Pegg, K.G.; Moffet, M.L. Host range of the ginger strain of Pseudomonas solanacearum in Queensland. Aust. J. Exp. Agric. Anim. Hus. 1971, 11, 696–698. [Google Scholar] [CrossRef]
- Wubshet, Z. Economic importance and management of ginger bacterial wilt caused by Ralstonia solanacearum. Int. J. Res. Stud. Agric. Sci. 2018, 4, 1–11. [Google Scholar]
- Hayward, A.C.; Pegg, K.G. Bacterial wilt of ginger in Queensland: Reappraisal of a disease outbreak. Australas. Plant Pathol. 2013, 42, 235–239. [Google Scholar] [CrossRef]
- Paret, M.L.; Cabos, R.; Kratky, B.A.; Alvarez, A.M. Effect of essential oils on Ralstonia solanacearum race 4 and bacterial wilt of edible ginger. Plant Dis. 2010, 94, 521–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shinmura, A. Principle and effect of soil sterilization method by reducing redox potential of soil. PSJ Soilborne Dis. Workshop Rep. 2004, 22, 2–12. (In Japanese) [Google Scholar]
- Momma, N.; Kobara, Y.; Uematsu, S.; Kita, N.; Shinmura, A. Development of biological soil disinfestations in Japan. Appl. Microbiol. Biotechnol. 2013, 97, 3801–3809. [Google Scholar] [CrossRef] [PubMed]
- Momma, N. Anaerobic soil disinfestation: Current status of dissemination and future direction. Soil Microorg. 2017, 71, 24–28. [Google Scholar]
- Messiha, N.A.S.; van Diepeningen, A.D.; Wenneker, M.; van Beuningen, A.R.; Janse, J.D.; Coenen, T.G.C.; Termorshuizen, A.J.; van Bruggen, A.H.C.; Blok, W.J. Biological Soil Disinfestation (BSD), a new control method for potato brown rot, caused by Ralstonia solanacearum race 3 biovar 2. Eur. J. Plant Pathol. 2007, 117, 403–415. [Google Scholar] [CrossRef] [Green Version]
- van Overbeek, L.; Runia, W.; Kastelein, P.; Molendijk, L. Anaerobic disinfestation of tare soils contaminated with Ralstonia solanacearum biovar 2 and Globodera pallida. Eur. J. Plant Pathol. 2014, 138, 323–330. [Google Scholar] [CrossRef]
- Mao, Y.; Hafeez, A.; Pan, T.; Wu, C.; Wang, L.; Muramoto, J.; Shennan, C.; Cai, K.; Tian, J. Suppression of tomato bacterial wilt by anaerobic soil disinfestation and associations with production of antagonistic compounds. Plant Soil 2022, 477, 539–552. [Google Scholar] [CrossRef]
- Komatsu, T.; Matsuzawa, M.; Horita, H. Control of tomato bacterial wilt by soil reduction treatment with deep tillage rotary and resistant rootstock cultivar. Ann. Rept. Plant Prot. North Jpn. 2006, 57, 42–46. [Google Scholar]
- Komatsu, T.; Matsuzawa, M.; Horita, H. Control of tomato bacterial wilt by combination of sterilization using soil reduction with molasses and grafting onto rootstock of disease-resistant variety. Ann. Rept. Plant Prot. North Jpn. 2006, 57, 38–41. [Google Scholar]
- Shirane, S.; Momma, N.; Usami, T.; Suzuki, C.; Hori, T.; Aoyagi, T.; Amachi, S. Fungicidal activity of caproate produced by Clostridium sp. strain E801, a bacterium isolated from cocopeat medium subjected to anaerobic soil disinfestation. Agronomy 2023, 13, 747. [Google Scholar] [CrossRef]
- Mowlick, S.; Takehara, T.; Kaku, N.; Ueki, K.; Ueki, A. Proliferation of diversified clostridial species during biological soil disinfestation incorporated with plant biomass under various conditions. Appl. Microbiol. Biotechnol. 2013, 97, 8365–8379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mowlick, S.; Inoue, T.; Takehara, T.; Kaku, N.; Ueki, K.; Ueki, A. Changes and recovery of soil bacterial communities influenced by biological soil disinfestation as compared with chloropicrin-treatment. AMB Express 2013, 3, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ueki, A.; Kaku, N.; Ueki, K. Role of anaerobic bacteria in biological soil disinfestation for elimination of soil-borne plant pathogens in agriculture. Appl. Microbiol. Biotechnol. 2018, 102, 6309–6318. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Liao, H.; Shu, L.; Yao, H. Effect of different substrates on soil microbial community structure and the mechanism of reductive soil disinfestation. Front. Microbiol. 2019, 10, 2851. [Google Scholar] [CrossRef]
- Poret-Peterson, A.T.; Sayed, N.; Glyzewski, N.; Forbes, H.; González-Orta, E.T.; Kluepfel, D.A. Temporal responses of microbial communities to anaerobic soil disinfestation. Microb. Ecol. 2020, 80, 191–201. [Google Scholar] [CrossRef] [Green Version]
- Momma, N.; Yamamoto, K.; Simandi, P.; Shishido, M. Role of organic acids in the mechanism of biological soil disinfestation (BSD). J. Gen. Plant Pathol. 2006, 72, 247–252. [Google Scholar] [CrossRef]
- Hewavitharana, S.S.; Klarer, E.; Muramoto, J.; Shennan, C.; Mazzola, M. Analysis of environmental variables and carbon input on soil microbiome, metabolome and disease control efficacy in strawberry attributable to anaerobic soil disinfestation. Microorganisms 2021, 9, 1638. [Google Scholar] [CrossRef]
- Shrestha, U.; Ownley, B.H.; Bruce, A.; Rosskopf, E.N.; Butler, D.M. Anaerobic soil disinfestation efficacy against Fusarium oxysporum is affected by soil temperature, amendment type, rate, and C/N ratio. Phytopathology 2021, 111, 221–228. [Google Scholar] [CrossRef]
Sampling Site | Pathogen (cfu/g Soil) | Disease Occurrence | |
---|---|---|---|
1 | 0–30 cm | 3.9 × 104 | Occurred |
30–60 cm | 4.3 × 104 | ||
2 | 0–30 cm | 1.0 × 102 | Occurred in the past |
30–60 cm | ND | ||
3 | 0–30 cm | ND | Not occurred |
30–60 cm | ND | ||
4 | 0–30 cm | ND | Not occurred |
30–60 cm | ND |
No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
Location (soil type) | Tosa (red-yellow soil) | Tosa (red-yellow soil) | Tosa (gray lowland soil) | Tosa (gray lowland soil) | Tosa (red-yellow soil) | Tosa (gray lowland soil) | Shimanto (brown lowland soil) | Tosa (gray lowland soil) |
Test area (m2) | 1000 | 400 | 1000 | 1700 | 600 | 800 | 1000 | 1400 |
Start date | 27 July 2016 | 9 September 2016 | 10 March 2017 | 23 August 2017 | 17 July 2018 | 25 July 2018 | 8 August 2018 | 9 August 2019 |
End date | 21 December 2016 | 21 December 2016 | 2 May 2017 | 19 October 2017 | 5 October 2018 | 11 December 2018 | 3 October 2018 | 16 October 2019 |
Irrigation tube spacing (m) | 1.7 | 0.7 | 0.9 | 0.9 | 2.5 | 1.3–1.7 | 0.9 | 1.2 |
Ethanol supplied (L) | 390 | 182 | 390 | 650 | 312 | 520 | 520 | 728 |
Pre-irrigation (L) | 18,400 | Un known | 24,000 | 40,000 | 1500 | 48,500 | 19,723 | 49,000 |
Ethanol diluent irrigation (L) | 44,000 | 24,000 | 53,000 | 90,000 | 41,715 | 26,380 | 60,171 | 33,000 |
Total amount of irrigation (L) | 62,400 | 24,000 | 77,000 | 130,000 | 43,215 | 74,880 | 79,894 | 82,000 |
Total amount of irrigation (L m−2) | 62.4 | 60 | 77 | 77 | 72 | 93.6 | 79.9 | 58.6 |
Ethanol conc. (v/v, %) | 0.63 | 0.76 | 0.51 | 0.50 | 0.72 | 0.69 | 0.65 | 0.89 |
Time required (h) | 5 | Unknown | 3.5 | 6 | 6 | 8.5 | 6 | 10.5 |
Covering film (thickness) | PVC (0.075 mm) | PE + PVC | PVC (0.05 mm) | PE + PVC (0.05 mm) | PVC | PE + PVC | PE + PVAC | PE + PVAC |
Pathogen in soil (after ASD) | Not detected | Not detected | Survived | Not detected | Not detected | Not detected | Not detected | Not detected |
Remarks (field condition after ASD) | No disease occurrence after 4 works (2017–2020) | No disease occurrence (2017) | Re-try ASD in next summer season (see no. 4) | Disease occurred (single plant in 2018). No disease occurrence thereafter (2019–2020) | No disease occurrence (2019–2020) | No disease occurrence (2019–2020) | No disease occurrence (2019) | No disease occurrence (2020) |
Sampling Site | Pathogen (cfu/g Soil) | ||
---|---|---|---|
Before ASD | After ASD | ||
1 | 0–30 cm | 3.3 × 102 | ND |
30–60 cm | 1.0 × 102 | ND | |
2 | 0–30 cm | <33 | ND |
30–60 cm | ND | ND | |
3 | 0–30 cm | 1.3 × 103 | ND |
30–60 cm | 33 | ND | |
4 | 0–30 cm | 2.7 × 102 | ND |
30–60 cm | 1.1 × 103 | ND |
No Countermeasures | Et-ASD (No Recurrence) * | Solarization with CaCN2 (No Recurrence) | ||
---|---|---|---|---|
(30% Loss) | (1st Work) | (2nd Work) | (1st Work) | |
Average yield (kg) | 3206 | 4580 | 4580 | 4580 |
Gross revenue (USD) | 8010 | 11,450 | 11,450 | 11,450 |
Operating expenses (USD) | 8020 | 9890 | 7620 | 8920 |
(Material for soil disinfestation) | 400 | 1284 | 0 | 314 |
(Related materials for soil disinfestation) | 0 | 986 | 0 | 986 |
(Others) | 7620 | 7620 | 7620 | 7620 |
Income (USD) | −10 | 1560 | 3830 | 2530 |
Income rate (%) | 0 | 14 | 33 | 22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horita, M.; Kobara, Y.; Yano, K.; Hayashi, K.; Nakamura, Y.; Iiyama, K.; Oki, T. Comprehensive Control System for Ginger Bacterial Wilt Disease Based on Anaerobic Soil Disinfestation. Agronomy 2023, 13, 1791. https://doi.org/10.3390/agronomy13071791
Horita M, Kobara Y, Yano K, Hayashi K, Nakamura Y, Iiyama K, Oki T. Comprehensive Control System for Ginger Bacterial Wilt Disease Based on Anaerobic Soil Disinfestation. Agronomy. 2023; 13(7):1791. https://doi.org/10.3390/agronomy13071791
Chicago/Turabian StyleHorita, Mitsuo, Yuso Kobara, Kazutaka Yano, Kazusa Hayashi, Yoshihide Nakamura, Kazuhiro Iiyama, and Tomoka Oki. 2023. "Comprehensive Control System for Ginger Bacterial Wilt Disease Based on Anaerobic Soil Disinfestation" Agronomy 13, no. 7: 1791. https://doi.org/10.3390/agronomy13071791
APA StyleHorita, M., Kobara, Y., Yano, K., Hayashi, K., Nakamura, Y., Iiyama, K., & Oki, T. (2023). Comprehensive Control System for Ginger Bacterial Wilt Disease Based on Anaerobic Soil Disinfestation. Agronomy, 13(7), 1791. https://doi.org/10.3390/agronomy13071791